
ICC.2:2017

© ICC 2017 – All rights reserved i

International
Color Consortium®

Specification
ICC.2:2017

Image technology colour management —
Extensions to architecture, profile format, and

data structure

0.1.1 Copyright notice

Copyright © 2017 International Color Consortium®
Permission is hereby granted, free of charge, to any person obtaining a copy of this Specification (the “Specification”) to
exploit the Specification without restriction including, without limitation, the rights to use, copy, modify, merge, publish,
distribute, and/or sublicense, copies of the Specification, and to permit persons to whom the Specification is furnished
to do so, subject to the following conditions:

Elements of this Specification may be the subject of intellectual property rights of third parties throughout the world
including, without limitation, patents, patent application, utility, models, copyrights, trade secrets or other proprietary
rights (“Third Party IP Rights”). Although no Third Party IP Rights have been brought to the attention of the
International Color Consortium (the “ICC”) by its members, or as a result of the publication of this Specification in
certain trade journals, the ICC has not conducted any independent investigation regarding the existence of Third Party IP
Rights. The ICC shall not be held responsible for identifying Third Party IP Rights that may be implicated by the practice
of this Specification or the permissions granted above, for conducting inquiries into the applicability, existence, validity,
or scope of any Third Party IP Rights that are brought to the ICC’s attention, or for obtaining licensing assurances with
respect to any Third Party IP Rights.

THE SPECIFICATION IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS, IMPLIED, OR
OTHERWISE INCLUDING, BUT NOT LIMITED TO, WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, NONINFRINGEMENT, QUIET ENJOYMENT, SYSTEM INTEGRATION, AND DATA
ACCURACY. IN NO EVENT SHALL THE ICC BE LIABLE FOR ANY CLAIM, DAMAGES, LOSSES, EXPENSES OR
OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTH- ERWISE, CAUSED BY, ARISING OR
RESULTING FROM, OR THAT RELATE TO THE SPECIFICATION OR THE PRACTICE OR OTHER EXPLOITATION
OF THE SPECIFICATION. FURTHER, YOU HEREBY AGREE TO DEFEND, INDEMNIFY AND HOLD HARMLESS
THE ICC, AND ITS DIRECTORS AND EMPLOYEES, FROM AND AGAINST ANY AND ALL THIRD PARTY
CLAIMS, ACTIONS SUITS, DAMAGES, LOSSES, COSTS, EXPENSES, OR OTHER LIABILITIES (INCLUDING
REASONABLE ATTORNEY'S FEES AND EXPENSES) THAT WERE CAUSED BY, ARISE OR RESULT FROM, OR
RELATE TO, YOUR PRACTICE OR OTHER EXPLOITATION OF THE SPECIFICATION (INCLUDING, WITHOUT
LIMITATION, CLAIMS OF INFRINGEMENT).

The above copyright notice, permission, and conditions and disclaimers shall be included in all copies of any material
portion of the Specification. Except as contained in this statement, the name “International Color Consortium” shall not
be used in advertising or otherwise to promote the use or other dealings in this Specification without prior written
authorization from the ICC.

0.1.2 Licenses and trademarks

International Color Consortium and the ICC logo are registered trademarks of the International Color Consortium.

Rather than put a trademark symbol in every occurrence of other trademarked names, we state that we are using the
names only in an editorial fashion, and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

0.1.3 For additional information on the ICC

Visit the ICC Web site: http://www.color.org

http://www.color.org/

© ICC 2017– All rights reserved

This document is the version of iccMAX approved by ICC and submitted to ISO/TC130
JWG7 for approval as an International Standard. The text of this document is technically
identical to ISO/DIS 20677, which is currently being developed by ISO TC 130 JWG7. The
ISO specification will be based on the current ICC version, but will also incorporate editorial
input from the ISO TC130 working group and ISO editor.

ICC.2:2017	

2	 ©	ICC	2017	–	All	rights	reserved	

	

	

	

	

Contents	

Foreword	..	7

Introduction...	8

0 General	..	8

0.1 Extended	Profile	Connection	Spaces	...	8

0.2 Extended	Transform	Encoding	..	9

0.3 Colour	Encoding	Space	Profiles	...	9

0.4 Material	Connection	Space	Profiles	..	10

0.5 Bidirectional	Reflection	Function	(BRDF)	and	Directional	Emission	Profiles	10

0.6 Rendering	intents	...	11

 Scope	...	12

2 Normative	references	...	12

3 Terms	and	definitions	..	12

4 Extended	basic	types	..	13

4.1 General	..	13

4.2 Extended	basic	type	listing	...	13

5 Conformance	..	20

ICC.2:2017	

©	ICC	2017–	All	rights	reserved	 3	

6 Expanded	profile	connection	spaces,	rendering	intents	and	device	encoding	21

6.1 General	considerations	..	21

6.2 Extensions	to	device	colour	encoding	..	21

6.3 Extensions	to	Profile	connection	spaces	...	22

6.4 Material	Connection	Spaces	...	26

6.5 Color	Encoding	Space	profiles	...	27

7 Profile	requirements	..	27

7.1 General	..	27

7.2 Profile	Header	..	29

7.3 Tag	table	...	40

7.4 Tag	data	..	41

8 Required	tags	...	41

8.1 General	..	41

8.2 Common	requirements	..	42

8.3 Input	profiles	..	42

8.4 Display	profiles	..	43

8.5 Output	profiles	...	43

8.6 DeviceLink	profile	..	43

8.7 ColorEncodingSpace	Profiles	...	44

8.8 ColorSpace	profile	..	45

8.9 Abstract	profile	..	45

8.10 NamedColor	profile	...	45

8.11 MaterialIdentification	profile	..	46

8.12 MaterialLink	profile	...	46

8.13 MaterialVisualization	profile	...	46

8.14 Precedence	order	of	tag	usage	..	46

9 Tag	definitions	..	50

ICC.2:2017	

4	 ©	ICC	2017	–	All	rights	reserved	

9.1 General	..	50

9.2 Specific	tag	listing	...	51

10 Tag	Type	definitions	...	94

10.1 General	..	94

10.2 Specific	tag	type	listing	...	94

11 Multi	Processing	Element	definitions	..	127

11.1 General	..	127

11.2 Specific	processing	element	listing	...	128

12 Struct	Tag	Type	definitions	...	166

12.1 General	..	166

12.2 Struct	Tag	Type	listing	..	166

13 Tag	Array	Type	definitions	..	195

13.1 General	..	195

13.2 Tag	Array	Intentifier	Type	listing	..	195

Annex	A	(informative)	Elemental	calculations	and	Inter‐PCS	operations	..	196

A.1 Elemental	Calculations	...	196

A.2 Various	PCS	Operations	...	202

A.3 Pseudo‐code	description	of	PCS	to	PCS	transformations	..	203

Annex	B	(informative)	Gamut	Boundary	Description	..	216

B.1 Introduction	..	216

B.2 Computing	the	entries	in	a	Gamut	Boundary	Descriptor	Tag:	..	216

B.3 Gamut	mapping	...	217

Annex	C	(informative)	ICC	Colour	Appearance	Model	Transformations	..	219

C.1 Introduction	..	219

C.2 The	ICC	colour	appearance	model	...	220

Annex	D	(informative)	Named	Colour	Profiles	...	221

D.1 Introduction	..	221

ICC.2:2017	

©	ICC	2017–	All	rights	reserved	 5	

D.2 Rendering	intent	of	a	named	colour	...	221

D.3 Spectral	calculation	for	a	tint	value	..	221

D.4 Overprint	calculation	..	222

D.5 Example	of	a	namedColor	profile	in	a	colour	management	workflow	...	222

Annex	E	(informative)	Sparse	Matrix	Operations	..	223

Annex	F	(informative)	Calculator	Elements	...	227

F.1 Textual	representation	of	calculator	processing	elements	...	227

F.2 Examples	..	228

F.3 RGBW	Display	Projector	Inverse	Model	...	229

F.4 CLUT	interpolation	using	Lch	addressing	from	an	XYZ	PCS	Example	..	230

Annex	G	(informative)	BRDF	description	...	231

G.1 Introduction	..	231

G.2 Purpose	...	232

G.3 The	BRDFStruct	Element	and	the	BRDFFunction	Element	...	232

G.4 BRDF	model	support	in	ICC	Profiles	with	BRDFStruct	...	232

G.5 Workflows	...	232

G.6 Rendering	intent	usage	with	BRDF	data	...	238

G.7 Normal	map	and	height	map	usage	with	BRDF	data	...	238

Annex	H	(informative)	Directional	Emissive	Color	...	240

Annex	I	(informative)	Material	Connection	Spaces...	241

I.1 Introduction	..	241

I.2 MCS	connection	basics	...	241

I.3 MCS	connection	examples	..	242

Annex	J	(informative)	ColorEncodingSpace	class	profiles	..	246

	

ICC.2:2017	

©	ICC	2017–	All	rights	reserved	 7	

Foreword	

ISO	 (the	 International	 Organization	 for	 Standardization)	 is	 a	 worldwide	 federation	 of	 national	
standards	 bodies	 (ISO	 member	 bodies).	 The	 work	 of	 preparing	 International	 Standards	 is	 normally	
carried	out	 through	 ISO	 technical	 committees.	Each	member	body	 interested	 in	a	 subject	 for	which	a	
technical	 committee	 has	 been	 established	 has	 the	 right	 to	 be	 represented	 on	 that	 committee.	
International	organizations,	governmental	and	non‐governmental,	in	liaison	with	ISO,	also	take	part	in	
the	 work.	 ISO	 collaborates	 closely	 with	 the	 International	 Electrotechnical	 Commission	 (IEC)	 on	 all	
matters	of	electrotechnical	standardization.	

The	 procedures	 used	 to	 develop	 this	 document	 and	 those	 intended	 for	 its	 further	 maintenance	 are	
described	in	the	ISO/IEC	Directives,	Part	1.	In	particular	the	different	approval	criteria	needed	for	the	
different	types	of	 ISO	documents	should	be	noted.	This	document	was	drafted	in	accordance	with	the	
editorial	rules	of	the	ISO/IEC	Directives,	Part	2.		www.iso.org/directives

Attention	is	drawn	to	the	possibility	that	some	of	the	elements	of	this	document	may	be	the	subject	of	
patent	rights.	 ISO	shall	not	be	held	responsible	 for	 identifying	any	or	all	such	patent	rights.	Details	of	
any	patent	rights	identified	during	the	development	of	the	document	will	be	in	the	Introduction	and/or	
on	the	ISO	list	of	patent	declarations	received.		www.iso.org/patents	

Any	trade	name	used	in	this	document	is	information	given	for	the	convenience	of	users	and	does	not	
constitute	an	endorsement.	

For	 an	 explanation	 on	 the	 meaning	 of	 ISO	 specific	 terms	 and	 expressions	 related	 to	 conformity	
assessment,	 as	 well	 as	 information	 about	 ISO's	 adherence	 to	 the	 WTO	 principles	 in	 the	 Technical	
Barriers	to	Trade	(TBT)	see	the	following	URL:	Foreword	‐	Supplementary	information	

The	 committee	 responsible	 for	 this	 document	 is	 ISO/TC	 130,	 in	 cooperation	 with	 the	 International	
Color	Consortium	(ICC).	

	 	

ICC.2:2017	

8	 ©	ICC	2017	–	All	rights	reserved	

Introduction	

0 General	

This	 document	 defines	 specifications	 that	 provide	 a	 platform	 for	 defining	 extended	 (iccMAX)	 colour	
management	 profiles	 and	 systems	 for	 various	 colour	workflow	 domains.	 	 It	 can	 be	 thought	 of	 as	 an	
extension	to	ISO	15076‐1,	defined	by	the	International	Color	Consortium®	(ICC).		ISO	15076‐1	specifies	
a	 profile	 format	 that	 is	 intended	 to	 provide	 a	 cross‐platform	 profile	 format	 for	 the	 creation	 and	
interpretation	 of	 colour	 data.	 Central	 to	 ISO	 15076‐1	 is	 the	 encoding	 of	 colour	 transforms	 between	
device	colour	encodings	and	profile	connection	spaces	based	upon	D50	colorimetry	with	the	CIE	1931	
Standard	 2‐degree	 observer.	 	 For	 many	 workflows	 ISO	 15076‐1	 has	 proven	 adequate	 for	 defining	
successful	colour	management	systems.		For	other	workflows	ISO	15076‐1	has	been	found	to	be	limited	
in	the	 flexibility	of	encoding	colour	transforms	as	well	as	defining	means	of	profile	colour	connection	
that	incorporate	physical	attributes	of	colour	in	addition	to	mere	colour	appearance.			

The	intent	of	this	part	of	ISO	20677	is	to	provide	a	platform	for	which	domain	specific	specifications	can	
be	defined	that	make	use	of	these	extensions	to	the	existing	cross‐platform	profile	format	of	ISO	15076‐
1.	Thus	there	is	greater	flexibility	for	defining	colour	transforms	and	profile	connection	spaces	to	meet	
needs	 that	 cannot	 easily	 be	 met	 with	 ISO	 15076‐1.	 As	 such	 it	 is	 not	 envisioned	 that	 all	 colour	
management	 systems	 that	 use	 this	 part	 of	 ISO	 20677	will	 implement	 all	 the	 features	 or	 capabilities	
specified	by	this	document.	Specific	requirements	related	to	what	is	necessary	to	be	implemented	and	
supported	relative	to	this	document	can	be	found	in	workflow	domain	specifications.	Additionally,	for	
some	domain	specific	workflows	it	 is	envisioned	that	there	will	be	the	need	for	simultaneous	support	
for	and	interaction	between	ISO	15076‐1	and	profiles	defined	by	this	part	of	ISO	20677.	

It	 is	assumed	that	 the	reader	of	 this	document	has	a	good	understanding	of	 ISO	15076‐1	as	well	as	a	
good	 understanding	 of	 colour	 science	 and	 imaging,	 such	 as	 familiarity	 with	 CIE,	 ISO	 and	 IEC	 colour	
standards,	general	knowledge	of	device	measurement	and	characterization,	and	familiarity	with	at	least	
one	operating	system	level	colour	management	system.	

The	following	sub‐sections	introduce	a	few	of	the	more	significant	differences	from	ISO	15076‐1.	

 	Extended	Profile	Connection	Spaces	

 ISO	15076‐1	PCS	encoding	

In	 ISO	 15076‐1	 PCS	 transform	 results	 are	 encoded	 relative	 to	 D50	with	 a	 2‐degree	 observer.	 If	 and	
when	ISO	15076‐1	based	profiles	are	used	in	conjunction	with	this	part	of	ISO	20677,	the	PCS	encoding	
specified	in	ISO	15076‐1	are	used	with	necessary	conversions	as	needed.	

 Extended	PCS	encoding		

PCS	 encoding	 is	 extended	 to	 allow	 PCS	 transform	 results	 to	 be	 relative	 to	 arbitrary	 illuminants	 and	
observers.	 Profile	 Connection	 Conditions	 provided	 by	 either	 a	 profile	 or	 directly	 to	 the	 CMM	 can	 be	
applied	to	convert	between	different	illuminants	and	observers.	Additionally,	a	profile	can	define	use	of	
a	spectrally‐based	PCS	independent	of	the	colorimetric‐based	PCS	usage,	with	separate	transform	data	
between	device	encoding	and	the	colorimetry	and	spectral	PCS	encodings.	

ICC.2:2017	

©	ICC	2017–	All	rights	reserved	 9	

 Extended	Transform	Encoding	

 ISO	15076‐1	transform	encoding	

ISO	 15076‐1	 defines	 transforms	 using	 integer	 encoding	 in	 AToBx	 and	 BToAx	 tags.	 Floating	 point	
transform	 encoding	 can	 additionally	 be	 specified	 in	 optional	 DToBx	 and	 BToDx	 tags	 using	 multi‐
processing	element	tags.	

Integer‐based	LUT	tags	have	specific	requirements	for	transform	data	and	order.		

The	multi‐processing	element	tag	type	allows	a	sequence	of	transform	elements	to	be	applied	in	order	
to	transform	between	device	encoding	and	PCS	encoding.	The	processing	elements	consist	of	matrices,	
1‐dimensional	curve	sets,	and	N‐dimensional	lookup	tables.	

 iccMAX	extended	transform	encoding	

Spectrally‐based	 PCS	 transforms	 are	 encoded	 using	DToBx/BToDx	 tags	when	 a	 spectral	 PCS	 is	 used.	
Colorimetric‐based	 PCS	 transforms	 are	 encoded	 in	matrix/TRC	based	 profiles	 or	AToBx/BToAx	 tags.	
Additionally,	AToBx/BToAx	tag	transforms	can	be	encoded	using	the	multi‐processing	element	tag	type.	

The	multi‐processing	 element	 tag	 type	 is	 extended	 to	 provide	 greater	 flexibility	 as	well	 as	 encoding	
brevity	 in	 defining	 transforms.	 Extended	 elements	 include	 a	 stack‐based	 programmable	 transform	
calculator,	single‐segment	curves,	N‐D	lookup	tables	with	integer	encoding,	Colour	Appearance	Model	
conversions,	sparse	matrix	processing,	and	tint	arrays.	

Multi‐processing	element	based	tags	are	used	to	define	Profile	Connection	Conditions	within	a	profile.	
The	CMM	applies	these	tags	as	needed	to	perform	PCS	conversions.	

 Late‐binding	processing	elements	

The	multi‐processing	element	tag	type	has	been	extended	to	allow	for	processing	elements	that	provide	
late‐binding	of	the	observer	and/or	illuminant	from	the	profile	connection	conditions	(PCC)	utilized	by	
the	profile.	 	Either	spectral	 information	inside	select	processing	elements	 is	converted	to	colorimetric	
data	 shortly	 before	 processing	 of	 color	 transforms	 is	 to	 be	 performed,	 or	 spectral	 to	 colorimetric	
transforms	 are	 established	 for	 processing	 of	 color	 transformations.	 	 This	 late‐binding	 of	 spectral	 to	
colorimetric	processing	 is	based	on	the	profile	connection	conditions	utilized	by	the	multi‐processing	
element.		The	media‐white	point	and	illuminant	colorimetry	used	for	absolute/relative	PCS	processing	
is	 also	 adjusted	 based	 upon	 the	 combined	 profile/PCC	 relationships	 when	 late‐binding	 processing	
elements	are	used.		

 Colour	Encoding	Space	Profiles	

 General	

In	ISO	15076‐1,	profiles	define	transforms	that	go	from	device	to	PCS.	However,	in	some	workflows	the	
essential	requirement	is	a	method	of	defining	what	the	data	is	rather	than	providing	a	transform	that	
converts	the	data	into	a	representation	of	colour.		

ICC.2:2017	

10	 ©	ICC	2017	–	All	rights	reserved	

 Colour	Space	Encoding	

ISO	20677	establishes	a	ColorEncodingSpace	profile	class	to	define	profiles	that	can	be	used	when	the	
content	 owner	wishes	 to	 identify	 the	 colour	 encoding	 of	 digital	 colour	 content	 and	does	 not	wish	 to	
provide	a	colour	transformation	to	be	used	in	converting	or	adapting	the	digital	colour	content	from	the	
identified	current	colour	space	encoding	to	any	other	colour	space	encoding.	

 Material	Connection	Space	Profiles	

 General	

Generally,	 the	 data	 encoding	 sides	 of	 profile	 transforms	 are	 not	 used	 to	 connect	 profiles	 using	 ISO	
15076‐1.	 Connection	 of	 data	 encoding	 channels	 is	 only	 meaningful	 when	 the	 number,	 order,	 and	
encoding	 of	 the	 data	 encoding	 channels	 are	 identica..	 However,	 in	 some	workflows,	 flexibility	 in	 the	
number	and	order	of	the	channels	is	desirable	with	a	meaningful	way	of	identifying	the	encoding	of	the	
channels.		

 Material	Connection	Space	Encoding	

ISO	20677	defines	an	additional	profile	connection	mechanism	that	allows	Material	Connection	Space	
(MCS)	 Channels	 to	 be	 connected.	 MCS	 connection	 provides	 a	 means	 of	 defining	 flexible	 connection	
between	“device	like”	channels	of	profiles	that	are	identified	by	name.	Order	and	existence	of	channels	
is	 flexible	 with	 the	 ability	 for	 a	 profile	 to	 specify	 subset	 requirements	 on	 the	 MCS	 channels	 in	 the	
connected	profile	 and	default	 values	 specified	 for	missing	 channels.	 The	 Input	 Profile	 class	 has	 been	
extended	to	have	an	optional	tag	that	connects	to	a	Material	Connection	Space.	Additionally,	MaterialLink	
and	MaterialVisualization	profile	classes	have	been	defined	for	MCS	processing.		

 Bidirectional	Reflection	Function	(BRDF)	and	Directional	Emission	Profiles	

 General	

ISO	15076‐1	assumes	0:45	measurement	geometry	for	reflection	prints	and	diffuse	radiance	of	displays.	
However,	in	many	conditions	colour	appearance	can	change	due	to	changes	in	lighting	r	viewing	angle.	
Such	goniochromatic	effects	cannot	be	encoded	or	communicated	using	ISO	15076‐1.	

 Bidirectional	Reflection	Function	Encoding	

ISO	 20677	 provides	 the	 ability	 to	 encode	 Bidirectional	 Reflection	 Distribution	 Function	 (BRDF)	
information,	 as	 well	 as	 example	 surface	 information,	 that	 3D	 rendering	 systems	 can	 use	 to	 emulate	
goniochromatic	 effects.	 In	 this	 case	 the	 BRDF	 information	 is	 provided	 directly	 to	 the	 3D	 rendering	
system	without	extensive	colour	management	system	involvement.	Additionally,	BRDF	information	can	
be	used	to	define	and	communicate	goniochromatic	properties	of	named	colours.		

 Directional	Emission	Function	Encoding	

ISO	20677	provides	the	ability	to	encode	Directional	Emission	information	which	can	be	used	to	define	
and	 communicate	 goniochromatic	 properties	 of	 colors	 by	 viewing	 angle	 and	 relative	 position	 on	 a	
display.	

