Capture Color Analysis Gamuts

Jack Holm Hewlett-Packard Company Palo Alto, CA

What is a "capture color analysis gamut"

- The gamut of scene colors as analyzed by the capture device
- If the camera is colorimetric, the capture color analysis gamut will be identical to the scene color gamut
 - but very few capture devices are colorimetric
- When the capture device is not colorimetric, the capture color analysis gamut will depend on the camera spectral sensitivities and the color analysis transform used
- The capture color analysis gamut is before color rendering

A color gamut at different image states

Scene to scene-referred

black - possible scene gamut red - color analysis gamut (Canon 20D, nIPCRGBmin) yellow – RIMM RGB gamut

A color gamut at different image states

Scene-referred to sRGB

A color gamut at different image states

sRGB to Print

Color analysis transform determination

Parameters

- "training" stimuli
 - spectral colors, in-situ real world colors, test target colors
- constraints
 - neutral preserving, non-negative result
- weights
 - illuminant power, memory colors, problem colors
- error minimization color space
 - XYZ, L*a*b*, L*u*v*, nonlinear RGB
- error minimized
 - distance (e.g. delta E), least squares error

Color analysis transforms illustrated

- In this paper
 - Least-squares error minimization in XYZ
 - Equi-energy white point preserving least-squares error minimization in XYZ
 - Equi-energy white point preserving least squares error minimization in nonlinear prime colors RGB, weighted by illuminant power
 - Adobe DNG matrix (determination method unknown)

Kodak 5218 color negative film

tungsten balanced

Kodak 5246 color negative film

daylight balanced

Film capture inter-image effects

- Scene analysis transforms based on film spectral sensitivities are applicable to integrated "channel" film exposure
- Inter-image effects complicate the relation between film densities and film exposures
- At the recent ICC meeting, Urabe reported that matrixing in log/density/dye concentration space may reasonably account for inter-image effects

Better Light digital scanning back

RGB separation filters

Megavision digital back for Hasselblad

CFA CCD (frame transfer)

Nikon D70 digital SLR

CFA CCD

Canon 20D digital SLR

CFA CMOS

Summary & Conclusions (1)

- Popular capture media (film and digital cameras) deviate significantly from colorimetric analysis, but at the same time are commercially successful
- When the white balance and color rendering are optimized, the limiting factor in color reproduction quality is color analysis
- Usually color analysis is not the limiting factor
 - but poor color analysis results in a lowered quality ceiling
 - poor color analysis may result from a poor choice of the color analysis transform determination parameters, as there seems to be some flexibility in spectral sensitivities
- It is important to address color analysis and color rendering problems separately

Summary & Conclusions (2)

- Film (and color separation filter) spectral sensitivities tend to "spectrally gamut map" the scene gamut to smaller color analysis gamuts that are within the spectral locus and triangular
 - this may reduce the need for gamut mapping prior to color rendering
- Digital camera spectral sensitivities produce color analysis gamuts that are larger, somewhat more irregular, and extend further outside the spectral locus
- Generally, current capture color analysis gamuts fit the RIMM primary triangle better than the XYZ triangle
 - the RIMM color space is also better for application of some color rendering methods (e.g. RGB tone curve color rendering)

Summary & Conclusions (3)

- The color analysis transform determination parameters have a significant effect on the capture color analysis gamut
 - Quite different results are obtained with different reasonable parameters
- Some capture color processing systems need to be able to deal appropriately with "colors" that are analyzed to be significantly outside the spectral locus, or even the XYZ triangle