ICC.2:2017	

©	ICC	2017–	All	rights	reserved	 11	

 Rendering	intents	

In	ISO	15076‐1	four	rendering	intents	are	defined:	Perceptual,	media‐relative	colorimetry,	ICC‐absolute	
colorimetry,	and	saturation.	For	the	purposes	of	supporting	spectrally‐based	profile	connection	spaces	
the	media‐relative	colorimetry	and	ICC‐absolute	colorimetry	intents	are	referred	to	in	this	part	of	ISO	
20677	as	media‐relative	and	ICC‐absolute	intents	which	apply	to	both	colorimetric	as	well	as	spectral	
conditions.	

ICC.2:2017	

12	 ©	ICC	2017	–	All	rights	reserved	

Image	technology	colour	management	—	Extensions	to	
architecture,	profile	format,	and	data	structure	

 Scope	

This	 International	Standard	 is	based	on	ISO	15076‐1,	and	describes	an	expanded	profile	specification	
and	profile	connections	that	permit	greater	flexibility	and	functionality	than	ISO	15076‐1.	All	definitions	
and	requirements	 in	 ISO	15076‐1	are	 therefore	 in	 force	unless	otherwise	specified	by	this	document.	
This	document	defines	minimum	structural	and	operational	requirements	for	writing	and	reading	ICC	
profiles.	 Additional	 workflow	 requirements	 and	 restrictions	 are	 defined	 in	 domain	 specific	
Interoperability	Conformance	Specification	(ICS)	documents	approved	and	registered	by	the	ICC.	

In	this	document,	some	15076‐1	types	have	been	removed,	and	others	have	been	added.	An	ISO	20677	
capable	CMM	should	have	backwards	compatibility	with	profiles	conforming	to	ISO	15076‐1.	

Where	the	name	of	a	type	in	this	document	is	the	same	as	a	type	in	ISO	15076‐1,	the	type	definition	is	
based	on	the	ISO	15076‐1	definition.	The	exception	 is	 the	definition	of	 the	MPE	type,	which	has	been	
expanded.	

Where	 the	 extensions	 described	 in	 this	 International	 Standard	 are	 not	 required	 in	 a	 particular	
workflow,	users	should	continue	to	use	ISO	15076‐1	as	the	basis	for	colour	management	profiles	and	
architectures.	

2 Normative	references	

The	 following	 documents,	 in	whole	 or	 in	 part,	 are	 normatively	 referenced	 in	 this	 document	 and	 are	
indispensable	 for	 its	 application.	 For	 dated	 references,	 only	 the	 edition	 cited	 applies.	 For	 undated	
references,	the	latest	edition	of	the	referenced	document	(including	any	amendments)	applies.	

ISO	15076‐1,	Image	technology	colour	management	—	Architecture,	profile	format	and	data	structure	—	
Part	1:	Based	on	ICC.1:2010	

ISO	17972‐1,	Graphic	technology	‐‐	Colour	data	exchange	format	‐‐	Part	1:	Relationship	to	CxF3	(CxF/X)	

3 Terms	and	definitions	

3.1	
profile	connection	conditions	(PCC)	
information	used	to	define	illuminant,	observer	for	PCS	along	with	transforms	to	convert	to	and	from	
custom	colorimetry	and	standard	D50	colorimetry	for	the	standard	2°	observer.	
	
3.2	
profile	connection	space	(PCS)	
colour	space	used	to	connect	the	source	and	destination	profiles	
NOTE	1	to	entry:		 See	ISO	15076‐1	Annex	D	for	a	full	description.	

ICC.2:2017	

©	ICC	2017–	All	rights	reserved	 13	

4 Extended	basic	types	

 General	

This	 part	 of	 ISO	20677	 assumes	 the	 inclusion	 of	 all	 basic	 types	 listed	 in	 ISO	15076‐1:2010,	with	 the	
exception	of	7‐bit	ASCII.	Only	extended	types	in	this	part	of	ISO	20677	are	listed	below.	

 Extended	basic	type	listing	

 azimuthNumber	

An	azimuthNumber	corresponds	to	an	azimuth	angle	for	BRDF	and	directional	transformations.	It	shall	
be	encoded	as	a	floating	point	number	that	is	provided	as	input	to	a	multiProcessElementType	in	any	of	
the	BRDF	function	tags	(brdfAToB0Tag,	brdfAToB1Tag,	brdfAToB2Tag,	brdfAToB3Tag,	brdfBToA0Tag,	
brdfBToA1Tag,	 brdfBToA2Tag,	 brdfBToA3Tag,	 brdfBToD0Tag,	 brdfBToD1Tag,	 brdfBToD2Tag,	
brdfBToD3Tag,	 brdfDToB0Tag,	 brdfDToB1Tag,	 brdfDToB2Tag,	 brdfDToB3Tag,	 directionalAToB0Tag,	
directionalAToB1Tag,	 directionalAToB2Tag,	 directionalAToB3Tag,	 directionalBToA0Tag,	
directionalBToA1Tag,	 directionalBToA2Tag,	 directionalBToA3Tag,	 directionalBToD0Tag,	
directionalBToD1Tag,	 directionalBToD2Tag,	 directionalBToD3Tag,	 directionalDToB0Tag,	
directionalDToB1Tag,	directionalDToB2Tag,	directionalDToB3Tag).	

The	azimuthNumber	encoding	range	shall	be	from	0,0	to	1,0	with	0,0	representing	‐180,0	degrees,	and	
1,0	representing	+180,0	degrees.	

	

Figure	1	—	Normal,	zenith	and	azimuth	angles	

 float16Number	

A	 float16Number	 shall	 be	 a	 half‐precision	 16‐bit	 floating‐point	 number	 as	 specified	 in	 IEEE	 754,	
excluding	infinities,	and	“not	a	number”	(NaN)	values.		

NOTE	1		 A	16‐bit	IEEE	754	floating‐point	number	has	a	5‐bit	exponent	and	a	10‐bit	mantissa.		

NOTE	2			 Although	 infinities	and	NaN	values	are	not	stored	 in	 the	 ICC	Profile,	such	values	can	occur	as	a	
result	of	CMM	computations.	

Θ
	

Φ

Surface Normal

0°

90°

-90°

±180°

Lighting/Viewer

	

Zenith
 Angle

Azimuth Angle

ICC.2:2017	

14	 ©	ICC	2017	–	All	rights	reserved	

 float64Number	

A	 float64Number	 shall	 be	 a	 double‐precision	 64‐bit	 floating‐point	 number	 as	 specified	 in	 IEEE	 754,	
excluding	infinities,	and	“not	a	number”	(NaN)	values.		

NOTE	1		A	64‐bit	IEEE	754	floating‐point	number	has	an	11‐bit	exponent	and	a	52‐bit	mantissa.		

NOTE	2		Although	infinities	and	NaN	values	are	not	stored	in	the	ICC	Profile,	such	values	can	occur	as	a	result	of	
CMM	computations	

 horizontalNumber	

A	horizontalNumber	 corresponds	 to	 the	horizontal	 relative	position	of	 a	 viewing	 field	 for	directional	
transformations.	 It	 shall	 be	 encoded	 as	 a	 floating	 point	 number	 that	 is	 provided	 as	 input	 to	 a	
multiProcessElementType	 in	 any	 of	 the	 directional	 function	 tags	 (directionalAToB0Tag,	
directionalAToB1Tag,	 directionalAToB2Tag,	 directionalAToB3Tag,	 directionalBToA0Tag,	
directionalBToA1Tag,	 directionalBToA2Tag,	 directionalBToA3Tag,	 directionalBToD0Tag,	
directionalBToD1Tag,	 directionalBToD2Tag,	 directionalBToD3Tag,	 directionalDToB0Tag,	
directionalDToB1Tag,	directionalDToB2Tag,	directionalDToB3Tag).	

The	 horizontalNumber	 encoding	 range	 shall	 be	 from	 ‐1,0	 to	 1,0	with	 ‐1,0	 representing	 the	 left	most	
position,	0,0	representing	the	center	and	1,0	representing	the	right	most	position.	

 Sparse	Matrix	Encoding	

Sparse	matrices	shall	be	encoded	using	compressed	row	order,	which	facilitates	efficient	multiplication	
of	 column	 vectors	 as	 well	 as	 the	 interpolation	 between	 sparse	 matrices.	 A	 sparse	 matrix	 shall	 be	
encoded	as	a	variable	structure	with	internal	padding	within	a	fixed	size	data	block.	The	use	of	a	fixed	
data	block	size	allows	for	the	efficient	indexing	of	arrays	of	sparse	matrices.		

In	addition	to	encoding	the	number	of	rows,	number	of	columns,	and	number	of	matrix	data	entries,	the	
compressed	 row	order	 encoding	 shall	 include	 three	 sub‐arrays:	 a	 padded	 array	 of	matrix	 entry	 data	
values,	 a	padded	array	of	matrix	 entry	 column	 identifiers,	 and	an	 array	of	 offsets	 to	 successive	 rows	
stored	in	the	matrix	data	and	column	index	arrays.		

Successive	offset	values	in	the	row	start	offset	array	shall	be	greater	than	or	equal	to	preceding	values.	
The	 number	 of	matrix	 data	 entries	 associated	with	 a	 row	 can	 therefore	 be	 found	 by	 subtracting	 the	
offset	of	the	row	by	the	offset	of	the	succeeding	row.	

Successive	matrix	 entry	 column	 index	 values	 associated	with	 any	 single	 row	 shall	 be	monotonically	
increasing.	

Multiple	sparse	matrix	encodings	are	permitted,	but	shall	differ	in	the	encoding	of	the	matrix	entry	data	
values	as	follows:	

The	sparseMatrixUInt8	encoding	shall	use	uInt8Numbers	to	encode	matrix	data	values	(Table	1).	The	
internal	representation	of	the	values	0	to	255	shall	represent	matrix	values	0,0	to	1,0.	

The	 sparseMatrixUInt16	 encoding	 shall	 use	 uInt16Numbers	 to	 encode	matrix	 data	 values	 (Table	2).	
The	internal	representation	of	the	values	0	to	65	535	shall	represent	matrix	values	0,0	to	1,0.	

ICC.2:2017	

©	ICC	2017–	All	rights	reserved	 15	

The	sparseMatrixFloat16	encoding	shall	use	float16Numbers	to	encode	matrix	values	(Table	3).	

The	sparseMatrixFloat32	encoding	shall	use	float32Numbers	to	encode	matrix	values	(Table	4).	

Table	1	–	SparseMatrixUInt8	encoding	

Byte	Position	 Field	
Length	
(bytes)	

Content Encoded	as…	

0…1	 2	 Rows	(R) uInt16Number

2…3	 2	 Columns(C) uInt16Number

4…3+R*2	 R*2	 Row	start	offset	array uInt16Number[R]

4+R*2…5+R*2	 2	 Number	of	matrix	entries	(N) uInt16Number

6+R*2…5+R*2	+	N*2	 N*2	 Matrix	entry	column	index	array

	

uInt16Number[N]

6+R*2+N*2…O‐1	 	 Index	Padding,	shall	be	0 	

O…O+N‐1	 N	 Matrix	entry	data	array uInt8Number[N]

O+N…end	 	 Data	Padding,	shall	be	0 	

Table	2	–	SparseMatrixUInt16	encoding	

Byte	Position	 Field	
Length	
(bytes)	

Content Encoded	as…	

0…1	 2	 Rows	(R) uInt16Number

2…3	 2	 Columns(C) uInt16Number

4…3+R*2	 R*2	 Row	start	offset	Array uInt16Number[R]

4+R*2…5+R*2	 2	 Number	Matrix	Entries	(N) uInt16Number

6+R*2…5+R*2	+	N*2	 N*2	 Matrix	Entry	Column	Indices

	

uInt16Number[N]

6+R*2+N*2…O‐1	 	 Index	Padding,	shall	be	0 	

O…O+N*2‐1	 N*2	 Matrix	Entry	Data	Values uInt16Number[N]

O+N*2…end	 	 Data	Padding,	shall	be 0 	

ICC.2:2017	

16	 ©	ICC	2017	–	All	rights	reserved	

Table	3	–	SparseMatrixFloat16	encoding	

Byte	Position	 Field	
Length	
(bytes)	

Content Encoded	as…	

0…1	 2	 Rows	(R) uInt16Number	

2…3	 2	 Columns(C) uInt16Number	

4…3+R*2	 R*2	 Row	start	offset	Array uInt16Number[R]	

4+R*2…5+R*2	 2	 Number	 Matrix	 Entries	
(N)	

uInt16Number	

6+R*2…5+R*2	+	N*2	 N*2	 Matrix	 Entry	 Column	
Indices	

	

uInt16Number[N]	

6+R*2+N*2…O‐1	 	 Index	Padding,	shall	be	0

O…O+N*2‐1	 N*2	 Matrix	Entry	Data	Values float16Number[N]	

O+N*2…end	 	 Data	Padding,	shall	be	0

Table	4	–	SparseMatrixFloat32	encoding	

Byte	Position	 Field	
Length	
(bytes)	

Content Encoded	as…	

0…1	 2	 Rows	(R) uInt16Number	

2…3	 2	 Columns(C) uInt16Number	

4…3+R*2	 R*2	 Row	start	offset	Array uInt16Number[R]

4+R*2…5+R*2	 2	 Number	Matrix	Entries	(N) uInt16Number	

6+R*2…5+R*2	+	N*2	 N*2	 Matrix	Entry	Column	Indices

	

uInt16Number[N]

6+R*2+N*2…O‐1	 	 Index	Padding,	shall	be	0

O…O+N*4‐1	 N*4	 Matrix	Entry	Data	Values float32Number[N]

O+N*4…end	 	 Data	Padding,	shall	be	0

ICC.2:2017	

©	ICC	2017–	All	rights	reserved	 17	

Compact	Padding		

When	 Sparse	Matrices	 are	 encoded	 in	 a	 profile	 they	 shall	 be	 compacted	 so	 that	 the	 index	 and	 data	
padding	result	 in	the	Matrix	Entry	Data	Values	and	the	end	of	 the	sparse	matrix	being	aligned	on	a	4	
byte	boundary.		

NOTE	1		 Compact	 padding	 can	 result	 in	 variability	 in	 the	 size	 of	 individual	 sparse	matrices	 in	 a	 Sparse	
Matrix	Array	or	Sparse	Matrix	LUT.		

Fixed	Block	Size	Padding	

When	a	colour	space	uses	sparse	matrix	encoding	 it	 is	useful	 for	 the	 internal	encoding	 to	use	a	 fixed	
block	size	determined	by	the	number	of	samples	associated	with	the	colour	space.		

NOTE	2		 One	method	 of	 internally	 encoding	 Sparse	 Matrices	 within	 a	 CMM	 adjusts	 the	 index	 and	 data	
padding	to	allow	the	number	of	matrix	entries	to	vary	without	the	size	of	the	encoded	data	block	size	changing.	
The	block	size	therefore	determines	a	fixed	upper	limit	to	the	number	of	entries	that	can	be	encoded.	

When	fixed	block	size	padding	is	used	the	maximum	number	of	matrix	entries	(M)	that	can	be	encoded	
for	each	of	the	sparse	matrix	encodings	is	determined	by	the	fixed	data	block	size	(B)	used	to	store	the	
sparse	matrix,	 the	 number	 of	 rows	 (R),	 as	 well	 as	 the	 byte	 size	 (S)	 of	 a	matrix	 entry	 data	 value	 as	
follows:	

	 M	=	floor((B	–	8	–	2*R	–	(S‐1))	/	(S+2))	 	 	 	 	 	 	 (1)	

When	fixed	block	size	padding	is	used	for	each	of	the	sparse	matrix	encodings	in	tables	A	through	D	the	
offset	of	the	matrix	entry	data	array	(O)	is	determined	by	the	number	of	rows	(R),	and	the	maximum	
number	of	matrix	entries	(M),	as	well	as	the	byte	size	(S)	of	a	matrix	entry	data	value	as	follows:	

	 O	=	floor((8	+	2*R+2*M	+	(S‐1))	/	S)	*S	 	 	 	 	 	 	 (2)	

 Sparse	Matrix	Encoding	Type	Values	

When	 encoding	 sparse	 matrices	 the	 exact	 data	 encoding	 type	 used	 shall	 be	 specified	 using	 a	
sparseMatrixEncodingType	parameter.	Where	used,	values	for	a	sparseMatrixEncodingType	parameter	
shall	be	encoded	as	defined	in	Table	5.	

Table	5	–	valueType	selection	of	Sparse	Matrix	encoding	in	SparseMatrixLut	

valueType	 Sparse	Matrix	Encoding

1	 sparsematrixUInt8

2	 sparseMatrixUInt16

3	 sparseMatrixFloat16

4	 sparseMatrixFloat32

	

ICC.2:2017	

18	 ©	ICC	2017	–	All	rights	reserved	

 spectralRange	

The	spectralRange	data	type	shall	be	used	to	specify	spectral	ranges.	This	data	type	shall	be	made	up	of	
two	 float16Number	 values	 and	 a	 uInt16Number	 value	 that	 define	 the	 starting	 wavelength,	 ending	
wavelength,	and	total	number	of	steps	in	the	range.	Table	6	shows	the	encoding	of	a	spectralRange	data	
type:	

Table	6	—		spectralRange	encoding	

Byte	
Position	

Field	
length	
(bytes)	

Field	contents	 Encoded	as	

0	to	1	 2	 Start	Wavelength	 float16Number	

2	to	3	 2	 End	wavelength	 float16Number	

4	to	5	 2	 Steps	in	wavelength	range	 uInt16Number	

	

 Tint	Arrays	

A	tint	array	defines	the	relationship	between	a	single	input	value	(tint)	and	multiple	output	values.		Tint	
arrays	 are	 used	 by	 both	 the	 multi	 processing	 element	 tintArrayElement	 (11.2.14)	 as	 well	 as	 the	
namedColorStructure	(12.2.5).	Any	of	the	numeric	array	types	(e.g.	uInt8ArrayType)	are	permitted	in	a	
tint	array.	Table	7	depicts	the	relationship	between	N	tints	each	made	up	of	M	samples	per	tint	in	a	tint	
array.		

Table	7	—		Tint	array	sample	index	assignments	

Tint	Index	 Sample	1 Sample	2 ... Sample	M‐1 Sample	M	

0	 0	 1	 ... M‐2 M‐1	

1	 M	 M+1	 ... 2M‐2 2M‐1	

...		

N‐2	 (N‐2)M	 (N‐2)M+1 ... (N‐1)M‐2 (N‐1)M‐1	

N‐1	 (N‐1)M	 (N‐1)M+1 ... NM‐2 NM‐1	

A	tint	array	shall	have	NxM	entries	in	the	array.	

NOTE	 	Assignment	of	tint	values	ranging	from	0,0	to	1,0	to	tint	indices	can	vary	and	is	specific	to	the	use	case	in	
which	a	tint	array	is	used.	

 valueEncodingType	

When	encoding	values	in	sampled	curves	and	color	lookup	tables	(CLUTs)	the	exact	data	encoding	type	
used	 shall	 be	 specified	 using	 a	 valueEncodingType	 parameter.	 Values	 for	 a	 valueEncodingType	
parameter	shall	be	as	defined	in	Table	8.	 	Encoded	values	for	the	float32Number	and	float16Number	
types	 shall	 represent	 the	 actual	 encoding	 number.	 Encoded	 values	 for	 the	 uInt16Number	 and	
uInt8Number	types	shall	represent	an	encoding	between	the	range	of	0,0	to	1,0.	

ICC.2:2017	

©	ICC	2017–	All	rights	reserved	 19	

Table	8	–	valueEncodingType	values	

valueType	 value	Encoding

0	 float32Number

	

1	 float16Number

2	 uInt16Number

3	 uInt8Number

	

Values	for	a	valueEncodingType	may	be	encoded	as	either	a	uInt16Number	or	a	uInt32Number.	

	

 verticalNumber	

A	 verticalNumber	 corresponds	 to	 the	 vertical	 relative	 position	 of	 a	 viewing	 field	 for	 directional	
transformations.	For	example,	the	viewing	field	of	a	display	represents	the	physical	limits	of	the	display.		
A	 verticalNumber	 shall	 be	 encoded	 as	 a	 floating	 point	 number	 that	 is	 provided	 as	 input	 to	 a	
multiProcessElementType	 in	 any	 of	 the	 directional	 function	 tags	 (directionalAToB0Tag,	
directionalAToB1Tag,	 directionalAToB2Tag,	 directionalAToB3Tag,	 directionalBToA0Tag,	
directionalBToA1Tag,	 directionalBToA2Tag,	 directionalBToA3Tag,	 directionalBToD0Tag,	
directionalBToD1Tag,	 directionalBToD2Tag,	 directionalBToD3Tag,	 directionalDToB0Tag,	
directionalDToB1Tag,	directionalDToB2Tag,	directionalDToB3Tag).	

The	 verticalNumber	 encoding	 range	 shall	 be	 from	 ‐1,0	 to	 1,0	 with	 ‐1,0	 representing	 the	 top	 most	
position,	0,0	representing	the	center	and	1,0	representing	the	bottom	most	position.	

 zenithNumber	

A	zenithNumber	can	be	used	to	specify	to	a	zenith	angle	θ	for	BRDF	and	directional	transformations	or	
to	define	geometry	of	measurement.	It	shall	be	encoded	as	a	floating	point	number	that	is	provided	as	
input	to	a	multiProcessElementType	in	any	of	the	BRDF	function	tags	(brdfAToB0Tag,	brdfAToB1Tag,	
brdfAToB2Tag,	 brdfAToB3Tag,	 brdfBToA0Tag,	 brdfBToA1Tag,	 brdfBToA2Tag,	 brdfBToA3Tag,	
brdfBToD0Tag,	 brdfBToD1Tag,	 brdfBToD2Tag,	 brdfBToD3Tag,	 brdfDToB0Tag,	 brdfDToB1Tag,	
brdfDToB2Tag,	 brdfDToB3Tag,	 directionalAToB0Tag,	 directionalAToB1Tag,	 directionalAToB2Tag,	
directionalAToB3Tag,	 directionalBToA0Tag,	 directionalBToA1Tag,	 directionalBToA2Tag,	
directionalBToA3Tag,	 directionalBToD0Tag,	 directionalBToD1Tag,	 directionalBToD2Tag,	
directionalBToD3Tag,	 directionaDToB0Tag,	 directionalDToB1Tag,	 directionalDToB2Tag,	
directionalDToB3Tag).	

The	zenithNumber	encoding	range	shall	be	from	0,0	to	1,0	with	0,0	representing	0,0	degrees,	and	1,0	
representing	90,0	degrees.	

ICC.2:2017	

20	 ©	ICC	2017	–	All	rights	reserved	

	

Figure	2	—	Normal,	zenith	and	azimuth	angles	

 Abbreviated	terms	

ANSI	 American	National	Standards	Institute	
CIE		 Commission	Internationale	de	l’eclairage	

	 (International	Commission	on	Illumination)	
CLUT	 Colour	lookup	table	(multi‐dimensional)	
CMM	 Colour	management	module	
CMY	 Cyan,	magenta,	yellow	
CMYK	 Cyan,	magenta,	yellow,	key	(black)	
CRD	 Colour	rendering	dictionary	
CRT	 Cathode‐ray	tube	
EPS	 Encapsulated	PostScript	
ICC		 International	Color	Consortium	
IEC		 International	Electrotechnical	Commission	
ISO		 International	Organization	for	Standardization	
LCD	 Liquid	crystal	display	
LUT	 Lookup	table	
PCC	 Profile	Connection	Conditions	
PCS		 Profile	Connection	Space	
RGB	 Red,	green,	blue	
TIFF	 Tagged	Image	File	Format	

TRC	 Tone	reproduction	curve	

5 Conformance	

Any	colour	management	system,	application,	utility	or	device	driver	that	claims	full	conformance	with	
this	part	of	ISO	20677	shall	have	the	ability	to	read	the	profiles	as	they	are	defined	in	this	part	of	ISO	
20677,	 including	 all	 specified	 tags	 and	 types.	 Any	 profile‐generating	 software	 and/or	 hardware	 that	
claims	full	conformance	with	this	part	of	ISO	20677	shall	have	the	ability	to	create	profiles	as	they	are	
defined	in	this	part	of	ISO	20677,	including	all	specified	tags	and	types.		

Θ
	

Φ

Surface Normal

0°

90°

-90°

±180°

Lighting/Viewer

	

Zenith
Angle

Azimuth Angle

ICC.2:2017	

©	ICC	2017–	All	rights	reserved	 21	

In	 addition,	 software	 or	 hardware	 may	 claim	 partial	 conformance	 with	 this	 part	 of	 ISO	 20677	 by	
reading	and/or	creating	profiles	that	contain	a	sub‐set	of	the	tags	and	types	listed	in	a	separate	domain	
specific	Interoperability	Conformance	Specification	(ICS)	approved	and	registered	by	the	ICC	

Software	conforming	to	this	part	of	ISO	20677	shall	use	the	ICC	profiles	generated	in	accordance	with	
this	document,	or	with	an	approved	ICS.	

A	 colour	 management	 system,	 profile‐generating	 software	 and/or	 hardware	 application,	 utility	 or	
device	driver	that	claims	full	or	partial	conformance	with	this	part	of	ISO	20677	shall	also	conform	with	
all	definitions	and	requirements	in	ISO	15076‐1	unless	otherwise	specified	by	this	document,	and	shall	
register	 all	 signatures	 for	 CMM	 type,	 device	manufacturer,	 device	model,	 profile	 tags	 and	 profile	 tag	
types	 with	 the	 ICC	 to	 ensure	 that	 all	 profile	 data	 is	 uniquely	 defined.	 Domain	 specific	 specification	
documents	 (Interoperability	 Conformance	 Specifications)	 shall	 also	 be	 registered.	 The	 registration	
authority	for	all	of	these	is	the	ICC	Technical	Secretary.		

NOTE		 See	the	ICC	Web	Site	(www.color.org)	for	contact	information.	

6 Expanded	profile	connection	spaces,	rendering	intents	and	device	encoding	

 General	considerations	

This	 part	 of	 ISO	 20677	 describes	 extensions	 to	 profiles	 and	 their	 connections	 that	 permit	 a	 greater	
flexibility	 and	 functionality	 than	 ISO	 15076‐1.	Where	 such	 extensions	 are	 not	 needed	 in	 a	 particular	
workflow,	users	should	continue	to	use	ISO	15076‐1	as	the	basis	for	colour	management	profiles	and	
architectures.	

 Extensions	to	device	colour	encoding	

 General	

The	number	of	channels	associated	with	a	colour	space	is	determined	from	the	colour	space	signature.	
Extensions	that	allow	for	processing	elements	to	utilize	up	to	65	535	channels	require	uniquely	defined	
colour	space	signatures	associated	with	up	to	65	535	channels.	This	is	accomplished	by	extending	the	
signature	definition	to	use	the	binary	representation	of	the	actual	number	of	channels	within	the	32‐bit	
signature.	The	16	most	significant	bits	(corresponding	to	textual	digits)	shall	match	an	extended	colour	
space	type	(Signature	Identifier),	and	the	16	least	significant	bits	shall	define	a	binary	representation	of	
the	number	of	channels	(Signature	Channels).	This	results	in	a	colour	space	signature	containing	32	bits	
that	cannot	be	represented	as	4	text	characters.	

A	6‐character	 text	 string	 shall	 be	 used	 for	 cases	when	 a	 textual	 representation	of	 these	 extended	 colour	 space	
signatures	is	desired	with	the	first	two	characters	corresponding	to	the	Signature	Identifier	and	the	last	four	digits	
corresponding	to	a	hexadecimal	representation	of	the	Signature	Channels.	(Thus:	“nc0014”	corresponds	to	the	32‐
bit	hexadecimal	extended	colour	space	signature	encoding	(6e630014h)	used	in	the	profile	which	represents	N‐
channel	data	with	twenty	device	channels).	Having	a	6‐character	text	representation	of	an	extended	colour	space	
signature	 is	 for	 convenience	 purposes	 only	 for	 describing	 the	 signature	 value	 (as	 colour	 signatures	 are	 only	
encoded	as	binary	32‐bit	values	within	profiles).	Extended	N	channel	device	data	colour	space	signature	encoding	
is	provided	in	Table	9.	

Table	9 —	Extended	data	colour	space	signatures

Spectral	colour	space	type	 Signature	 Signature	 Combined	 Signature	

ICC.2:2017	

22	 ©	ICC	2017	–	All	rights	reserved	

identifier channels hex encoding	 representation

N	channel	device	data	
’nc’	

(6e63h)	

1	…	65	
535	

(0001h	…	
FFFFh)	

	

6e630001h	…	

6e63FFFFh	
“nc0001”	…	
“ncFFFF”	

None	(PCS	defined	by	PCS	header	field)	 0	 0	 00000000h	 0	

	

 Extensions	to	Profile	connection	spaces	

 General	

ISO	15076‐1defines	profile	connection	spaces	in	terms	of	D50	colorimetry	with	the	CIE	1931	Standard	
2‐degree	 observer.	 The	 resulting	 transform	data	 is	 therefore	 encoded	 relative	 to	 this	 illuminant	 and	
observer.	Use	of	the	chromatic	adaptation	tag	in	ISO	15076‐1	provides	a	means	of	converting	encoded	
PCS	transform	results	for	the	media	white	point	to	and	from	actual	illuminant/observer	colorimetry.	A	
CMM	that	 is	 in	conformance	with	this	part	of	 ISO	20677	shall	always	provide	transforms	to	and	from	
D50/2‐degree	colorimetry	that	can	be	used	when	connecting	profiles.	Such	transforms	shall	make	use	
of	 the	 profile	 connection	 condition	 tags	 defined	 in	 this	 part	 of	 ISO	 20677	 rather	 than	 the	 chromatic	
adaptation	tag	defined	in	ISO	15076‐1.	This	part	of	ISO	20677	extends	profile	connection	to	allow	direct	
encoding	of	colour	data	in	transforms	with	arbitrary	illuminants	and	observers.	This	results	in	the	CMM	
performing	 conversions	 between	 PCS	 observer	 and	 illuminant	 colorimetry	 as	 needed	 using	 Profile	
Connection	Conditions	(PCC).	The	PCC	defines	information	about	the	observer	and	illuminant	as	well	as	
transforms	between	custom	observer/illuminant	conditions	and	the	standard	D50/2‐degree	observer	
colorimetry.	Where	profile	connection	conditions	are	used	to	connect	profiles,	the	CMM	shall	either	use	
the	PCC	 from	within	a	profile	or	a	PCC	provided	by	 the	CMM.	Profiles	based	on	colorimetry	using	an	
illuminant	other	than	CIE	D50	or	a	colorimetric	observer	other	than	the	CIE	1931	Standard	Observer	
(known	as	the	2	degree	observer),	shall	encode	profile	connection	condition	tags	(see	6.3.2).			

Additional	 profile	 connection	 spaces	 can	 be	 specified	 that	 are	 based	 upon	 spectral	 representation	 of	
colour	rather	than	colorimetry.	A	spectral	PCS	use	is	defined	and	encoded	separately	from	colorimetric	
PCS	use	within	a	profile.	Therefore	both	colorimetric	and	spectral	PCS	transforms	can	simultaneously	
exist	 in	a	profile.	 	Profile	connection	condition	tags	shall	also	be	encoded	within	a	profile	whenever	a	
spectral	PCS	is	used	within	a	profile.	

Additional	 tags	can	be	provided	in	a	profile	 that	can	define	surface	characteristics	such	as	gloss,	with	
relationships	between	lighting	and	viewing	angle	defined.	These	tags	provide	an	additional	connection	
interface	separate	from	the	profile	connection	space.	These	BRDF	transforms	provide	information	for	3‐
dimensional	rendering	systems	that	are	capable	of	rendering	light	interactions	based	upon	the	surface	
characteristics.	 The	 measurement	 angle	 tag	 also	 allows	 the	 profile	 generator	 to	 identify	 the	
measurement	geometry	used	to	generate	the	PCS	data	in	the	profile.	

Lastly,	 a	material‐based	 connection	method	 is	 introduced	 that	 allows	 profiles	 to	 be	 connected	 using	
named	material	channels.	This	can	be	considered	as	an	extension	of	device	channel	based	connection	
with	flexibility	and	channel	matching	rules.	

ICC.2:2017	

©	ICC	2017–	All	rights	reserved	 23	

 Profile	Connection	Conditions	

The	 standard	 PCS	 shall	 be	 defined	 to	 use	 the	 2‐degree	 observer	 under	 D50	 illumination.	Whenever	
either	a	non‐standard	PCS	is	used	or	a	spectral	PCS	is	used,	three	tags	shall	be	encoded	in	a	profile	and	
shall	be	used	to	define	default	profile	connection	conditions	(PCC)	for	a	profile.	In	cases	of	spectral	PCS	
use	 or	 late‐binding	 colorimetric	 processing	 elements,	 a	 CMM	 may	 optionally	 be	 provided	 or	 use	
external	profile	connection	conditions	thus	overriding	the	defaults	provided	by	the	profile.		

The	spectralViewingConditions	tag	shall	define	the	spectral	power	distribution	of	the	illuminant,	colour	
matching	 functions	 (CMF)	 of	 the	 observer,	 and	 the	 lighting	 levels	 of	 the	 surround.	 If	 the	
spectralViewingConditions	 are	different	 from	 the	 standard	PCS	viewing	 conditions	 then	 two	 tags	 are	
used	to	convert	between	custom	and	standard	connection	conditions	(see	9.2.105).	

The	 customToStandardPCC	 tag	 shall	 define	 a	 transform	 that	 converts	 from	 the	 custom	 viewing	
condition	colorimetry	to	standard	viewing	condition	colorimetry	(see	9.2.56).	

The	standardToCustomPCC	tag	shall	define	a	transform	that	converts	from	standard	viewing	condition	
colorimetry	to	the	custom	viewing	condition	(see	9.2.107).	

Apart	from	the	spectral	tables,	all	other	tables,	both	forward	and	inverse,	shall	convert	colours	between	
the	colour	space	of	the	PCS	and	coding	values	of	the	colour	reproduction	device	taking	into	account	the	
reference	and	actual	viewing	conditions.	

 Spectral	profile	connection	spaces	

6.3.3.1 General	

This	part	of	 ISO	20677	allows	for	a	spectrally‐based	PCS	to	be	defined	for	DToBx/BToDx	tags	using	a	
spectralPCS	 signature	 field	 in	 the	 profile	 header.	 The	 use	 of	 DToBx/BToDx	 tags	 for	 colorimetric	
processing	has	been	deprecated	 in	 this	part	of	 ISO	20677.	Additional	header	 fields	are	also	 added	 to	
allow	specification	of	spectral	information	used	by	the	profile.	

A	distinction	is	made	between	self‐emitting	colours,	and	non	self‐emitting	colours,	here	referred	to	as	
luminous	 colours	 and	 object	 colours.	 Luminous	 colours	 are	 characterized	 by	 their	 emission	 spectra,	
whereas	 for	object	colours	reflectance	or	 transmission	spectra	are	used.	These	three	 types	of	spectra	
are	referred	to	as	object	characterization	spectra.	

Reflectance	spectra	are	specified	 in	relation	to	the	perfect	reflector	whereas	transmission	spectra	are	
related	to	a	perfect	transmitter.	Hence	both	types	of	spectra	can	be	seen	as	relative	data.	For	emission	
spectra,	Y	tristimulus	values	correspond	to	luminance	values,	and	hence	these	are	regarded	as	absolute	
data.	

Different	types	of	spectral	data	can	be	defined.	In	normal	circumstances,	only	reflectance,	transmission	
or	emission	spectra	are	used	but	in	other	circumstances	additional	data	shall	be	provided	according	to	
the	 processing	 to	 be	 carried	 out.	 To	 represent	 bi‐spectral	 data,	 a	 Donaldson	 matrix	 is	 used	 and	 is	
specified	by	bi‐spectral	data	fields	in	the	header.	

6.3.3.2 Encoding	spectral	data	

To	define	the	use	of	a	spectrally‐based	PCS,	one	of	the	spectral	colour	space	signatures	in	Table	10	shall	
be	used	to	encode	the	colour	space	implied	by	the	spectralPCS	field	of	the	profile	header.	These	colour	
space	signatures	define	both	the	colour	space	type	as	well	as	the	number	of	channels	associated	with	
the	colour	space.	Therefore,	 the	number	of	signature	channels	associated	with	the	spectralPCS	colour	
space	signature	shall	match	the	number	of	channels	indicated	by	the	steps	field(s)	of	the	corresponding	
spectralRange	structures	in	the	profile	header.	

ICC.2:2017	

24	 ©	ICC	2017	–	All	rights	reserved	

	

Table 10— Spectral colour space signatures

Spectral	colour	space	type	
Signature	
identifier	

Signature	
channels	

Combined	
hex		encoding	

Signature	
representation	

None	(PCS	defined	by	PCS	header	field)	 0	 0	 00000000h	 0	

Reflectance	spectra	with	N	channels	
’rs’	

(7273h)	

1	…	65	
535	

(0001h	…	
FFFFh)	

	

72730001h	…	

7273FFFFh	
“rs0001”	…	
“rsFFFF”	

Transmission	spectra	with	N	channels	

’ts’		

(7473h)	

	

1	…	65	
535	

(0001h	…	
FFFFh)	

74730001h	…	

7473FFFFh	

“ts0001”	…	

“tsFFFF”	

Radiant	(Emission)	spectra	with	N	
channels	

’es’		

(6573h)	

1	…	65	
535	

(0001h	…	
FFFFh)	

65730001h	…	

6573FFFFh	
“es0001”	…	
“esFFFF”	

Bi‐spectral	Reflectance	spectra	with	N	
total	channels	

‘bs’	

(6273h)	

1	to	65	
535	

(0001h	…	
FFFFh)	

62730001h	…	

6273FFFFh	
“bs0001”	…	
“bsFFFF”	

Bi‐spectral	Reflectance	using	sparse	
matrix	with	N	equivalent	output	channels	

’sm’		

(736d)	

1	to	65	
535	

(0001h	…	
FFFFh)	

736D0001h	…	

736DFFFFh	
“sm0001”	…	
“smFFFF”	

	

Note:	 Spectral	 colour	 space	 signatures	 use	 the	 same	32‐bit	 binary	 encoding	mechanism	as	N	 color	device	data		
signatures	(see	6.2.1)	with	each	having	a	6‐character	signature	representation.	

Spectra	 are	 normally	 represented	 according	 their	 canonical	 basis,	 i.e.	 the	 spectrum	 is	 sampled	
uniformly	along	 the	wavelength	axis.	The	wavelength	range	 is	 represented	by	a	start	wavelength	 (S),	
end	wavelength	(E),	and	number	of	steps	(n).	The	wavelength	interval	between	steps	is	then	given	by	

I	=(E	‐	S)	/	(n	‐	1)	 	 	 	 	 	 	 	 	 	 	 (3)	

6.3.3.3 Spectral	consistency	of	tags	in	profiles	

Apart	 from	measurement	 files	embedded	in	profiles,	spectral	data	 in	all	other	tags	are	assumed	to	be	
sampled	at	uniform	intervals,	with	a	given	start,	end	wavelength,	and	number	of	steps.	The	dimensions	
and	 range	 of	 the	 spectra	 in	 the	 different	 tags	 have	 to	 be	 defined	 consistently.	 For	 normal	 spectra,	 it	
means	that	the	spectral	dimension	of	object	characterization	spectra	have	to	be	the	same.	If	the	object	
characterization	spectra	are	defined	by	the	Donaldson	matrix,	the	Donaldson	matrix	has	to	be	an	nXm	
matrix	with	m	defined	internally	in	the	corresponding	colour	table.	For	multiple	spectra,	suppose	k,	the	
object	 characterization	 spectra	 are	 a	 column	 vector	 with	 length	 kXn	 in	 the	 colour	 tables,	 but	 after	
processing	also	n	dimensional	spectra	are	obtained.	

The	spectral	type	of	the	object	characterization	spectra	is	defined	in	the	profile	header.	

ICC.2:2017	

©	ICC	2017–	All	rights	reserved	 25	

Tags	containing	measurement	files	are	seen	as	separate	entities	and	hence	the	previous	conditions	do	
not	have	to	be	fulfilled.		

6.3.3.4 Spectral	fluorescence	connection	spaces	

The	 characterization	 of	 the	 interaction	 of	 light	 with	 a	 diffuse	 surface	 can	 be	 accomplished	 using	 a	
Donaldson	Matrix.	The	multiplication	of	such	a	matrix	by	a	vector	representing	the	illumination	results	
in	a	vector	representing	the	light	reflected	off	the	surface.	Columns	of	a	Donaldson	matrix	correspond	to	
incident	wavelengths	of	 light	and	rows	of	a	Donaldson	matrix	correspond	to	reflected	wavelengths	of	
light.	Diagonal	entries	(where	incident	and	reflected	wavelengths	are	the	same)	correspond	to	spectral	
reflectance.	 Off	 diagonal	 entries	 (below	 the	 diagonal)	 represent	 the	 contribution	 of	 a	 change	 in	 the	
reflected	light’s	wavelength	(typically	due	to	fluorescence).	Fluorescence	occurs	when	light	is	absorbed	
and	then	re‐emitted	at	a	 longer	wavelength.	Using	Donaldson	matrices	to	represent	colours	 in	an	ICC	
profile	 allows	 for	 a	 more	 complete	 description	 of	 colour	 to	 be	 encoded	 than	 using	 only	 spectral	
reflectance	or	simple	colorimetry.	Examples	of	various	spectral	calculations	can	be	found	in	Annex	A.	

However,	 directly	 encoding	 a	 Donaldson	 Matrix	 in	 a	 profile	 can	 be	 inefficient.	 For	 example	 if	 41	
wavelengths	 are	 used	 to	 represent	 an	 illuminant	 (300nm	 to	 700nm	 with	 a	 10nm	 interval)	 and	 31	
wavelengths	are	used	to	represent	the	reflected	light	(400nm	to	700nm	with	a	10nm	interval)	then	a	
corresponding	Donaldson	Matrix	 encodes	 31	 x	 41	=	 1271	 entries.	However,	most	 of	 the	 off	 diagonal	
entries	are	zero	with	the	only	entries	with	non‐zero	data	for	fluorescent	terms.	By	using	a	sparse	matrix	
encoding	 (which	 only	 encodes	 non‐zero	 entries	 of	 a	matrix),	 large	 profile	 files	 can	 be	 avoided	while	
simultaneously	reducing	processing	overhead	because	fewer	computations	need	to	be	performed.	This	
results	in	a	compression	of	information	and	requires	that	interpolation	and	application	of	the	matrices	
be	carried	out	correctly.	

When	using	Donaldson	matrices	to	represent	colour	values	in	a	colour	LUT,	intermediate	matrices	shall	
be	determined	(using	interpolation)	to	establish	the	intermediate	“colour”.	However,	since	a	Donaldson	
Matrix	 is	 associated	with	a	 single	 combination	of	device	 code	values,	 interpolation	between	matrices	
associated	with	different	device	code	values	needs	to	be	performed	to	estimate	a	Donaldson	Matrix	for	
intermediate	device	code	values.	

The	 use	 of	 a	 single	 sparse	 matrix	 LUT	 encoding	 can	 be	 used	 in	 two	 contexts.	 The	 first	 is	 in	 a	 Tag	
containing	a	single	dimensional	array	of	sparse	matrices	representing	different	 tint	values	of	a	single	
colour	 (used	 by	 NamedColors).	 The	 second	 is	 a	 multi‐dimensional	 table	 of	 sparse	 matrices	 in	 the	
context	of	a	Multi‐Process	Element	which	is	useful	for	characterizing	a	device	using	Donaldson	Matrices	
for	each	possible	input	combination.	

Normally	 colour	 lookup	 tables	 (CLUTs)	 define	multiple	 output	 samples	 for	 each	 input	 coordinate	 in	
lookup	table.	A	sparse	matrix	expands	the	meaning	of	the	output	colour	samples	being	passed	around	in	
a	CMM.	When	sparse	matrices	are	implied	by	a	colour	space	the	array	of	colour	samples	should	instead	
be	 interpreted	as	using	a	 sparse	matrix	encoding.	The	number	of	 samples	defined	 in	a	 sparse	matrix	
colour	 space	 establishes	 the	 upper	 limit	 to	 the	 number	 of	 matrix	 entries	 that	 can	 be	 encoded.	 A	
compressed	row	order	encoding	of	sparse	matrices	is	utilized.	This	encoding	format	allows	for	efficient	
interpolation	of	matrices	as	well	as	efficient	multiplication	of	vectors	by	sparse	matrices	

 BRDF	connection	

None	of	 the	 transforms	defined	by	 ISO	15076‐1:2010	 support	BRDF	as	 an	 input	 to	 a	 transform.	 It	 is	
possible	for	a	CMM	to	transform	BRDF	values	to	connection	space	values	that	are	needed.	

ICC.2:2017	

26	 ©	ICC	2017	–	All	rights	reserved	

6.3.5	 Directional	viewing	connection	

None	of	the	transforms	defined	by	ISO	15076‐1:2010	support	directional	or	positional	information	as	
input	 to	 a	 transform.	 It	 is	 possible	 for	 a	 CMM	 to	 transform	 both	 directional	 angles	 and	 relative	
positional	 information	 to	 determine	 connection	 space	 values	 that	 are	 needed	 in	 order	 to	 compute	
device	values.		Reverse	transforms	are	also	possible	to	determine	device	values	that	achieve	connection	
space	values.	

	

 Material	Connection	Spaces	

 General	

This	 part	 of	 ISO	 20677	 allows	 for	 a	 connection	 space	 defined	 by	material	 channel	 identification	 for	
AToM0/MToA0/MToB0/MToS0	tags	using	an	MCS	signature	 field	 in	 the	profile	header.	 If	 this	 field	 is	
zero,	then	material	connection	is	not	defined.		

MCS	 connection	 is	 performed	 by	 passing	 values	 for	 material	 channels	 between	 profiles	 that	 have	
identical	Material	Channel	Type	values	(defined	in	the	materialTypeArrayTag	of	both	profiles).	The	MCS	
subset	requirements	shall	be	met	before	profiles	can	be	 linked	(see	7.2.13).	Once	these	requirements	
are	met	the	channels	with	a	material	type	in	the	source	profile	that	are	not	in	the	destination	profile	are	
ignored,	and	channels	with	material	types	in	the	destination	profile	that	are	not	in	the	source	profile	are	
processed	with	 the	material	 value	defined	 for	 the	 channel	 in	 the	materialDefaultValuesTag	or	 zero	 if	
this	tag	is	not	present.	Figures	3	and	4	show	examples	of	MCS	profile	connection.	

	

	

Figure	3	‐	Workflow	connecting	a	MaterialIdentification	(MID)	/	Input	profile,	a	
MaterialVisualization	(MVIS)	profile,	and	an	output	profile	

	

	

Figure	4	‐	Workflow	connecting	a	MaterialIdentification	(MID)	/	Input	Profile	with	a		
MaterialLink	(MLNK)	profile	

	

Examples	of	MCS	workflows	and	connection	scenarios	can	be	found	in	Annex	H.	

ICC.2:2017	

©	ICC	2017–	All	rights	reserved	 27	

 MCS	signature	encoding	

To	define	 the	 use	 of	MCS	 connection	with	material	 channel	 identification	 the	 following	 signatures	 in	
Table	11	 shall	 be	 used	 to	 encode	 the	MCS	 field	 of	 the	 profile	 header.	 These	 colour	 space	 signatures	
define	both	the	colour	space	type	as	well	as	the	number	of	channels	associated	with	the	colour	space.		

Table	11 —AToMaterial	colour	space	signatures	

Material	colour	space	type	
Signature	
identifier	

Signature	
channels	

Combined	
hex		encoding	

Signature	
representation	

None	(no	MCS	is	used)	 0	 0	 0	 0	

Material	values	with	N	channels	
’mc’	

(6d63h)	

1	…	65	535	

(0001h	…	
FFFFh)	

	

6d630001h	…	

6d63FFFFh	
“mc0001”	…	
“mcFFFF”	

	

Note:	Material	 Color	 Space	 signatures	 use	 the	 same	 32‐bit	 binary	 encoding	mechanism	 as	N	 color	 device	 data		
signatures	(see	6.2.1)	with	each	having	a	6‐character	signature	representation.	

 Color	Encoding	Space	profiles	

This	 part	 of	 ISO	20677	provides	 a	means	 of	 defining	 a	 color	 encoding	 relative	 to	 a	 named	 reference	
encoding.	 	Therefore	it	defines	what	the	data	is	(not	how	it	 is	transformed).	 	The	reference	shall	be	a	
registered	color	encoding	in	the	ICC	three‐component	Color	Encoding	Registry.	

Because	 the	 transform	 is	 not	 defined	 by	 the	 profile,	 the	 CMM	 is	 responsible	 for	 determining	 what	
transform	to	use.	

The	 intent	 of	 ColorEncodingSpace	 profiles	 is	 to	 allow	 for	 profile	 files	 that	 have	 a	 minimum	 data	
structure	 that	 can	 be	 embedded	 in	 images	 with	 clear,	 concise,	 and	 non‐redundant	 (canonical)	
information	relative	to	a	“named”	reference	provided	to	the	CMM	for	determining	the	actual	transforms	
to	apply.		

Minimally,	a	color	encoding	space	profile	shall	have	a	header,	a	tag	directory,	and	a	referenceNameTag	
(see	9.2.103)	which	defines	 the	named	 reference	 encoding	 associated	with	 the	 color	 encoding	 space.		
Various	modes	of	operation	are	defined	for	Color	Encoding	Space	profiles	in	Clause	8.7.		Brief	guidelines	
for	transform	determination	by	the	CMM	can	be	found	in	Annex	J.	

Note:	It	is	envisioned	that	the	set	of	required	and	optional	named	color	encoding	spaces	will	be	defined	
by	interoperability	conformance	specifications	external	to	this	part	of	ISO	20677.	

7 Profile	requirements	

 General	

An	ICC	profile	shall	include	the	following	elements,	in	the	order	shown,	as	a	single	file:	

a) a	128‐byte	profile	header	as	defined	in	7.2,		

ICC.2:2017	

28	 ©	ICC	2017	–	All	rights	reserved	

b) a	profile	tag	table	as	defined	in	7.3	

c) profile	tagged	element	data	as	defined	in	7.4.	

This	is	illustrated	in	Figure	5.	

The	required	tags	for	each	profile	type	are	tabulated	in	Clause	8.	The	definition	of	all	publicly	available	
tags	and	their	signatures	is	contained	in	Clause	9	along	with	the	permitted	tag	types	for	each	tag.	Tag	
types	 are	 defined	 in	 Clause	 10.	 Extended	 ICC	 profiles	 may	 support	 tags	 defined	 as	 using	 either	 the	
multiProcessElementsType	or	the	tagStructType.	Multiple	processing	elements	are	defined	in	Clause	11.	
Tag	structure	types	are	defined	in	Clause	12.	Tag	array	types	are	defined	in	Clause	13.	

	

Figure	5	—	Profile	structure	

Within	the	profile	structure:	

a) all	profile	data	shall	be	encoded	as	big‐endian;	

b) the	first	set	of	tagged	element	data	shall	immediately	follow	the	tag	table;	

c) all	tagged	element	data,	including	the	last,	shall	be	padded	by	no	more	than	three	following	pad	
bytes	to	reach	a	4‐byte	boundary;		

d) all	pad	bytes	shall	be	NULL	(ISO	646,	character	0/0).	

NOTE	1		 This	implies	that	the	length	of	the	file	is	a	multiple	of	four.	

NOTE	2		 The	above	restrictions	result	in	two	key	benefits.	First,	the	likelihood	of	two	profiles	which	contain	the	
same	tag	data,	yet	have	different	checksum	values,	is	reduced.	Second,	all	profiles	are	reduced	to	a	minimum	size.	

ICC.2:2017	

©	ICC	2017–	All	rights	reserved	 29	

 Profile	Header	

 General	

ISO	15076‐1	defines	a	single	header	specification	 for	defining	ICC	Profiles.	 iccMAX	extends	the	use	of	
the	 ICC	 header	 in	 two	 ways.	 For	 spectral	 PCS	 support	 additional	 entries	 have	 been	 defined.	 For	
ColorEncodingSpace	profile	device	class	profiles	a	minimal	subset	of	header	field	entries	is	defined.	

 Extended	profile	header	field	definitions	

The	encoding	of	the	profile	header	with	spectral	PCS	support	shall	be	as	shown	in	Table	12.		

Table	12	—		Profile	header	fields	

Byte	

position	

Field	
length	
(bytes)	

Field	contents	 Encoded	as	

0	to	3	 4	 Profile	size	
uInt32Number;	

See	7.2.4	

4	to	7	 4	 Preferred	CMM	type	 4‐byte	signature;	see	
7.2.5	

8	to	11	 4	 Profile	version	and	sub‐version	number	
uInt32Number;	See	
7.2.6	

12	to	15	 4	 Profile/Device	class	
4‐byte	signature;	see	
7.2.7	

16	to	19	 4	 Colour	space	of	data	(possibly	a	derived	space)	
4‐byte	signature;	see	
7.2.8	

20	to	23	 4	 PCS	 4‐byte	signature;	see	
7.2.9	

24	to	35	 12	 Date	and	time	this	profile	was	first	created	
dateTimeNumber;	

see	7.2.10	

36	to	39	 4	 ‘acsp’	(61637370h)	profile	file	signature	
4‐byte	signature;	see	
7.2.11	

40	to	43	 4	 Primary	platform	signature		 4‐byte	signature;	see	
7.2.12	

44	to	47	 4	
Profile	flags	to	indicate	various	options	for	the	
CMM	such	as	distributed	processing	and	caching	
options	

uInt32Number;	see	
7.2.13	

48	to	51	 4	 Device	manufacturer	of	the	device	for	which	this	
profile	is	created	

4‐byte	signature;	see	
7.2.14	

52	to	55	 4	
Device	model	of	the	device	for	which	this	profile	
is	created	

4‐byte	signature;	see	
7.2.15	

56	to	63	 8	
Device	attributes	unique	to	the	particular	device	
setup	such	as	media	type	

uInt64Number	see	
7.2.16	

64	to	67	 4	 Rendering	Intent	
uInt32Number;	see	
7.2.17	

68	to	79	 12	 The	nCIEXYZ	values	of	the	PCS	illuminant,	
computed	with	the	PCS	observer.		

XYZNumber;	see	7.2.18	

ICC.2:2017	

30	 ©	ICC	2017	–	All	rights	reserved	

80	to	83	 4	 Profile	creator	signature	
4‐byte	signature;	see	
7.2.19	

84	to	99	 16	 Profile	ID	 uInt64Number[2];	see	
7.2.20	

100	to	103	 4	 Spectral	PCS	
4‐byte	signature;	see	
7.2.21	

104	to	109	 6	 Spectral	PCS	wavelength	range	
spectralRange;	

See	7.2.22	

110	to	115	 6	 Bi‐spectral	PCS	wavelength	range	
spectralRange;	

see	7.2.23	

116	to	119	 4	 MCS	signature	 uInt32Number;	see	
7.2.24	

120	to	123	 4	 Profile/Device	sub‐class	
4‐byte	signature;	see	
7.2.25	

124	to	127	 4	 Reserved	bytes	shall	be	zero	(00h)	
uInt32Number;	see	
7.2.26	

	

A	spectral‐only	profile	shall	be	defined	by	setting	the	PCS	header	field	to	zero,	setting	the	Spectral	PCS	
field	to	the	desired	spectral	colour	space,	and	only	providing	spectral	DToBx	and	BToDx	tables	 in	the	
profile.		

 	ColourEncodingSpace	profile	header	field	definitions	

A	ColourEncodingSpace	profile	 class	 profile	 shall	 use	 only	 the	 ICC	header	 fields	 defined	 in	Table	13	
with	the	other	fields	either	set	according	to	ISO	15076‐1	or	optionally	zero	filled.	

Table	13 —		ColourEncodingSpace	profile	header	fields	

Byte	
position		

Field	
length	
bytes		

Field	contents		 Encoded	as		

0	to	3		 4		 Profile	size		 uInt32Number		

4	to	7	 4	 Reserved	bytes	shall	be	zero	(00h)

8	to	11		 4		 Profile	version	number	 5.0	or	higher		

12	to	15		 4		 'cenc'	(63656E63h)	profile	device	class	

16	to	19		 4		 Colour	space	of	data	(possibly	a	derived	space)	 ‘RGB	’	(52474220h)	or

‘YCC	‘(59434320h)	

20	to	35	 16	 Reserved	bytes	shall	be	zero	(00h)

36	to	39		 4		 ‘acsp’	(61637370h)	profile	file	signature See	7.2.11	

40	to	
127	

88	 Reserved	bytes	shall	be	zero	(00h)

	

ICC.2:2017	

©	ICC	2017–	All	rights	reserved	 31	

 Profile	size	field	(Bytes	0	to	3)	

The	value	in	the	profile	size	field	shall	be	the	exact	size	obtained	by	combining	the	profile	header,	the	
tag	table,	and	the	tagged	element	data,	including	any	pad	bytes.	It	shall	be	encoded	as	a	uInt32Number.	

 Preferred	CMM	type	field	(Bytes	4	to	7)	

This	 field	may	be	used	 to	 identify	 the	preferred	CMM	 to	be	 used.	 If	 used,	 it	 shall	match	 a	CMM	 type	
signature	registered	in	the	ICC	CMM	registry.	If	no	preferred	CMM	is	identified,	this	field	shall	be	zero	
(00000000h).		

 Profile	version	and	sub‐version	field	(Bytes	8	to	11)	

The	profile	version	with	which	the	profile	is	compliant	shall	be	encoded	as	binary‐coded	decimal	in	the	
profile	version	field.	The	first	byte	(byte	8)	shall	identify	the	major	version	and	byte	9	shall	identify	the	
minor	version	and	bug	fix	version	in	each	4‐bit	half	of	the	byte.	Bytes	10	and	11	shall	be	used	to	identify	
the	profile	 sub‐class	version	where	byte	10	 shall	be	used	 to	 identify	 the	 sub‐class	major	version	and	
byte	11	shall	be	used	to	identify	the	sub‐class	minor	version.	When	a	sub‐class	is	not	associated	with	a	
profile	(when	the	Profile/Device	sub‐class	field	is	zero)	then	bytes	10	and	11	shall	be	zero.	The	major	
and	minor	versions	are	 set	by	 the	 International	Color	Consortium.	Profile	 sub‐class	 versions	 shall	 be	
established	by	profile	sub‐class	specification	documents.	The	profile	version	and	sub‐version	number	
consistent	with	this	specification	is	"5.0.0.0"	(encoded	as	05000000h).	

NOTE		 A	major	version	number	change	occurs	only	when	changes	made	to	ISO	20677	require	that	both	CMMs	
and	 profile	 generating	 software	 be	 upgraded	 in	 order	 to	 correctly	 produce	 or	 use	 profiles	 conforming	 to	 the	
revised	 specification.	 A	 minor	 version	 number	 change	 occurs	 when	 profiles	 conforming	 to	 the	 revised	
specification	 can	 be	 processed	 by	 existing	 CMMs.	 For	 example,	 adding	 a	 new	 required	 tag	would	 necessitate	 a	
major	revision	to	the	specification,	whereas	adding	an	optional	tag	would	only	require	a	minor	revision.	

 Profile/device	class	field	(Bytes	12	to15)	

This	field	shall	contain	one	of	the	profile	class	signatures	shown	in	Table	14.	

There	are	 three	basic	 classes	of	device	profiles:	 Input,	Display	and	Output	profiles.	 In	addition	 to	 the	
three	basic	device	profile	classes,	eight	additional	colour	processing	profiles	are	defined.	These	profiles	
provide	 a	 standard	 implementation	 for	 use	 by	 the	 CMM	 in	 general	 colour	 processing,	 or	 for	 the	
convenience	of	CMMs	which	may	use	these	types	to	store	calculated	transforms.	These	eight	additional	
profile	 classes	 are	 DeviceLink,	 ColorSpace,	 ColorEncodingSpace,	 Abstract,	 NamedColor,	
MaterialIdentification,	MaterialLink	and	MaterialVisualization.	

Table	14	—	Profile	classes	

Profile	class	 Signature	 Hex	encoding	

Input	Device	profile	 ‘scnr’	 73636E72h	

Display	Device	profile	 ‘mntr’	 6D6E7472h	

Output	Device	profile	 ‘prtr’	 70727472h	

DeviceLink	profile	 ‘link’	 6C696E6Bh	

ColorSpace	profile	 ‘spac’	 73706163h	

ICC.2:2017	

32	 ©	ICC	2017	–	All	rights	reserved	

Abstract	profile	 ‘abst’	 61627374h	

NamedColor	profile	 ‘nmcl’	 6E6D636Ch	

ColorEncodingSpace	profile	 ‘cenc‘	 63656E63h	

MaterialIdentification	profile	 ‘mid	’	 6D696420h	

MaterialLink	profile	 ‘mlnk’	 6d6c6e6bh	

MaterialVisualization	profile	 ‘mvis’	 6d766973h	

	

 Data	colour	space	field	(Bytes	16	to	20)	

This	 field	 shall	 contain	 the	 signature	 of	 the	 data	 colour	 space	 expected	 on	 the	 A	 side	 of	 the	 profile	
transforms.		

The	names	and	signatures	of	the	permitted	data	colour	spaces	shall	be	as	shown	in	Table	15.		

Table	15	—	Data	colour	space	signatures	

Colour	space	type	 Signature	 Hex	encoding	

nCIEXYZ	or	PCSXYZ1	 ‘XYZ	’	 58595A20h	

CIELAB	or	PCSLAB2	 ‘Lab	’	 4C616220h	

CIELUV	 ‘Luv	’	 4C757620h	

YCbCr	 ‘YCbr’	 59436272h	

CIEYxy	 ‘Yxy	’	 59787920h	

LMS	 ‘LMS	‘	 4C4D5320h	

RGB	 ‘RGB	’	 52474220h	

Gray	 ‘GRAY’	 47524159h	

HSV	 ‘HSV	’	 48535620h	

HLS	 ‘HLS	’	 484C5320h	

CMYK	 ‘CMYK’	 434D594Bh	

CMY	 ‘CMY	’	 434D5920h	

2	colour	 ‘2CLR’	 32434C52h	

3	colour	(other	than	those	listed	above)	 ‘3CLR’	 33434C52h	

4	colour	(other	than	CMYK)	 ‘4CLR’	 34434C52h	

5	colour		 ‘5CLR’	 35434C52h	

6	colour	 ‘6CLR’	 36434C52h	

7	colour	 ‘7CLR’	 37434C52h	

8	colour	 ‘8CLR’	 38434C52h	

9	colour	 ‘9CLR’	 39434C52h	

10	colour	 ‘ACLR’	 41434C52h	

ICC.2:2017	

©	ICC	2017–	All	rights	reserved	 33	

11	colour	 ‘BCLR’	 42434C52h	

12	colour	 ‘CCLR’	 43434C52h	

13	colour	 ‘DCLR’	 44434C52h	

14	colour	 ‘ECLR’	 45434C52h	

15	colour	 ‘FCLR’	 46434C52h	

N	channel	device	data	
Represented	as	

“nc0001”	–	“ncFFFF”	

6e630001h	–	

6e63FFFFh	

None		 0	 00000000h	

1 The signature 'XYZ ' refers to nCIEXYZ or PCSXYZ depending upon the context.

2 The signature 'Lab ' refers to CIELAB or PCSLAB depending upon the context.	

	

Note:	Extended	 “N	channel	device	data”	 signatures	use	a	32‐bit	 binary	encoding	 (see	6.2.1)	with	a	6‐character	
signature	representation.	

Channel	 encoding	 order	 shall	 be	 associated	with	 the	 order	 that	 channel	 names	 are	 identified	 in	 the	
signature	(for	example	given	signature	 ‘RGB	‘	the	channel	order	shall	be	channel	1	–	R,	channel	2	–	G,	
channel	3	–	B)	with	the	following	exceptions:	for	the	signature	‘GRAY’	there	is	only	1	channel;	 	for	the	
signature	‘YCbr’	the	channel	order	shall	be	channel	1	–	Y,	channel	2	–	Cb,	channel	3	–	Cr;	for	xCLR	and	N	
channel	data	the	order	shall	be	the	same	as	the	incoming	device	channel	order.		

For	Abstract	profiles	the	data	colour	space	signature	shall	one	of	 the	signatures	 in	Table	15.	 If	set	 to	
zero	 the	 Spectral	 PCS	 signature	 and	 spectral	 range	 fields	 shall	 be	 used	 to	 define	 the	 A	 side	 of	 the	
transform.	

For	MaterialLink	and	MaterialVisualization	profiles	the	data	colour	space	signature	shall	be	zero.	

 PCS	field	(Bytes	20	to	23)	

For	all	profile	classes	(see	Table	14),	other	than	a	DeviceLink	or	MaterialLink	profile,	the	PCS	encoding	
shall	 be	 one	 of	 the	 signatures	 as	 defined	 in	Table	16.	When	 the	profile/device	 class	 is	 a	DeviceLink	
profile	or	MaterialLink,	the	value	of	the	PCS	shall	be	the	appropriate	data	colour	space	from	Table	15.	
The	field	represents	the	colour	space	on	the	B‐side	of	the	transform.	

The	PCS	for	AToBx/BToAx	tags	shall	always	be	defined	by	the	PCS	field.		

To	define	the	use	of	a	colorimetric‐based	PCS	one	of	the	non‐spectral	colour	space	signatures	in	Table	
16	shall	be	used	to	encode	the	colour	space	implied	by	the	PCS	field	of	the	profile	header.	These	colour	
space	signatures	define	both	the	colour	space	type	as	well	as	the	number	of	channels	associated	with	
the	colour	space.	

Table	16—	Non‐Spectral	PCS	colour	space	signatures

Colour	space	type	 Signature	 Hex	encoding	

nCIEXYZ	or	PCSXYZ1	 ‘XYZ	’	 58595A20h	

CIELAB	or	PCSLAB2	 ‘Lab	’	 4C616220h	

ICC.2:2017	

34	 ©	ICC	2017	–	All	rights	reserved	

None	(spectral	PCS	defined	by	spectral	PCS	
header	field)	

0	 00000000h	

Channel	 encoding	 order	 shall	 be	 associated	with	 the	 order	 that	 channel	 names	 are	 identified	 in	 the	
signature.	

 Date	and	time	field	(Bytes	24	to	35)	

This	 header	 field	 shall	 contain	 the	 date	 and	 time	 that	 the	 profile	 was	 first	 created,	 encoded	 as	 a	
dateTimeNumber.	

 Profile	file	signature	field	(Bytes	36	to	39)	

The	profile	file	signature	field	shall	contain	the	value	‘acsp’	(61637379h)	as	a	profile	file	signature.	

 Primary	platform	field	(Bytes	40	to	43)	

This	 field	may	 be	 used	 to	 identify	 the	 primary	 platform/operating	 system	 framework	 for	which	 the	
profile	was	created.	The	primary	platforms	that	have	been	identified,	and	the	signatures	that	shall	be	
used	are	shown	in	Table	17.	If	no	primary	platform	is	identified,	this	field	shall	be	zero	(00000000h).	

Table	17	—	Primary	platforms	

Primary	platform	 Signature	 Hex	encoding	

Apple	Computer,	Inc.	 ‘APPL’	 4150504Ch	

Microsoft	Corporation	 ‘MSFT’	 4D534654h	

Silicon	Graphics,	Inc.	 ‘SGI	’	 53474920h	

Sun	Microsystems,	Inc.	 ‘SUNW’	 53554E57h	

	

 Profile	flags	field	(Bytes	44	to	47)		

The	 profile	 flags	 field	 shall	 contain	 flags	 to	 indicate	 various	 hints	 for	 the	 CMM	 such	 as	 distributed	
processing	 and	 caching	 options.	 The	 least‐significant	 16	 bits	 are	 reserved	 for	 the	 ICC.	 Flags	 in	 bit	
positions	0,	1	and	2	shall	be	used	as	indicated	in	Table	18.	

Table	18	—	Profile	flags	

Bit	
position	

Field	
length	
(bits)	

Field	contents	

0	 1	 Embedded	profile	(0	if	not	embedded,	1	if	embedded	in	file)	

1	 1	 Profile	cannot	be	used	independently	of	the	embedded	colour	
data	(set	to	1	if	true,	0	if	false)	

2	 1	
MCS	channels	in	this	profile	shall	be	a	subset	of	the	MCS	
channels	in	the	profile	it	is	connected	to	(set	to	1	if	true,	0	if	
false)	

	

ICC.2:2017	

©	ICC	2017–	All	rights	reserved	 35	

Bit	2	shall	define	MCS	subset	requirements	for	connecting	profiles.	When	bit	2	is	set	the	CMM	shall	be	
instructed	 to	 fail	 the	 linking	 of	 the	 profile	 containing	 this	 bit	 (containing	 profile)	 to	 another	 profile	
(second	profile)	using	an	MCS	based	connection	if	the	second	profile	does	not	contain	all	the	channels	in	
its	MCS	(defined	in	second	profile’s	materialTypeArrayTag	see	9.2.85)	that	the	containing	profile	has	in	
its	MCS	(defined	in	the	containing	profile’s	materialTypeArrayTag	see	9.2.85).	

 Device	manufacturer	field	(Bytes	48	to	51)	

This	field	may	be	used	to	identify	a	device	manufacturer.	If	used	the	signature	shall	match	the	signature	
contained	in	the	appropriate	section	of	the	ICC	signature	registry	found	at	www.color.org	(see	Clause	
5).	If	not	used	this	field	shall	be	zero	(00000000h).	

 Device	model	field	(Bytes	52	to	55)	

This	 field	 may	 be	 used	 to	 identify	 a	 device	 model.	 If	 used	 the	 signature	 shall	 match	 the	 signature	
contained	in	the	appropriate	section	of	the	ICC	signature	registry	found	at	www.color.org	(see	Clause	
5).	If	not	used	this	field	shall	be	zero	(00000000h).	

 Device	attributes	field	(Bytes	56	to	63)	

The	device	attributes	field	shall	contain	flags	used	to	identify	attributes	unique	to	the	particular	device	
setup	for	which	the	profile	is	applicable.	The	least‐significant	32	bits	of	this	64‐bit	value	are	defined	by	
the	ICC.	Bit	usage	shall	be	used	as	shown	in	Table	19.	

Table	19	—	Device	attributes	

Bit	position	
Field	length	

(bits)	 Attribute	

0	 1	 Reflective	(0)	or	transparency	(1)	

1	 1	 Glossy	(0)	or	matte	(1)	

2	 1	 Media	polarity,	positive	(0)	or	negative	(1)		

3	 1	 Colour	media	(0),	black	&	white	media	(1)	

4	 1	 Paper/paperboard	(0),	non‐paper‐based	(1)	

5	 1	 Non‐textured	(0),	textured	(1)	

6	 1	 Isotropic	(0),	non‐isotropic	(1)	

7	 1	 Non	self‐luminous	(0)	or	self‐luminous	(1)	

8	to	31	 24	 Reserved	(set	to	binary	zero)	

32	to	63	 32	 Use	not	defined	by	ICC	(vendor	specific)	

	

NOTE	 Notice	that	bits	0,	through	6	describe	the	media,	not	the	device.	For	example,	a	profile	for	a	colour	scanner	
that	has	been	loaded	with	black	&	white	film	has	bit	3	set	on,	regardless	of	the	value	in	the	data	colour	space	field	
(see	7.2.8).	If	the	media	is	not	inherently	"colour"	or	"black	&	white"	(such	as	the	paper	in	an	inkjet	printer),	the	
reproduction	takes	on	the	property	of	the	device.	Thus,	an	inkjet	printer	loaded	with	a	colour	ink	cartridge	can	be	
thought	to	have	"colour"	media.	

ICC.2:2017	

36	 ©	ICC	2017	–	All	rights	reserved	

 Rendering	intent	field	(Bytes	64	to	67)	

The	 rendering	 intent	 field	 shall	 specify	 the	 rendering	 intent	 that	 should	be	used	 (or,	 in	 the	 case	of	 a	
DeviceLink	profile,	was	used)	when	this	profile	is	(was)	combined	with	another	profile.	In	a	sequence	of	
more	than	two	profiles,	it	applies	to	the	combination	of	this	profile	and	the	next	profile	in	the	sequence	
and	 not	 to	 the	 entire	 sequence.	 Typically,	 the	 user	 or	 application	 selects	 the	 rendering	 intent	
dynamically	 at	 runtime	 or	 embedding	 time.	 Therefore,	 this	 flag	may	 not	 have	 any	meaning	 until	 the	
profile	is	used	in	some	context,	e.g.	in	a	DeviceLink	or	an	embedded	source	profile.	

The	field	is	a	uInt32Number	in	which	the	least‐significant	16	bits	shall	be	used	to	encode	the	rendering	
intent.	The	most	significant	16	bits	shall	be	zero	(0000h).	

The	defined	rendering	intents	are	perceptual,	media‐relative	colorimetric,	saturation	and	ICC‐absolute	
colorimetric.	These	shall	be	identified	using	the	values	shown	in	Table	20.	

Table	20	—	Rendering	intents	

Rendering	intent	 Value	

Perceptual	 0	

Media‐relative	colorimetric	 1	

Saturation	 2	

ICC‐absolute	colorimetric	 3	

	

 PCS	illuminant	field	(Bytes	68	to	79)	

The	PCS	illuminant	field	shall	contain	the	nCIEXYZ	values	of	the	PCS	illuminant.	If	the	PCS	illuminant	is	
D50,	 the	 values	 shall	 be	 X	 =	 0,964	2,	 Y	 =	 1,0	 and	 Z=0,824	9	 encoded	 as	 an	 XYZNumber.	 If	 the	 PCS	
illuminant	 is	 not	 D50,	 the	 values	 shall	 correspond	 to	 the	 colorimetry	 of	 the	 illuminant	 as	 computed	
using	the	illuminant	and	observer	values	specified	in	the	spectralViewingConditions	tag,	as	described	in	
Clause		9.2.105.	

See	Annex	A	for	further	details.	

NOTE	1	 These	values	are	the	nCIEXYZ	values	of	CIE	illuminant	D50	

NOTE	2	 The	 precise	 value	 of	 the	 PCS	 illuminant	 depends	 on	 the	 precision	 and	 method	 of	 computation.	 CIE	
Publication	15	(2004)	gives	a	different	value	for	Z,	which	corresponds	to	an	nCIEXYZ	value	of	0,825	1.	Such	close	
approximations	should	be	considered	as	D50.	

 Profile	creator	field	(Bytes	80	to	83)	

This	 field	may	 be	 used	 to	 identify	 the	 creator	 of	 the	 profile.	 If	 used,	 the	 signature	 should	match	 the	
signature	 contained	 in	 the	 device	 manufacturer	 section	 of	 the	 ICC	 signature	 registry	 found	 at	
www.color.org.	If	not	used	this	field	shall	be	zero	(00000000h).	

ICC.2:2017	

©	ICC	2017–	All	rights	reserved	 37	

 Profile	ID	field	(Bytes	84	to	99)	

This	field,	 if	not	zero	(00h),	shall	hold	the	Profile	ID.	The	Profile	ID	shall	be	calculated	using	the	MD5	
fingerprinting	method	as	defined	in	Internet	RFC	1321.	The	entire	profile,	whose	length	is	given	by	the	
size	field	in	the	header,	with	the	Profile	Flags	field	(bytes	44	to	47,	see	7.2.13),	Rendering	intent	field	
(bytes	64	to	67,	see	7.2.14),	and	Profile	ID	field	(bytes	84	to	99)	in	the	profile	header	temporarily	set	to	
zeros	(00h),	shall	be	used	to	calculate	the	ID.	A	Profile	ID	field	value	of	zero	(00h)	shall	indicate	that	a	
Profile	ID	has	not	been	calculated.		

NOTE		 It	is	recommended	that	profile	creators	compute	and	record	a	profile	ID.	

 Spectral	PCS	field	(Bytes	100	to	103)	

This	field,	when	non‐zero,	defines	the	meaning	of	spectrally‐based	PCS	data	in	a	profile.		

If	DToBx/BToDx	or	brdfDToBx/brdfBToDx	or	directionalDToBx/directionalBToDx	tags	are	present	and	
this	 field	 is	 non‐zero,	 then	 the	 use	 of	 a	 spectrally‐based	 PCS	 shall	 be	 defined	 for	 DToBx/BToDx	 or	
brdfDToBx/brdfBToDx	or	directionalDToBx/directionalBToDx	tags.	If	this	 field	is	zero	then	the	use	of	
DToBx/BToDx	or	brdfDToBx/brdfBToDx	or	directionalDToBx/directionalBToDx	is	not	defined.		

Spectral	data	shall	be	assumed	to	be	sampled	at	equal	intervals,	with	a	given	start,	end	wavelength,	and	
number	 of	 steps.	 Unless	 otherwise	 specified,	 the	 type,	 dimensions,	 and	 range	 of	 the	 spectra	 in	 the	
different	 tags	shall	be	defined	by	 the	Spectral	PCS	 field	 in	addition	 to	 the	spectral	PCS	Range	and	Bi‐
spectral	PCS	Range	fields.		

For	normal	 spectra	 (i.e.	 spectra	 containing	no	 fluorescent	emission	component),	 this	 implies	 that	 the	
spectral	dimension	of	object	 characterization	spectra	shall	be	 the	same.	 If	 the	object	 characterization	
spectra	 are	 defined	 by	 the	 Donaldson	matrix,	 the	 Donaldson	matrix	 shall	 be	 an	 nXm	matrix	with	m	
defined	internally	in	the	corresponding	colour	table.		

A	distinction	is	made	between	self‐emitting	colours,	and	reflective	colours,	here	referred	to	as	luminous	
colours	and	object	colours.	Luminous	colours	are	characterized	by	their	emission	spectra	whereas	for	
object	colours	reflectance	or	transmission	spectra	are	used.	These	three	types	of	spectra	are	referred	to	
as	object	characterization	spectra.	

Reflectance	spectra	are	specified	 in	relation	to	the	perfect	reflector	whereas	transmission	spectra	are	
related	to	a	perfect	transmitter.	Hence	both	types	of	spectra	can	be	seen	as	relative	data.	For	emission	
spectra,	luminance	values	are	used	hence	these	are	regarded	as	absolute	data.	

To	define	the	use	of	a	spectrally‐based	PCS,	one	of	the	spectral	colour	space	signatures	in	Table	21	shall	
be	used	to	encode	the	colour	space	implied	by	the	spectralPCS	field	of	the	profile	header.	These	colour	
space	signatures	define	both	the	colour	space	type	as	well	as	the	number	of	channels	associated	with	
the	colour	space.	Therefore,	the	number	of	channels	implied	by	the	spectralPCS	colour	space	signature	
shall	match	the	number	of	channels	indicated	by	the	steps	field(s)	of	the	corresponding	spectralRange	
structures	(7.2.22	and	7.2.23)	in	the	profile	header.	

Table	21	—	BToDx/DToBx	or	brdfBToDx/brdfDToBx	or	directionalBToDx/directionalDToBx	
spectral	colour	space	signatures	

Spectral	colour	space	type	
Signature	
identifier	

Signature	
channels	

Combined	
hex		encoding	

Signature	
representation	

None	(PCS	defined	by	PCS	header	field)	 0	 0	 00000000h	 0	

ICC.2:2017	

38	 ©	ICC	2017	–	All	rights	reserved	

Reflectance	spectra	with	N	channels	
’rs’	

(7273h)	

1	…	65	
535	

(0001h	…	
FFFFh)	

	

72730001h	…	

7273FFFFh	
“rs0001”	…	
“rsFFFF”	

Transmission	spectra	with	N	channels	

’ts’		

(7473h)	

	

1	…	65	
535	

(0001h	to	
FFFFh)	

74730001h	…	

7473FFFFh	

“ts0001”	…	

“tsFFFF”	

Radiant	(Emission)	spectra	with	N	
channels	

’es’		

(6573h)	

1	…	65	
535	

(0001h	…	
FFFFh)	

65730001h	…	

6573FFFFh	
“es0001”	…	
“esFFFF”	

Bi‐spectral	Reflectance	spectra	with	N	
total	channels	

‘bs’	

(6273h)	

1	to	65	
535	

(0001h	…	
FFFFh)	

62730001h	…	

6273FFFFh	
“bs0001”	…	
“bsFFFF”	

Bi‐spectral	Reflectance	using	sparse	
matrix	with	N	equivalent	output	channels	

’sm’		

(736d)	

1	to	65	
535	

(0001h	…	
FFFFh)	

736D0001h	…	

736DFFFFh	
“sm0001”	…	
“smFFFF”	

	

Note:	 Spectral	 colour	 space	 signatures	 use	 the	 same	32‐bit	 binary	 encoding	mechanism	as	N	 color	device	data		
signatures	(see	6.2.1)	with	each	having	a	6‐character	signature	representation.	

Different	types	of	spectral	data	can	be	defined.	In	most	circumstances,	only	reflectance,	transmission	or	
emission	spectra	are	used	but	in	other	circumstances	additional	data	shall	be	provided	according	to	the	
processing	to	be	carried	out.	The	range	of	normal	spectra	shall	be	indicated	by	the	spectral	PCS	Range	
field	in	the	header	(7.2.22).	To	represent	bi‐spectral	data,	a	form	of	Donaldson	matrix	 is	used	and	the	
incident	wavelengths	corresponding	to	the	columns	of	the	matrix	shall	be	specified	by	the	Bi‐spectral	
PCS	Range	field	in	the	header	(7.2.23).	

 Spectral	PCS	Range	field	(Bytes	104	to	109)	

This	 field	 shall	 specify	 the	 spectral	 range	 used	 for	 a	 spectrally‐based	 PCS	 when	 the	 spectralPCS	
signature	field	in	the	profile	header	is	non‐zero.	 If	 the	spectralPCS	field	is	zero	then	this	field	shall	be	
zero.		

Spectra	are	normally	represented	according	their	canonical	basis,	i.e.	the	spectrum	is	sampled	at	equal	
intervals	along	the	wavelength	axis.	The	wavelength	range	is	represented	by	a	start	wavelength	(S),	end	
wavelength	(E),	and	number	of	steps	(n).	The	wavelength	interval	between	steps	is	given	by	

I	=	(E	‐	S)	/	(n	‐	1)	 	 	 	 	 	 	 	 	 	 	 (4)	

Unless	otherwise	specified,	spectral	data	in	all	tags	shall	be	uniformly	sampled,	with	a	given	start,	end	
wavelength,	and	number	of	steps	as	defined	by	this	field.	The	dimensions	and	range	of	the	spectra	in	the	
different	tags	shall	be	defined	consistently.	For	normal	spectra,	it	means	that	the	spectral	dimension	of	
object	characterization	spectra	shall	be	the	same.		

ICC.2:2017	

©	ICC	2017–	All	rights	reserved	 39	

 Bi‐Spectral	PCS	Range	field	(Bytes	110	to	115)	

This	field	shall	specify	the	spectral	range	of	the	incident	light	used	for	a	spectrally‐based	PCS	when	the	
spectralPCS	signature	field	in	the	profile	header	indicates	the	use	of	Bi‐spectral	reflectance.	Otherwise	
this	field	shall	be	zero.	

Bi‐spectral	reflectance	characterizes	of	the	interaction	of	light	with	a	diffuse	surface	using	a	Donaldson	
Matrix.	The	multiplication	of	such	a	matrix	by	a	vector	representing	the	illumination	results	in	a	vector	
representing	the	light	reflected	off	the	surface.	Columns	of	a	Donaldson	matrix	correspond	to	incident	
wavelengths	of	light	and	rows	of	a	Donaldson	matrix	correspond	to	reflected	wavelengths	of	light.		

Diagonal	 entries	 (where	 incident	 and	 reflected	 wavelengths	 are	 the	 same)	 correspond	 to	 spectral	
reflectance.	 Off	 diagonal	 entries	 (below	 the	 diagonal)	 represent	 the	 contribution	 of	 a	 change	 in	 the	
reflected	light’s	wavelength	(typically	due	to	fluorescence).	Fluorescence	occurs	when	light	is	absorbed	
and	then	re‐emitted	at	a	 longer	wavelength.	Using	Donaldson	matrices	to	represent	colours	 in	an	ICC	
profile	 allows	 for	 a	 more	 complete	 description	 of	 colour	 to	 be	 encoded	 than	 using	 only	 spectral	
reflectance	or	simple	colorimetry.	

 MCS	field	(Bytes	116	to	119)	

The	MCS	 for	AToM0/MToA0/MToB0/MToS0	 tags	 shall	 always	be	defined	by	 the	MCS	 field.	The	 field	
represents	 the	 colour	 space	on	 the	M‐side	of	 the	 transform.	When	 this	 field	 is	 non‐zero	 the	material	
channel	identification	shall	be	encoded	by	a	materialTypeArrayTag	(see	9.2.85).	

For	 the	 MaterialIdentification	 and	 MaterialVisualization	 profile	 classes	 (see	 Table	 14),	 the	 MCS	
encoding	shall	be	one	of	the	signatures	as	defined	in	Table	22.		

Note:	Material	 color	 space	 signatures	 use	 the	 same	 32‐bit	 binary	 encoding	mechanism	 as	 N	 color	 device	 data		
signatures	(see	6.2.1)	with	each	having	a	6‐character	signature	representation.	

Table	22	—AToM0/MToA0/MToB0/MToS0	Material	Colour	Space	signatures	

Material	colour	space	type	
Signature	
identifier	

Signature	
channels	

Combined	
hex	encoding	

Signature	
representation	

Material	values	with	N	channels	
’mc’	

(6d63h)	

1	…	65	535	

(0001h	…	
FFFFh)	

	

6d630001h	…	

6d63FFFFh	
“mc0001”	…	
“mcFFFF”	

	

For	 the	 Input	profile	 class	 (Table	14)	 the	MCS	 encoding	 shall	 be	one	of	 the	 signatures	 as	defined	 in	
Table	23.		

Table	23	—AToM0/MToA0/MToB0/MToS0	Material	Colour	Space	signatures	

Material	Colour	Space	type	
Signature	
Identifier	

Signature	
Channels	

Combined	
Hexidecimal	
Encoding	

Signature	
Representation

None	(no	MCS	is	used)	 0	 0	 0	 0	

Material	values	with	N	channels	
’mc’	

(6d63h)	

1	…	65	535	

(0001h	…	

6d630001h	…	

6d63FFFFh	
“mc0001”	…	
“mcFFFF”	

ICC.2:2017	

40	 ©	ICC	2017	–	All	rights	reserved	

FFFFh)

	

	

For	all	other	profile	classes	(Table	14)	the	MCS	encoding	shall	be	zero.	

 Profile/Device	sub‐class	(Bytes	124	to	127)	

This	 field	allows	 for	a	profile/device	 subclass	 signature	associated	with	 the	profile	 class.	 	This	 field’s	
purpose	 is	 to	 provide	 a	 connection	with	 Interoperability	 Conformance	 Specification	 (ICS)	 documents	
that	 provide	 specifications	 for	 specific	 colour	 management	 workflows.	 	 If	 this	 field	 is	 zero	 then	 no	
profile/device	subclass	shall	be	associated	with	the	profile	type.		When	this	field	is	set	then	the	profile	
sub‐version	field	shall	also	identify	the	version	associated	with	the	profile/device	sub‐class	that	can	be	
referenced	with	an	ICS	document.			

 Reserved	field	(Bytes	124	to	127)	

This	field	of	the	profile	header	is	reserved	for	future	ICC	definition	and	shall	be	zero.		

 Tag	table	

 Overview	

The	 tag	 table	 acts	 as	 a	 table	 of	 contents	 for	 the	 tags	 and	 an	 index	 into	 the	 tag	 data	 element	 in	 the	
profiles.	 It	 shall	 consist	 of	 a	 4‐byte	 entry	 that	 contains	 a	 count	 of	 the	 number	 of	 tags	 in	 the	 table	
followed	by	a	series	of	12‐byte	entries	with	one	entry	for	each	tag.	The	tag	table	therefore	contains	4	+	
12n	 bytes	where	n	 is	 the	number	of	 tags	 contained	 in	 the	profile.	The	entries	 for	 the	 tags	within	 the	
table	are	not	required	to	be	in	any	particular	order	nor	are	they	required	to	match	the	sequence	of	tag	
data	element	within	the	profile.	

Each	12‐byte	tag	entry	following	the	tag	count	shall	consist	of	a	4‐byte	tag	signature,	a	4‐byte	offset	to	
define	the	beginning	of	 the	tag	data	element,	and	a	4‐byte	entry	 identifying	the	 length	of	 the	tag	data	
element	in	bytes.	Table	24	illustrates	the	structure	for	this	tag	table.	Clauses	7.3.2	to	7.3.5	specify	the	
position	and	content	of	the	entries	composing	the	tag	table.	

Table	24	—	Tag	table	structure	

Byte	offset		
Field	
length	
(bytes)	

Content	 Encoded	as	

0	to	3	 4	 Tag	count	(n)	 	

4	to	7	 4	 Tag	Signature	 	

8	to	11	 4	 Offset	to	beginning	of	tag	data	element	 uInt32Number	

12	to	15	 4	 Size	of	tag	data	element	 uInt32Number	

16	to	
(12n+3)	

12(n‐1)	
Signature,	offset	and	size	respectively	of	

subsequent	n‐1	tags	
	

n	is	the	number	of	tags	contained	in	the	profile		

ICC.2:2017	

©	ICC	2017–	All	rights	reserved	 41	

	

NOTE	 The	Byte	Offset	shown	in	Table	24	is	with	respect	to	the	128‐byte	header.	Thus	the	tag	table	starts	at	byte	
position	128.	

 Tag	count	(byte	position	0	to	3)	

Byte	 positions	 0	 to	 3	 shall	 specify	 the	 number	 of	 tags	 contained	 in	 the	 tag	 table,	 encoded	 as	 a	
uInt32Number.	

 Tag	signature	(byte	position	4	to	7	and	repeating)	

Byte	positions	4	 to	7	(and	repeating	at	12‐byte	 intervals)	shall	specify	 the	signature	of	a	 tag	 listed	 in	
Clause	9,	 or	 of	 a	private	 tag.	 Signatures	of	private	 tags	 shall	 be	 registered	with	 the	 ICC	as	defined	 in	
Clause	5.		

 Offset	to	beginning	of	tag	data	element	(byte	position	8	to	11	and	repeating)	

Byte	positions	8	to	11	(and	repeating	at	12‐byte	intervals)	shall	specify	the	address	of	the	beginning	of	
the	tag	data	element,	with	respect	to	the	beginning	of	the	profile	data	stream	(which	has	an	address	of	
zero),	encoded	as	a	uInt32Number.		

NOTE		 For	profiles	that	are	not	embedded,	the	number	specified	is	the	same	as	the	file	offset.	

All	tag	data	elements	shall	start	on	a	4‐byte	boundary	(relative	to	the	start	of	the	profile	data	stream)	
and	the	two	least‐significant	bits	of	each	tag	data	offset	shall	be	zero.	This	means	that	a	tag	starting	with	
a	32‐bit	value	is	properly	aligned	without	the	tag	handler	needing	to	know	the	contents	of	the	tag.		

 Tag	data	element	size	(byte	position	12	to	15	and	repeating)	

The	 tag	 data	 element	 size	 shall	 be	 the	 number	 of	 bytes	 in	 the	 tag	 data	 element	 encoded	 as	 a	
uInt32Number.	The	value	of	the	tag	data	element	size	shall	be	the	number	of	actual	data	bytes	and	shall	
not	include	any	padding	at	the	end	of	the	tag	data	element.		

 Tag	data	

The	 first	 set	 of	 tag	 data	 elements	 shall	 immediately	 follow	 the	 tag	 table	 and	 all	 tag	 data	 elements,	
including	the	last	tag	data	element,	shall	be	padded	by	no	more	than	three	following	pad	bytes	to	reach	
a	4‐byte	boundary.	

The	size	of	individual	tag	data	elements	and	the	accumulated	size	of	all	tag	data	elements	shall	only	be	
restricted	by	the	limits	imposed	by	the	32‐bit	tag	data	offset	value	and	the	32‐bit	tag	data	element	size	
value.		

8 Required	tags	

 General	

8.2	to	8.10	identify	the	tags	that	are	required,	in	addition	to	the	header	defined	in	7.2,	for	each	profile	
type.		

ICC.2:2017	

42	 ©	ICC	2017	–	All	rights	reserved	

NOTE	 Profiles	 can	 include	additional	 tags	beyond	 those	 listed	as	 required.	The	explicitly	 listed	 tags	are	 those	
that	shall	be	encoded	in	order	to	comprise	a	conforming	profile	of	each	type.		

The	 intent	 of	 requiring	 certain	 tags	 with	 each	 type	 of	 profile	 is	 to	 provide	 a	 common	 base	 level	 of	
functionality.	If	a	custom	CMM	is	not	present,	then	the	required	tags	have	enough	information	to	allow	
the	default	CMM	to	perform	the	requested	colour	transformations.	The	particular	models	are	identified	
for	each	profile	type	and	described	in	detail	in	Annex	A.	While	the	data	provided	by	the	required	tags	
might	not	provide	the	level	of	quality	obtainable	with	optional	tags	and	private	data,	the	data	provided	
is	adequate	for	sophisticated	device	modelling.	

 Common	requirements	

With	 the	 exception	 of	 ColorEncodingSpace,	 DeviceLink,	 MaterialIdentification,	 and	 MaterialLink	
profiles,	all	profiles	shall	contain	the	following	tags:		

 profileDescriptionTag	(see	9.2.101);	

 copyrightTag	(see	9.2.55);	

 mediaWhitePointTag	(see	9.2.88)	if	the	PCS	field	in	header	is	non‐zero;	

 spectralWhitePointTag	(see	9.2.106)	if	the	spectralPCS	field	in	profile	header	is	non‐zero	

NOTE	1			A	 ColorEncodingSpace	 profile	 is	 not	 required	 to	 have	 either	 a	 profileDescriptionTag,	 copyrightTag,	
mediaWhitePointTag,	or	a	spectralWhitePointTag.		

NOTE	2			A	 DeviceLink,	 MaterialIdentification,	 or	 MaterialLink	 profile	 is	 not	 required	 to	 have	 a	
mediaWhitePointTag	or	spectralWhitePointTag.		

 Input	profiles	

Input	profiles	are	generally	used	with	devices	such	as	scanners	and	digital	cameras.		

In	addition	to	the	tags	listed	in	8.2	an	input	profile	shall	contain:		

 One	or	more	of	the	following:	AToB0Tag	(see	9.2.1),	AToB1Tag	(see	9.2.2),	AToB2Tag	(see	9.2.3),	
AToB3Tag	(see	9.2.4),	DToB0Tag	(see	9.2.76),	DToB1Tag	(see	9.2.77),	DToB2Tag	(see	9.2.78),	or	
DToB3Tag	(see	9.2.79).	

The	 colorantInfoTag	 (9.2.53)	 should	 be	 used	 for	 colour	 spaces	 with	 either	 a	 ‘xCLR’	 signature	 or	 a	
signature	 represented	by	 “ncXXXX”.	 It	 enables	 the	names	 and	optionally	 colorimetric	 and	or	 spectral	
values	 of	 the	 colorants	 to	 be	 specified	 for	 these	 colour	 spaces	 (Table	 15),	 as	 these	 names	 are	 not	
otherwise	implicit	in	the	choice	of	the	colour	space.	

The	 BToA0Tag	 (see	 9.2.30),	 BToA1Tag	 (see	 9.2.39),	 BToA2Tag	 (see	 9.2.40),	 BToA3Tag	 (see	 9.2.41),	
BToD0Tag	(see	9.2.42),	BToD1Tag	(see	9.2.43),	BToD2Tag	(see	9.2.44),	BToD3Tag	(see	9.2.45)	may	also	
be	 included	 in	 an	N‐component	 LUT‐based	 input	 profile.	 If	 these	 are	 present,	 their	 usage	 shall	 be	 as	
defined	in	Table	25	(see	9.2.1).		

The	 gamutBoundaryDescriptor0Tag	 (see	 9.2.80),	 gamutBoundaryDescriptor1Tag	 (see	 9.2.81),	
gamutBoundaryDescriptor2Tag	 (see	 9.2.82),	 and/or	 gamutBoundaryDescriptor3Tag	 (see	 9.2.83)	may	
be	included.		

ICC.2:2017	

©	ICC	2017–	All	rights	reserved	 43	

MCS	connection	may	be	included	in	addition	to	PCS	based	tags.	When	the	MCS	header	field	is	non‐zero	
the	Input	class	shall	also	include	an	AToM0Tag	(see	9.2.5)	and	a	materialTypeArrayTag	(see	9.2.85).	

 Display	profiles	

This	class	of	profiles	represents	display	devices	such	as	monitors	and	projectors.		

In	addition	to	the	tags	listed	in	8.2	a	display	profile	shall	contain	the	following	tags:		

 One	or	more	of	the	following:	AToB0Tag	(see	9.2.1),	AToB1Tag	(see	9.2.2),	AToB2Tag	(see	9.2.3),	
AToB3Tag	(see	9.2.4),	DToB0Tag	(see	9.2.76),	DToB1Tag	(see	9.2.77),	DToB2Tag	(see	9.2.78),	
DToB3Tag	(see	9.2.79).	

 One	or	more	of	the	following:	BToA0Tag	(see	9.2.38),	BToA1Tag	(see	9.2.39),	BToA2Tag	(see	
9.2.40),	BToA3Tag	(see	9.2.41),	BToD0Tag	(see	9.2.42),	BToD1Tag	(see	9.2.43),	BToD2Tag	(see	
9.2.44),	BToD3Tag	(see	9.2.45).	

NOTE	 The	colorantInfoTag	(9.2.52)	is	a	recommended	tag	for	colour	spaces	with	either	a	‘xCLR’	signature	or	a	
signature	represented	by	“ncXXXX”.	It	enables	the	names	and	optionally	colorimetric	and	or	spectral	values	of	the	
colorants	 to	 be	 specified	 for	 these	 colour	 spaces	 (Table	 15),	 as	 these	 names	 are	 not	 otherwise	 implicit	 in	 the	
choice	of	the	colour	space.	

The	 gamutBoundaryDescriptor0Tag	 (see	 9.2.80),	 gamutBoundaryDescriptor1Tag	 (see	 9.2.81),	
gamutBoundaryDescriptor2Tag	 (see	 9.2.82),	 and/or	 gamutBoundaryDescriptor3Tag	 (see	 9.2.83)	may	
be	included.		

 Output	profiles	

Output	profiles	are	used	 to	support	devices	such	as	printers	and	 film	recorders.	The	types	of	profiles	
available	for	use	as	output	profiles	are	N‐component	LUT‐based	and	Monochrome.	

In	addition	to	the	tags	listed	in	8.2	an	output	profile	shall	contain	the	following	tags:	

 One	or	more	of	the	following:	AToB0Tag	(see	9.2.1),	AToB1Tag	(see	9.2.2),	AToB2Tag	(see	9.2.3),	
AToB3Tag	(see	9.2.4),	DToB0Tag	(see	9.2.76),	DToB1Tag	(see	9.2.76),	DToB2Tag	(see	9.2.76),	
DToB3Tag	(see	9.2.76).

 One	or	more	of	the	following:	BToA0Tag	(see	9.2.38),	BToA1Tag	(see	9.2.39),	BToA2Tag	(see	
9.2.40),	BToA3Tag	(see	9.2.41),	BToD0Tag	(see	9.2.42),	BToD1Tag	(see	9.2.43),	BToD2Tag	(see	
9.2.44),	BToD3Tag	(see	9.2.45).	

NOTE	 The	colorantInfoTag	(9.2.52)	is	a	recommended	tag	for	colour	spaces	with	either	a	‘xCLR’	signature	or	a	
signature	represented	by	“ncXXXX”.	It	enables	the	names	and	optionally	colorimetric	and	or	spectral	values	of	the	
colorants	 to	 be	 specified	 for	 these	 colour	 spaces	 (Table	 15),	 as	 these	 names	 are	 not	 otherwise	 implicit	 in	 the	
choice	of	the	colour	space.	

The	 gamutBoundaryDescriptor0Tag	 (see	 9.2.80),	 gamutBoundaryDescriptor1Tag	 (see	 9.2.81),	
gamutBoundaryDescriptor2Tag	 (see	 9.2.82),	 and/or	 gamutBoundaryDescriptor3Tag	 (see	 9.2.83)	may	
be	included.	

 DeviceLink	profile	

A	device	link	profile	shall	contain	the	following	tags:	

ICC.2:2017	

44	 ©	ICC	2017	–	All	rights	reserved	

 profileDescriptionTag	(see	9.2.101);	

 copyrightTag	(see	9.2.55);		

 One	or	more	of	the	following:	AToB0Tag	(see	9.2.1),	DToB0Tag	(see	9.2.76);	

 A	profileSequenceInformationTag	(see	9.2.102)	may	be	included.	

This	profile	contains	a	pre‐evaluated	transform	that	cannot	be	undone,	which	represents	a	one‐way	link	
or	 connection	between	devices.	 It	 does	not	 represent	 any	device	model	nor	 can	 it	 be	 embedded	 into	
images.	

The	single	AToB0Tag	may	contain	data	for	any	one	of	the	four	possible	rendering	intents.	The	rendering	
intent	used	is	indicated	in	the	header	of	the	profile.	

The	data	 colour	 space	 field	 (see	7.2.8)	 in	 the	DeviceLink	profile	 shall	 be	 the	 same	as	 the	data	 colour	
space	field	of	the	first	profile	in	the	sequence	used	to	construct	the	device	link.	The	PCS	field	(see	7.2.9)	
shall	be	the	same	as	the	data	colour	space	field	of	the	last	profile	in	the	sequence.		

NOTE	1		If	 the	 data	 colour	 space	 field	 is	 set	 to	 xCLR,	 where	 x	 is	 hexadecimal	 1	 to	 F	 or	 has	 a	 signature	
representation	 of	 “ncXXXX”	 where	 XXXX	 is	 hexadecimal	 0001	 to	 FFFF,	 the	 colorantInfoTag	 (9.2.52)	 is	 a	
recommended	tag	to	specify	the	names	and	optionally	colorimetric	and	or	spectral	values	of	the	input	colorants	
(Table	15),	as	these	names	are	not	otherwise	implicit	in	the	choice	of	the	colour	space.	These	colorants	represent	
the	input	values	of	the	profile.		

NOTE	 2	 Correspondingly,	 if	 the	 PCS	 field	 is	 set	 to	 xCLR	 where	 x	 is	 hexadecimal	 1	 to	 F	 or	 has	 a	 signature	
representation	 of	 “ncXXXX”	 where	 XXXX	 is	 hexadecimal	 0001	 to	 FFFF,	 the	 colorantInfoOutTag	 (9.2.53)	 is	 a	
recommended	tag	to	specify	the	names	and	optionally	colorimetric	and	or	spectral	values	of	the	output	colorants	
(Table	15),	as	these	names	are	not	otherwise	implicit	in	the	choice	of	the	colour	space.	These	colorants	represent	
the	output	values	of	the	profile.	

NOTE	3	 The	 colorantOrderTag	 ‘clro’	 specifies	 the	 laydown	 order	 of	 the	 input	 colorants,	 and	 the	
colorantoOrderOutTag	specifies	the	laydown	order	of	the	output	colorants.		

 ColorEncodingSpace	Profiles	

A	ColorSpaceEncoding	profile	(signature	‘cenc’	(63656e63h))	shall	contain	the	following	tag:	

 referenceNameTag	(see	9.2.103);	

A	ColorSpaceEncoding	profile	may	also	contain	a	colorEncodingParamsTag	and	a	colorSpaceNameTag	
defined	by	the	following	criteria.	

In	 the	 first	mode	 of	 operation	 the	 referenceNameTag	 solely	 contains	 the	 text	 “ISO	 22028‐1”	 (quotes	
excluded)	and	the	elements	in	the	colorEncodingParamsTag	shall	uniquely	determine	the	colour	space	
encoding	 parameters	 and	 the	 colorSpaceNameTag	 shall	 define	 the	 name	 associated	 with	 the	 colour	
space	encoding.	

In	 the	 second	 mode	 of	 operation	 the	 referenceNameTag	 contains	 any	 text	 besides	 “ISO	 22028‐1”	
(quotes	 excluded).	 In	 this	 case	 the	 colorSpaceNameTag	 defines	 the	 colour	 space	 name	 and	 a	
colorEncodingParamsTag	may	 optionally	 be	 present.	 If	 the	 colorEncodingParamsTag	 exists	 then	 any	
elements	in	the	colorEncodingParamsTag	shall	provide	overrides	to	the	assumed	default	values	for	the	
encoding	 space.	Any	elements	not	 in	 the	 colorEncodingParamsTag	shall	 have	assumed	default	values	
associated	with	the	colour	space	encoding.	

ICC.2:2017	

©	ICC	2017–	All	rights	reserved	 45	

 ColorSpace	profile	

In	addition	to	the	tags	listed	in	8.2	a	ColorSpace	profile	shall	contain	the	following	tags:	

 One	or	more	of	the	following:	AToB0Tag	(see	9.2.1),	AToB1Tag	(see	9.2.2),	AToB2Tag	(see	9.2.3),	
AToB3Tag	(see	9.2.4),	DToB0Tag	(see	9.2.76),	DToB1Tag	(see	9.2.77),	DToB2Tag	(see	9.2.78),	or	
DToB3Tag	(see	9.2.79).

 One	or	more	of	the	following:	BToA0Tag	(see	9.2.38),	BToA1Tag	(see	9.2.39),	BToA2Tag	(see	
9.2.40),	BToA3Tag	(see	9.2.41),	BToD0Tag	(see	9.2.42),	BToD1Tag	(see	9.2.43),	BToD2Tag	(see	
9.2.44),	or	BToD3Tag	(see	9.2.45).	

This	profile	provides	the	relevant	information	to	perform	a	transformation	between	colour	encodings	
and	 the	 PCS.	 This	 type	 of	 profile	 is	 based	 on	 modelling	 rather	 than	 device	 measurement	 or	
characterization	data.	ColorSpace	profiles	may	be	embedded	in	images.	

For	ColorSpace	profiles,	the	device	profile	dependent	fields	are	set	to	zero	if	irrelevant.	

The	 gamutBoundaryDescriptor0Tag	 (see	 9.2.80),	 gamutBoundaryDescriptor1Tag	 (see	 9.2.81),	
gamutBoundaryDescriptor2Tag	 (see	 9.2.82),	 and/or	 gamutBoundaryDescriptor3Tag	 (see	 9.2.83)	may	
be	included.	

 Abstract	profile	

In	addition	to	the	tags	listed	in	8.2	an	Abstract	profile	shall	contain	the	following	tag:	

 One	or	more	of	the	following:	AToB0Tag	(see	9.2.1),	DToB0Tag	(see	9.2.76).	

This	 profile	 represents	 an	 abstract	 transform	 and	 does	 not	 represent	 any	 device	 model.	 Colour	
transformations	 using	 abstract	 profiles	 are	 performed	 from	 PCS	 to	 PCS.	 Abstract	 profiles	 cannot	 be	
embedded	in	images.	

 NamedColor	profile	

In	addition	to	the	tags	listed	in	8.2	a	NamedColor	profile	shall	contain	the	following	tags:	

 namedColorTag	(see	9.2.99).	

NamedColor	profiles	 can	be	 thought	 of	 as	 sibling	profiles	 to	device	profiles.	 For	 a	 given	device	 there	
would	be	one	or	more	device	profiles	 to	handle	process	 colour	 conversions	and	one	or	more	named	
colour	profiles	to	handle	named	colours.		

The	namedColorTag	provides	a	combination	of	PCS,	spectral	PCS	and	optional	device	representation	for	
each	named	colour	in	a	list	of	named	colours.	NamedColor	profiles	can	be	device‐specific	in	that	their	
data	 is	 shaped	 for	 a	 particular	 device.	 There	 might	 be	 multiple	 NamedColor	 profiles	 to	 account	 for	
different	consumables	or	multiple	named	colour	vendors.	The	PCS	and	spectral	PCS	representations	are	
provided	to	support	general	colour	management	functionality,	and	are	useful	for	display	and	emulation	
of	the	named	colours.	

When	using	a	NamedColor	profile	with	the	device	for	which	it	is	intended,	the	device	representation	of	
the	 colour	 specifies	 the	 exact	 device	 coordinates	 for	 each	 named	 colour,	 if	 available.	 The	 PCS	 and	
spectral	 PCS	 representations	 in	 conjunction	 with	 the	 device’s	 output	 profile	 can	 provide	 an	

ICC.2:2017	

46	 ©	ICC	2017	–	All	rights	reserved	

approximation	 of	 these	 exact	 coordinates.	 The	 exactness	 of	 this	 approximation	 is	 a	 function	 of	 the	
accuracy	of	the	output	profile	and	the	colour	management	system	performing	the	transformations.	

The	 combination	 of	 the	 PCS,	 spectral	 PCS	 and	 device	 representations	 provides	 for	 flexibility	 with	
respect	to	accuracy	and	portability.	

 MaterialIdentification	profile	

In	addition	to	the	tags	listed	in	8.2,	a	MaterialIdentification	profile	shall	contain	the	following	tags:	

 AToM0Tag	(see	9.2.6)	

 materialTypeArrayTag	(see	9.2.85).	

This	profile	converts	device	values	into	independent	material	values.	

 MaterialLink	profile	

In	addition	to	the	tags	listed	in	8.2,	a	MaterialIdentification	profile	shall	contain	the	following	tags:	

 MToA0Tag	(see	9.2.90)	

 materialTypeArrayTag	(see	9.2.85).	

 Profiles	of	this	class	can	optionally	provide	the	following	Tag:	

 materialDefaultValuesTag	(see	9.2.84)	

This	profile	converts	material	values	 to	device	values.	MaterialLink	profiles	shall	not	be	embedded	 in	
images.	

 MaterialVisualization	profile	

In	addition	to	the	tags	listed	in	8.2	a	MaterialVisualization	profile	shall	contain	the	following	tags:	

 One	or	more	of	the	following:	MToB0Tag	(see	9.2.91),	MToB1Tag	(see	9.2.92),	MToB2Tag	(see	
9.2.93),	MToB3Tag	(see	9.2.94),	MToS0Tag	(see	9.2.95),	MToS1Tag	(see	9.2.96),	MToS2Tag	(see	
9.2.97),	or	MToS3Tag	(see	9.2.98).	

 materialTypeArrayTag	(see	9.2.85).	

 Profiles	of	this	class	can	optionally	provide	the	following	tag:	

 materialDefaultValuesTag	(see	9.2.84)	

This	 profile	 represents	 a	 visualization	 of	 material	 values	 and	 does	 not	 represent	 any	 device	 model.	
Colour	transformations	using	abstract	profiles	are	performed	from	either	MCS	to	device	or	MCS	to	PCS.	
MaterialVisualization	profiles	shall	not	be	embedded	in	images.	

 Precedence	order	of	tag	usage	

 General	

There	are	several	methods	of	colour	transformation	that	can	function	within	a	single	CMM.	If	data	for	
more	than	one	method	are	included	in	the	same	profile,	the	following	selection	algorithm	shall	be	used	
by	the	software	implementation.		

ICC.2:2017	

©	ICC	2017–	All	rights	reserved	 47	

 Input,	display,	output,	or	colour	space	profile	types	

For	 input,	 display,	 output,	 or	 colour	 space	 profile	 types,	 the	 precedence	 order	 of	 the	 tag	 usage	 for	
PCSXYZ	or	PCSLab	connection	for	a	designated	rendering	intent	shall	be:	

 Use	the	BToA0Tag,	BToA1Tag,	BToA2Tag,	BToA3,	AToB0Tag,	AToB1Tag,	AToB2Tag,	or	
AToB3Tag	designated	for	the	rendering	intent	if	present;

 Use	the	BToA0Tag	or	AToB0Tag	if	present,	when	the	tags	in	1	are	not	used;	

 Use	the	BToA1Tag	or	AToB1Tag	if	present,	when	the	tags	in	1	and	2	are	not	used;

 Use	the	BToA3Tag	or	AToB3Tag	if	present,	when	the	tags	in	1	through	3	are	not	used;

See	Table	25.	

When	spectrally‐based	PCS	connection	is	used	and	the	spectralPCS	header	field	is	non‐zero,	for	input,	
display,	output,	or	 colour	 space	profile	 types,	 the	precedence	order	of	 the	 tag	usage	 for	 a	designated	
rendering	intent	shall	be:	

 Use	 the	 BToD0Tag,	 BToD1Tag,	 BToD2Tag,	 BToD3Tag,	 DToB0Tag,	 DToB1Tag,	 DToB2Tag,	 or	
DToB3Tag	designated	for	the	rendering	intent	if	the	tag	is	present	

 Use	the	BToD0Tag	or	DToB0Tag	if	present,		when	the	tags	in	1	are	not	used;	

 Use	the	BToD1Tag	or	DToB1Tag	if	present,	when	the	tags	in	1	and	2	are	not	used;	

 Use	the	BToD3Tag	or	DToB3Tag	if	present,	when	the	tags	in	1	through	3	are	not	used;	

See	Table	25.	

When	 MCS	 connection	 is	 used	 for	 input	 profile	 types,	 the	 precedence	 order	 of	 the	 tag	 usage	 for	 a	
designated	rendering	intent	shall	be:	

 Use	the	AToM0Tag	

 Abstract	profile	types	

For	Abstract	profile	types	when	PCSXYZ	or	PCSLab	connection	is	used,	the	precedence	order	of	the	tag	
usage	shall	be:	

 If	the	spectralPCS	field	is	zero	use	the	DToB0Tag	if	present	

 Use	the	AToB0Tag	if	the	DToB0Tag	is	not	used.	

For	Abstract	profile	types	when	a	spectrally‐based	PCS	is	used	and	the	spectralPCS	field	is	non‐zero,	the	
DToB0	tag	shall	be	used.	

 DeviceLink	profile	types	

For	the	DeviceLink	profile	type,	the	precedence	order	of	the	tag	usage	shall	be:	

1) Use	the	DToB0Tag	if	present	

2) Use	the	AToB0Tag	if	the	DToB0Tag	is	not	used.	

ICC.2:2017	

48	 ©	ICC	2017	–	All	rights	reserved	

 MaterialIdentification	profile	types	

For	the	MaterialIdentification	profile	type,	the	precedence	order	of	the	tag	usage	shall	be:	

1) Use	the	AToM0Tag	

 MaterialLink	profile	types	

For	either	 the	MaterialIdentification	profile	 type	or	 the	 input	 type	when	a	device	 to	material	channel	
transform	is	desired,	the	precedence	order	of	the	tag	usage	shall	be:	

1) Use	the	MToA0Tag	

 MaterialVisualization	profile	types	

For	 the	MaterialVisualization	 profile	 type,	when	 a	Material	 Channel	 to	 colorimetric	 PCS	 transform	 is	
desired	with	PCSXYZ	or	PCSLab	connection	for	a	designated	rendering	intent,	the	precedence	order	of	
the	tag	usage	shall	be:	

1) Use	the	MToB0Tag,	MToB1Tag,	MToB2Tag,	MToB3Tag	designated	for	the	rendering	intent	if	
present;	

2) Use	the	MToB0Tag	if	present,	when	the	tags	in	1	are	not	used;	

3) Use	the	MToB1Tag	if	present,	when	the	tags	in	1	and	2	are	not	used;	

4) Use	the	MToB3Tag	if	present,	when	the	tags	in	1	through	3	are	not	used	

	

For	the	MaterialVisualization	profile	type,	when	a	Material	Channel	to	spectral	PCS	transform	is	desired	
using	a	spectrally‐based	PCS	connection	for	a	designated	rendering	intent	and	the	spectralPCS	header	
field	is	non‐zero,	the	precedence	order	of	the	tag	shall	be:	

1) Use	the	MToS0Tag,	MToS1Tag,	MToS2Tag,	MToS3Tag	designated	for	the	rendering	intent	if	
present;	

2) Use	the	MToS0Tag	if	present,	when	the	tags	in	1	are	not	used;	

3) Use	the	MToS1Tag	if	present,	when	the	tags	in	1	and	2	are	not	used;	

4) Use	the	MToS3Tag	if	present,	when	the	tags	in	1	through	3	are	not	used	

 Material	Channel	to	parameter	based	BRDF	profile	table	usage	

For	 the	 MaterialVisualization	 profile	 type,	 when	 a	 Material	 Channel	 to	 parameter	 based	 BRDF	
colorimetric	transform	is	desired	with	PCSXYZ	or	PCSLab	connection	for	a	designated	rendering	intent,	
the	precedence	order	of	the	tag	usage	shall	be:	

1) Use	the	brdfMToB0Tag,	brdfMToB1Tag,	brdfMToB2Tag,	or	brdfMToB3Tag	designated	for	the	
rendering	intent	if	present;	

2) Use	the	brdfMToB0Tag	if	present,	when	the	tags	in	1	are	not	used;

3) Use	the	brdfMToB1Tag	if	present,	when	the	tags	in	1	and	2	are	not	used;	

4) Use	the	brdfMToB3Tag	if	present,	when	the	tags	in	1	through	3	are	not	used;	

	

ICC.2:2017	

©	ICC	2017–	All	rights	reserved	 49	

For	the	MaterialVisualization	profile	type,	when	a	Material	Channel	to	parameter	based	BRDF	spectral	
transform	is	desired	with	a	spectrally‐based	PCS	connection	for	a	designated	rendering	intent	and	the	
spectralPCS	header	field	is	non‐zero,	the	precedence	order	of	the	tag	shall	be:	

 Use	the	brdfMToS0Tag,	brdfMToS1Tag,	brdfMToS2Tag,	or	brdfMToS3Tag	designated	for	the	
rendering	intent	if	the	tag	is	present	

 Use	the	brdfMToS0Tag	when	the	tags	in	1	are	not	used;

 Use	the	brdfMToS1Tag	when	the	tags	in	1	and	2	are	not	used;

 Use	the	brdfMToS3Tag	if	present,	when	the	tags	in	1	through	3	are	not	used;	

 BRDF	profile	table	usage	

For	 input,	 display,	 output,	 or	 colour	 space	 profile	 types	 that	 provide	 BRDF	 function	 tags	 which	 are	
desired	 to	 be	 used,	 the	 precedence	 order	 of	 the	 tag	 usage	 for	 PCSXYZ	 or	 PCSLab	 connection	 for	 a	
designated	rendering	intent	shall	be:	

 Use	 the	 brdfBToA0Tag,	 brdfBToA1Tag,	 brdfBToA2Tag,	 brdfBToA3,	 brdfAToB0Tag,	
brdfAToB1Tag,	brdfAToB2Tag,	or	brdfAToB3Tag	designated	for	the	rendering	intent	if	present;	

 Use	the	brdfBToA0Tag	or	brdfAToB0Tag	if	present,	when	the	tags	in	1	are	not	used;	

 Use	the	brdfBToA1Tag	or	brdfAToB1Tag	if	present,	when	the	tags	in	1	and	2	are	not	used;	

 Use	the	brdfBToA3Tag	or	brdfAToB3Tag	if	present,	when	the	tags	in	1	through	3	are	not	used;	

When	spectrally‐based	PCS	connection	is	used	and	the	spectralPCS	header	field	is	non‐zero,	for	input,	
display,	output,	or	colour	space	profile	types	that	provide	BRDF	tags	which	are	desired	to	be	used,	the	
precedence	order	of	the	tag	usage	for	a	designated	rendering	intent	shall	be:	

 Use	the	brdfBToD0Tag,	brdfBToD1Tag,	brdfBToD2Tag,	brdfBToD3Tag,	brdfDToB0Tag,	
brdfDToB1Tag,	brdfDToB2Tag,	or	brdfDToB3Tag	designated	for	the	rendering	intent	if	the	tag	
is	present;	

 Use	the	brdfBToD0Tag	or	brdfDToB0Tag	when	the	tags	in	1	are	not	used;	

 Use	thebrdf	BToD1Tag	or	brdfDToB1Tag	when	the	tags	in	1	and	2	are	not	used;	

 Use	the	brdfBToA3Tag	or	brdfDToB3Tag	if	present,	when	the	tags	in	1	through	3	are	not	used;	

 Parameter	based	BRDF	profile	table	usage	

For	 input,	 display,	 output,	 or	 colour	 space	 profile	 types	 that	 provide	 colorimetric	 parameter	 based	
BRDF	 tags	 which	 are	 desired	 to	 be	 used,	 the	 precedence	 order	 of	 the	 tag	 usage	 for	 a	 designated	
rendering	intent	shall	be:	

1) Use	the	brdfColorimetricParameter0Tag,	brdfColorimetricParameter1Tag,	
brdfColorimetricParameter2Tag,	brdfColorimetricParameter3Tag,	designated	for	the	
rendering	intent	if	present;	

2) Use	the	brdfColorimetricParameter0Tag	if	present,	when	the	tags	in	1	are	not	used;

3) Use	the	brdfColorimetricParameter1Tag	if	present,	when	the	tags	in	1	and	2	are	not	used;	

4) Use	the	brdfColorimetricParameter3Tag	if	present,	when	the	tags	in	1	through	3	are	not	used;	

ICC.2:2017	

50	 ©	ICC	2017	–	All	rights	reserved	

For	 input,	 display,	 output,	 or	 colour	 space	profile	 types	 that	provide	 spectral	parameter	based	BRDF	
tags	which	are	desired	to	be	used	and	the	spectralPCS	header	field	is	non‐zero,	the	precedence	order	of	
the	tag	usage	for	a	designated	rendering	intent	shall	be:	

 Use	the	brdfSpectralParameter0Tag,	brdfSpectralParameter1Tag,	brdfSpectralParameter2Tag,	
brdfSpectralParameter3Tag	designated	for	the	rendering	intent	if	the	tag	is	present	

 Use	the	brdfSpectralParameter0Tag	when	the	tags	in	1	are	not	used;

 Use	the	brdfSpectralParameter1Tag	when	the	tags	in	1	and	2	are	not	used;

 Use	the	brdfSpectralParameter3Tag	if	present,	when	the	tags	in	1	through	3	are	not	used;

 Directional	profile	table	usage	

For	input,	display,	output,	or	colour	space	profile	types	that	provide	directional	tags	which	are	desired	
to	be	used,	 the	precedence	order	of	 the	 tag	usage	 for	PCSXYZ	or	PCSLab	connection	 for	a	designated	
rendering	intent	shall	be:	

 Use	 the	 directionalBToA0Tag,	 directionalBToA1Tag,	 directionalBToA2Tag,	 directionalBToA3,	
directionalAToB0Tag,	 directionalAToB1Tag,	 directionalAToB2Tag,	 or	 directionalAToB3Tag	
designated	for	the	rendering	intent	if	present;	

 Use	 the	 directionalBToA0Tag	 or	 directionalAToB0Tag	 if	 present,	when	 the	 tags	 in	 1	 are	 not	
used;	

 Use	the	directionalBToA1Tag	or	directionalAToB1Tag	if	present,	when	the	tags	in	1	and	2	are	
not	used;	

 Use	the	directionalBToA3Tag	or	directionalAToB3Tag	if	present,	when	the	tags	in	1	through	3	
are	not	used;	

When	spectrally‐based	PCS	connection	is	used	and	the	spectralPCS	header	field	is	non‐zero,	for	input,	
display,	output,	or	colour	space	profile	types	that	provide	BRDF	tags	which	are	desired	to	be	used,	the	
precedence	order	of	the	tag	usage	for	a	designated	rendering	intent	shall	be:	

 Use	 the	 directionalBToD0Tag,	 directionalBToD1Tag,	 directionalBToD2Tag,	
directionalBToD3Tag,	 directionalDToB0Tag,	 directionalDToB1Tag,	 directionalDToB2Tag,	 or	
directionalDToB3Tag	designated	for	the	rendering	intent	if	the	tag	is	present	

 Use	the	directionalBToD0Tag	or	directionalDToB0Tag	when	the	tags	in	1	are	not	used;

 Use	thedirectional	BToD1Tag	or	directionalDToB1Tag	when	the	tags	in	1	and	2	are	not	used;

 Use	the	directionalBToD3Tag	or	directionalDToB3Tag	if	present,	when	the	tags	in	1	through	3	
are	not	used;

9 Tag	definitions	

 General	

The	public	tags	defined	by	extended	ICC	profiles	conforming	to	this	part	of	ISO	20677	are	listed	in	9.2	in	
alphabetical	 order.	 All	 tags,	 including	 private	 tags,	 have	 as	 their	 first	 four	 bytes	 a	 tag	 signature	 to	
identify	to	profile	readers	what	kind	of	data	is	contained	within	a	tag.	Each	entry	in	9.2	contains	the	tag	
signatures	 that	 shall	be	used	 for	 that	 tag,	 the	permitted	 tag	 types	 for	each	 tag	 (see	Clause	10),	 and	a	
brief	description	of	the	purpose	of	each	tag.		

ICC.2:2017	

©	ICC	2017–	All	rights	reserved	 51	

These	individual	tags	are	used	to	create	all	possible	profiles.	The	tag	signature	indicates	only	the	type	of	
data	 and	does	not	 imply	 anything	 about	 the	use	 or	purpose	 for	which	 the	data	 is	 intended.	 Clause	 8	
specifies	the	tags	that	shall	be	included	for	each	type	of	profile.	Any	other	tag	in	9.2	may	be	used	as	an	
optional	tag	as	long	as	they	are	not	specifically	excluded	in	the	definition	of	a	profile	class.	

The	interpretation	of	some	tags	is	context	dependent.	This	dependency	is	described	in	Table	25	which	
provides	a	summary	of	the	rendering	intent	associated	with	each	of	the	main	profile	classes	and	models.	
The	term	"undefined"	means	that	the	use	of	the	tag	in	that	situation	is	not	specified	by	the	ICC.	The	ICC	
recommends	that	such	tags	not	be	included	in	profiles.	 If	 the	tag	is	present,	 its	use	is	 implementation	
dependent.	 In	 general,	 the	 BToAxTags	 represent	 the	 inverse	 operation	 of	 the	 AToBxTags,	 and	
DToAxTags	represent	the	inverse	of	AToDxTags.		

 Specific	tag	listing	

 AToB0Tag		

Tag	signature:	‘A2B0’	(41324230h)		

Permitted	tag	types:	lutAToBType	or	multiProcessElementsType	

This	tag	defines	a	colour	transform	from	Device,	Colour	Encoding	or	colorimetric	PCS,	to	colorimetric	
PCS,	or	a	 colour	 transform	 from	Device	1	 to	Device	2,	using	 lookup	 table	 tag	element	 structures	or	a	
multiProcessElementsType	 transform.	 For	 most	 profile	 classes	 it	 defines	 the	 transform	 to	 achieve	
colorimetric‐based	perceptual	rendering	(see	Table	25).	The	processing	mechanisms	are	described	in	
lutAToBType	or	multiProcessElementsType	(see	10.2.12	and	10.2.16).	

Table	25	—	Profile	classes	and	defined	AToBx	rendering	intents	

Profile	class		 AToB0Tag		 AToB1Tag	 AToB2Tag	 AToB3Tag		

Input		 Device	to	
colorimetric	
PCS:	
perceptual		

Device	to	
colorimetric	
PCS:	media	
relative		

Device	to	
colorimetric	
PCS:	saturation		

Device	to	
colorimetric	
PCS:	absolute		

Display		 Device	to	
colorimetric	
PCS:	
perceptual		

Device	to	
colorimetric	
PCS:	media	
relative	

Device	to	
colorimetric	
PCS:	saturation		

Device	to	
colorimetric	
PCS:	absolute	

Output		 Device	to	
colorimetric	
PCS:	
perceptual		

Device	to	
colorimetric	
PCS:	media	
relative	

Device	to	
colorimetric	
PCS:	saturation		

Device	to	
colorimetric	
PCS:	absolute	

ColorSpace		 Colour	
encoding	to	
colorimetric	
PCS:	
perceptual		

Colour	encoding	
to	colorimetric	
PCS:	media	
relative	

Colour	encoding	
to	colorimetric	
PCS:	saturation		

Colour	encoding	
to	colorimetric	
PCS:	absolute	

Abstract		 Colorimetric	
PCS	to	

Undefined	 Undefined	 Undefined		

ICC.2:2017	

52	 ©	ICC	2017	–	All	rights	reserved	

colorimetric	
PCS		

DeviceLink		 Device1	to	
device2		

Undefined	 Undefined	 Undefined		

NamedColor		 Undefined		 Undefined	 Undefined	 Undefined		

ColorEncodingSpace		 Undefined		 Undefined	 Undefined	 Undefined		

MaterialIdentification		 Undefined		 Undefined	 Undefined	 Undefined		

MaterialLink		 Undefined		 Undefined	 Undefined	 Undefined		

MaterialVisualization		 Undefined		 Undefined	 Undefined	 Undefined		

	

 AToB1Tag		

Tag	signature:	‘A2B1’	(41324231h)		

Permitted	tag	types:	lutAToBType	or	multiProcessElementsType	

This	 tag	 describes	 the	 colour	 transform	 from	 Device	 or	 Colour	 Encoding	 to	 colorimetric‐based	 PCS	
using	lookup	table	tag	element	structures.	For	most	profile	classes,	it	defines	the	transform	to	achieve	
colorimetric	 rendering	 (see	 Table	 25).	 The	 processing	mechanisms	 are	 described	 in	 lutAToBType	 or	
multiProcessElementsType	(see	10.2.12	and	10.2.16).	

If	this	tag	is	not	present	then	relative	colorimetric	processing	shall	be	performed	by	using	the	absolute	
colorimetric	AToB3Tag	and	then	adjusting	the	colorimetric	PCS	values	by	the	media	white	point.	

 AToB2Tag		

Tag	signature:	‘A2B2’	(41324232h)		

Permitted	tag	types:	lutAToBType	or	multiProcessElementsType	

This	 tag	 describes	 the	 colour	 transform	 from	 Device	 or	 Colour	 Encoding	 to	 colorimetric‐based	 PCS	
using	lookup	table	tag	element	structures.	For	most	profile	classes,	it	defines	the	transform	to	achieve	
saturation	 rendering	 (see	 Table	 25).	 The	 processing	 mechanisms	 are	 described	 in	 lutAToBType	 or	
multiProcessElementsType	(see	10.13	and	10.17).	

 AToB3Tag		

Tag	signature:	‘A2B3’	(41324233h)		

Permitted	tag	types:	lutAToBType	or	multiProcessElementsType	

This	 tag	 describes	 the	 colour	 transform	 from	 Device	 or	 Colour	 Encoding	 to	 colorimetric‐based	 PCS	
using	lookup	table	tag	element	structures.	For	most	profile	classes,	it	defines	the	transform	to	achieve	
absolute	 colorimetric	 rendering	 (see	 Table	 25).	 The	 processing	 mechanisms	 are	 described	 in	
lutAToBType	or	multiProcessElementsType	(see	10.2.12	and	10.2.16).	

ICC.2:2017	

©	ICC	2017–	All	rights	reserved	 53	

If	this	tag	is	not	present	then	absolute	colorimetric	processing	shall	be	performed	by	using	the	relative	
colorimetric	AToB1Tag	and	then	adjusting	the	colorimetric	PCS	values	by	the	media	white	point.	

 AToM0Tag	

Tag	signature:	‘A2M0’	(41324d30h)	

Permitted	tag	type:	multiProcessElementsType	

This	tag	provides	a	transformation	using	a	multiProcessElementsType	(see	Clause	11)	tag	that	converts	
from	device	channel	values	to	material	channel	values.		

The	number	of	data	channels	provided	to	the	transform	shall	match	the	number	of	channels	defined	by	
the	deviceColor	field	in	the	Profile	header.	

The	 number	 of	 data	 channels	 resulting	 from	 the	 transform	 shall	 match	 the	 number	 of	 channels	
associated	with	the	MCS	field	in	the	Profile	header.	MCS	connection	shall	result	 in	material	values	for	
channels	 with	 matching	 material	 identifications	 (see	 9.2.85)	 being	 passed	 to	 the	 appropriate	 MCS	
transform	in	the	connecting	profile.		

Channels	in	an	AToM0Tag	that	have	no	match	in	the	connecting	profile	MCS	shall	be	ignored.	

 brdfColorimetricParameter0Tag	

Tag	signature:	‘bcp0’	(62637030h)		

Permitted	tag	types:	tagStructType	of	type	brdfTransformStructure	

This	tag	defines	a	BRDF	model	and	its	parameters	for	perceptual	rendering.	Specifically,	it	describes	a	
BRDF	 model	 that	 transforms	 viewing	 angle,	 lighting	 angle,	 and	 Device	 or	 Colour	 Encoding	 to	 the	
colorimetric‐based	PCS	specified	by	the	PCS	field	in	the	profile	header.		

For	 the	 transform	 subtag	 of	 this	 structure,	 the	 number	 of	 input	 channels	 shall	 be	 the	 same	 as	 the	
number	of	channels	implied	by	the	colorSpace	signature	in	the	profile	header.			

The	 number	 of	 output	 channels	 of	 the	 transform	 subtag	 depends	 on	 the	 type	 of	 BRDF	 model.	 For	
monochrome	 type	 models	 the	 output	 of	 the	 transform	 subtag	 shall	 be	 the	 number	 of	 parameters	
defined	by	the	BRDF	model	type.		For	chromatic	type	models	the	number	of	output	values	shall	be	the	
number	of	parameters	defined	by	the	BRDF	model	type	multiplied	by	the	number	of	channels	implied	
by	the	PCS	signature	in	the	profile	header.			

 brdfColorimetricParameter1Tag	

Tag	signature:	‘bcp1’	(62637031h)	

Permitted	tag	types:	tagStructType	of	type	brdfTransformStructure	

This	 tag	 defines	 a	 BRDF	model	 and	 its	 parameters	 for	 media‐relative	 colorimetric	 intent	 rendering.	
Specifically,	 it	 describes	 a	 BRDF	model	 that	 transforms	 viewing	 angle,	 lighting	 angle,	 and	 Device	 or	
Colour	Encoding	to	the	colorimetric‐based	PCS	specified	by	the	PCS	field	in	the	profile	header.		

ICC.2:2017	

54	 ©	ICC	2017	–	All	rights	reserved	

For	 the	 transform	 subtag	 of	 this	 structure,	 the	 number	 of	 input	 channels	 shall	 be	 the	 same	 as	 the	
number	of	channels	implied	by	the	colorSpace	signature	in	the	profile	header.			

The	 number	 of	 output	 channels	 of	 the	 transform	 subtag	 depends	 on	 the	 type	 of	 BRDF	 model.	 For	
monochrome	 type	 models	 the	 output	 of	 the	 transform	 subtag	 shall	 be	 the	 number	 of	 parameters	
defined	by	the	BRDF	model	type.		For	chromatic	type	models	the	number	of	output	values	shall	be	the	
number	of	parameters	defined	by	the	BRDF	model	type	multiplied	by	the	number	of	channels	implied	
by	the	PCS	signature	in	the	profile	header.			

 brdfColorimetricParameter2Tag	

Tag	signature:	‘bcp2’	(62637032h)	

Permitted	tag	types:	tagStructType	of	type	brdfTransformStructure	

This	 tag	 defines	 a	 BRDF	 model	 and	 its	 parameters	 for	 colorimetric	 saturation	 intent	 rendering.	
Specifically,	 it	 describes	 a	 BRDF	model	 that	 transforms	 viewing	 angle,	 lighting	 angle,	 and	 Device	 or	
Colour	Encoding	to	the	colorimetric‐based	PCS	specified	by	the	PCS	field	in	the	profile	header.		

For	 the	 transform	 subtag	 of	 this	 structure,	 the	 number	 of	 input	 channels	 shall	 be	 the	 same	 as	 the	
number	of	channels	implied	by	the	colorSpace	signature	in	the	profile	header.			

The	 number	 of	 output	 channels	 of	 the	 transform	 subtag	 depends	 on	 the	 type	 of	 BRDF	 model.	 For	
monochrome	 type	 models	 the	 output	 of	 the	 transform	 subtag	 shall	 be	 the	 number	 of	 parameters	
defined	by	the	BRDF	model	type.		For	chromatic	type	models	the	number	of	output	values	shall	be	the	
number	of	parameters	defined	by	the	BRDF	model	type	multiplied	by	the	number	of	channels	implied	
by	the	PCS	signature	in	the	profile	header.			

 brdfColorimetricParameter3Tag	

Tag	signature:	‘bcp3’	(62637033h)	

Permitted	tag	types:	tagStructType	of	type	brdfTransformStructure	

This	 tag	 defines	 a	 BRDF	 model	 and	 its	 parameters	 for	 absolute	 intent	 rendering.	 Specifically,	 it	
describes	a	BRDF	model	that	transforms	viewing	angle,	lighting	angle,	and	Device	or	Colour	Encoding	to	
the	colorimetric‐based	PCS	specified	by	the	PCS	field	in	the	profile	header.		

For	 the	 transform	 subtag	 of	 this	 structure,	 the	 number	 of	 input	 channels	 shall	 be	 the	 same	 as	 the	
number	of	channels	implied	by	the	colorSpace	signature	in	the	profile	header.			

The	 number	 of	 output	 channels	 of	 the	 transform	 subtag	 depends	 on	 the	 type	 of	 BRDF	 model.	 For	
monochrome	 type	 models	 the	 output	 of	 the	 transform	 subtag	 shall	 be	 the	 number	 of	 parameters	
defined	by	the	BRDF	model	type.		For	chromatic	type	models	the	number	of	output	values	shall	be	the	
number	of	parameters	defined	by	the	BRDF	model	type	multiplied	by	the	number	of	channels	implied	
by	the	PCS	signature	in	the	profile	header.			

 brdfSpectralParameter0Tag	

Tag	signature:	‘bsp0’	(62737030h)		

ICC.2:2017	

©	ICC	2017–	All	rights	reserved	 55	

Permitted	tag	types:	tagStructType	of	type	brdfTransformStructure	

This	tag	defines	a	BRDF	model	and	its	parameters	for	perceptual	rendering.	Specifically,	it	describes	a	
BRDF	 model	 that	 transforms	 viewing	 angle,	 lighting	 angle,	 and	 Device	 or	 Colour	 Encoding	 to	 the	
spectral	based	PCS	specified	by	the	PCS	field	in	the	profile	header.		

For	 the	 transform	 subtag	 of	 this	 structure,	 the	 number	 of	 input	 channels	 shall	 be	 the	 same	 as	 the	
number	of	channels	implied	by	the	colorSpace	signature	in	the	profile	header.			

The	 number	 of	 output	 channels	 of	 the	 subtag	 transform	 depends	 on	 the	 type	 of	 BRDF	 model.	 For	
monochrome	 type	 models	 the	 output	 of	 the	 transform	 subtag	 shall	 be	 the	 number	 of	 parameters	
defined	by	the	BRDF	model	type.		For	chromatic	type	models	the	number	of	output	values	shall	be	the	
number	of	parameters	defined	by	the	BRDF	model	type	multiplied	by	the	number	of	channels	implied	
by	the	spectral	PCS	signature	in	the	profile	header.			

 brdfSpectralParameter1Tag	

Tag	signature:	‘bsp1’	(62737031h)	

Permitted	tag	types:	tagStructType	of	type	brdfTransformStructure	

This	 tag	 defines	 a	 BRDF	model	 and	 its	 parameters	 for	 media‐relative	 colorimetric	 intent	 rendering.	
Specifically,	 it	 describes	 a	 BRDF	model	 that	 transforms	 viewing	 angle,	 lighting	 angle,	 and	 Device	 or	
Colour	Encoding	to	the	spectral	based	PCS	specified	by	the	PCS	field	in	the	profile	header.		

For	 the	 transform	 subtag	 of	 this	 structure,	 the	 number	 of	 input	 channels	 shall	 be	 the	 same	 as	 the	
number	of	channels	implied	by	the	colorSpace	signature	in	the	profile	header.			

The	 number	 of	 output	 channels	 of	 the	 subtag	 transform	 depends	 on	 the	 type	 of	 BRDF	 model.	 For	
monochrome	 type	 models	 the	 output	 of	 the	 transform	 subtag	 shall	 be	 the	 number	 of	 parameters	
defined	by	the	BRDF	model	type.		For	chromatic	type	models	the	number	of	output	values	shall	be	the	
number	of	parameters	defined	by	the	BRDF	model	type	multiplied	by	the	number	of	channels	implied	
by	the	spectral	PCS	signature	in	the	profile	header.			

 brdfSpectralParameter2Tag	

Tag	signature:	‘bsp2’	(62737032h)	

Permitted	tag	types:	tagStructType	of	type	brdfTransformStructure	

This	 tag	 defines	 a	 BRDF	 model	 and	 its	 parameters	 for	 colorimetric	 saturation	 intent	 rendering.	
Specifically,	 it	 describes	 a	 BRDF	model	 that	 transforms	 viewing	 angle,	 lighting	 angle,	 and	 Device	 or	
Colour	Encoding	to	the	spectral	based	PCS	specified	by	the	PCS	field	in	the	profile	header.		

For	 the	 transform	 subtag	 of	 this	 structure,	 the	 number	 of	 input	 channels	 shall	 be	 the	 same	 as	 the	
number	of	channels	implied	by	the	colorSpace	signature	in	the	profile	header.			

The	 number	 of	 output	 channels	 of	 the	 subtag	 transform	 depends	 on	 the	 type	 of	 BRDF	 model.	 For	
monochrome	 type	 models	 the	 output	 of	 the	 transform	 subtag	 shall	 be	 the	 number	 of	 parameters	
defined	by	the	BRDF	model	type.		For	chromatic	type	models	the	number	of	output	values	shall	be	the	

ICC.2:2017	

56	 ©	ICC	2017	–	All	rights	reserved	

number	of	parameters	defined	by	the	BRDF	model	type	multiplied	by	the	number	of	channels	implied	
by	the	spectral	PCS	signature	in	the	profile	header.			

 brdfSpectralParameter3Tag	

Tag	signature:	‘bsp3’	(62737033h)	

Permitted	tag	types:	tagStructType	of	type	brdfTransformStructure	

For	 the	 transform	 subtag	 of	 this	 structure,	 the	 number	 of	 input	 channels	 shall	 be	 the	 same	 as	 the	
number	of	channels	implied	by	the	colorSpace	signature	in	the	profile	header.			

The	 number	 of	 output	 channels	 of	 the	 subtag	 transform	 depends	 on	 the	 type	 of	 BRDF	 model.	 For	
monochrome	 type	 models	 the	 output	 of	 the	 transform	 subtag	 shall	 be	 the	 number	 of	 parameters	
defined	by	the	BRDF	model	type.		For	chromatic	type	models	the	number	of	output	values	shall	be	the	
number	of	parameters	defined	by	the	BRDF	model	type	multiplied	by	the	number	of	channels	implied	
by	the	spectral	PCS	signature	in	the	profile	header.		

 brdfAToB0Tag	

Tag	signature:	‘bAB0’	(62414230	h)		

Permitted	tag	types:	multiProcessElementType		

This	 tag	 defines	 the	 transform	 to	 achieve	 perceptual	 intent	 rendering	 in	 relationship	 to	 viewing	 and	
lighting	 angles.	 Specifically,	 it	 describes	 the	 colour	 transform	 from	 viewing	 angle,	 lighting	 angle,	 and	
Device	or	Colour	Encoding	to	the	colorimetric‐based	PCS	specified	by	the	PCS	field	in	the	profile	header.		

The	number	of	input	channels	to	the	multiProcessElementsType	based	tag	shall	be	4	plus	the	number	of	
channels	implied	by	the	colorSpace	signature	in	the	profile	header.	The	order	and	encoding	of	the	BRDF	
and	device	channels	provided	to	the	multiProcessElementType	are	shown	in	Table	26.	

Table	26	‐	brdf	Device	Channel	Encoding	

Input	
Channel	
Index	

Channel	Identification	 Encoding	Type	

0	 Viewing	azimuth	angle	Φr azimuthNumber	

1	 Viewing	zenith	angle	θr zenithNumber	

2	 Lighting	azimuth	angle	Φi azimuthNumber	

3	 Lighting	zenith	angle	θi zenithNumber	

4	 Device	channel	0	

…	 …

4+N	 Device	channel	N‐1

		

The	output	channels	are	defined	by	the	encoding	implied	by	the	PCS	field	in	the	profile	header.		

ICC.2:2017	

©	ICC	2017–	All	rights	reserved	 57	

 brdfAToB1Tag	

Tag	signature:	‘bAB1’	(62414231h)		

Permitted	tag	types:	multiProcessElementType		

This	tag	defines	the	transform	to	achieve	media‐relative	colorimetric	intent	rendering	in	relationship	to	
viewing	and	lighting	angles.	Specifically,	it	describes	the	colour	transform	from	viewing	angle,	lighting	
angle,	 and	Device	 or	Colour	Encoding	 to	 the	 colorimetric‐based	PCS	 specified	by	 the	PCS	 field	 in	 the	
profile	header.		

The	number	of	input	channels	to	the	multiProcessElementsType	based	tag	shall	be	4	plus	the	number	of	
channels	implied	by	the	colorSpace	signature	in	the	profile	header.	The	order	and	encoding	of	the	BRDF	
and	device	channels	provided	to	the	multiProcessElementType	are	shown	in	Table	26.		

The	output	channels	are	defined	by	the	encoding	implied	by	the	PCS	field	in	the	profile	header.	

If	this	tag	is	not	present	then	relative	BRDF	based	colorimetric	processing	shall	be	performed	by	using	
the	absolute	colorimetric	brdfAToB3Tag	and	then	adjusting	the	colorimetric	PCS	values	by	the	media	
white	point.	

 brdfAToB2Tag	

Tag	signature:	‘bAB2’	(62414232h)		

Permitted	tag	types:	multiProcessElementType		

This	 tag	 defines	 the	 transform	 to	 achieve	 saturation	 intent	 rendering	 in	 relationship	 to	 viewing	 and	
lighting	 angles.	 Specifically,	 it	 describes	 the	 colour	 transform	 from	 viewing	 angle,	 lighting	 angle,	 and	
Device	or	Colour	Encoding	to	the	colorimetric‐based	PCS	specified	by	the	PCS	field	in	the	profile	header.		

The	number	of	input	channels	to	the	multiProcessElementsType	based	tag	shall	be	4	plus	the	number	of	
channels	implied	by	the	colorSpace	signature	in	the	profile	header.	The	order	and	encoding	of	the	BRDF	
and	device	channels	provided	to	the	multiProcessElementType	are	shown	in	Table	26.	

The	output	channels	are	defined	by	the	encoding	implied	by	the	PCS	field	in	the	profile	header.		

 brdfAToB3Tag	

Tag	signature:	‘bAB3’	(62414233h)		

Permitted	tag	types:	multiProcessElementType		

This	 tag	 defines	 the	 transform	 to	 achieve	 absolute	 intent	 rendering	 in	 relationship	 to	 viewing	 and	
lighting	 angles.	 Specifically,	 it	 describes	 the	 colour	 transform	 from	 viewing	 angle,	 lighting	 angle,	 and	
Device	or	Colour	Encoding	to	the	colorimetric‐based	PCS	specified	by	the	PCS	field	in	the	profile	header.		

The	number	of	input	channels	to	this	multiProcessElementsType	based	tag	shall	be	4	plus	the	number	
of	 channels	 implied	by	 the	colorSpace	signature	 in	 the	profile	header.	The	order	and	encoding	of	 the	
BRDF	and	device	channels	provided	to	the	multiProcessElementType	are	shown	in	Table	26.	

The	output	channels	are	defined	by	the	encoding	implied	by	the	PCS	field	in	the	profile	header.	

ICC.2:2017	

58	 ©	ICC	2017	–	All	rights	reserved	

If	this	tag	is	not	present	then	relative	BRDF	based	colorimetric	processing	shall	be	performed	by	using	
the	 relative	 colorimetric	 brdfAToB1Tag	 and	 then	 adjusting	 the	 colorimetric	PCS	 values	by	 the	media	
white	point.	

 brdfBToA0Tag	

Tag	signature:	‘bBA0’	(62424130	h)		

Permitted	tag	types:	multiProcessElementType		

This	 tag	 defines	 the	 transform	 to	 achieve	 perceptual	 intent	 rendering	 in	 relationship	 to	 viewing	 and	
lighting	 angles.	 Specifically,	 it	 describes	 the	 colour	 transform	 from	 viewing	 angle,	 lighting	 angle,	 and	
colorimetric‐based	PCS	specified	by	the	PCS	field	in	the	profile	header	to	Device	or	Colour	Encoding.	

This	use	of	this	tag	is	not	defined	when	the	PCS	field	in	the	profile	header	is	set	to	zero.		

The	number	of	input	channels	to	the	multiProcessElementsType	based	tag	shall	be	4	plus	the	number	of	
channels	defined	by	the	encoding	implied	by	the	PCS	field	in	the	profile	header.	The	order	and	encoding	
of	the	BRDF	and	device	channels	provided	to	the	multiProcessElementType	are	shown	in	Table	27.	

Table	27	‐	brdf	Colorimetric	Encoding	

Input	
Channel	
Index	

Channel	Identification	 Encoding	Type	

0	 Viewing	azimuth	angle	Φr azimuthNumber	

1	 Viewing	zenith	angle	θr zenithNumber	

2	 Lighting	azimuth	angle	Φi azimuthNumber	

3	 Lighting	zenith	angle	θi zenithNumber	

4	 PCS	channel	0	

…	 …

4+N	 PCS	channel	N‐1	

		

The	 output	 channels	 shall	 be	 the	 number	 of	 device	 channels	 defined	 the	 colorSpace	 signature	 in	 the	
profile	header.		

 brdfBToA1Tag	

Tag	signature:	‘bBA1’	(62424131h)		

Permitted	tag	types:	multiProcessElementType		

This	tag	defines	the	transform	to	achieve	media‐relative	colorimetric	intent	rendering	in	relationship	to	
viewing	and	lighting	angles.	Specifically,	it	describes	the	colour	transform	from	viewing	angle,	lighting	
angle,	and	colorimetric‐based	PCS	specified	by	the	PCS	 field	 in	 the	profile	header	 to	Device	or	Colour	
Encoding.		

This	use	of	this	tag	is	not	defined	when	the	PCS	field	in	the	profile	header	is	set	to	zero.		

ICC.2:2017	

©	ICC	2017–	All	rights	reserved	 59	

The	number	of	input	channels	to	the	multiProcessElementsType	based	tag	shall	be	4	plus	the	number	of	
channels	defined	by	the	encoding	implied	by	the	PCS	field	in	the	profile	header.	The	order	and	encoding	
of	the	BRDF	and	device	channels	provided	to	the	multiProcessElementType	are	shown	in	Table	27.	

The	 output	 channels	 shall	 be	 the	 number	 of	 device	 channels	 defined	 the	 colorSpace	 signature	 in	 the	
profile	header.		

If	this	tag	is	not	present	then	relative	BRDF	based	colorimetric	processing	shall	be	performed	by	first	
adjusting	the	colorimetric	PCS	values	by	the	media	white	point	and	then	using	the	absolute	colorimetric	
brdfBToA3Tag.	

 brdfBToA2Tag	

Tag	signature:	‘bBA2’	(62424132h)		

Permitted	tag	types:	multiProcessElementType		

This	 tag	 defines	 the	 transform	 to	 achieve	 saturation	 intent	 rendering	 in	 relationship	 to	 viewing	 and	
lighting	 angles.	 Specifically,	 it	 describes	 the	 colour	 transform	 from	 viewing	 angle,	 lighting	 angle,	 and	
colorimetric‐based	PCS	specified	by	the	PCS	field	in	the	profile	header	to	Device	or	Colour	Encoding.		

This	use	of	this	tag	is	not	defined	when	the	PCS	field	in	the	profile	header	is	set	to	zero.		

The	number	of	input	channels	to	the	multiProcessElementsType	based	tag	shall	be	4	plus	the	number	of	
channels	defined	by	the	encoding	implied	by	the	PCS	field	in	the	profile	header.	The	order	and	encoding	
of	the	BRDF	and	device	channels	provided	to	the	multiProcessElementType	are	shown	in	Table	27.	

The	 output	 channels	 shall	 be	 the	 number	 of	 device	 channels	 defined	 the	 colorSpace	 signature	 in	 the	
profile	header.	

 brdfBToA3Tag	

Tag	signature:	‘bBA3’	(62424133h)		

Permitted	tag	types:	multiProcessElementType		

This	 tag	 defines	 the	 transform	 to	 achieve	 absolute	 intent	 rendering	 in	 relationship	 to	 viewing	 and	
lighting	 angles.	 Specifically,	 it	 describes	 the	 colour	 transform	 from	 viewing	 angle,	 lighting	 angle,	 and	
colorimetric‐based	PCS	specified	by	the	PCS	field	in	the	profile	header	to	Device	or	Colour	Encoding.		

This	use	of	this	tag	is	not	defined	when	the	PCS	field	in	the	profile	header	is	set	to	zero.		

The	number	of	input	channels	to	the	multiProcessElementsType	based	tag	shall	be	4	plus	the	number	of	
channels	defined	by	the	encoding	implied	by	the	PCS	field	in	the	profile	header.	The	order	and	encoding	
of	the	BRDF	and	device	channels	provided	to	the	multiProcessElementType	are	shown	in	Table	27.	

The	 output	 channels	 shall	 be	 the	 number	 of	 device	 channels	 defined	 the	 colorSpace	 signature	 in	 the	
profile	header.	

If	this	tag	is	not	present	then	relative	BRDF	based	colorimetric	processing	shall	be	performed	by	first	
adjusting	the	colorimetric	PCS	values	by	the	media	white	point	and	then	using	the	relative	colorimetric	
brdfAToB1Tag.	

ICC.2:2017	

60	 ©	ICC	2017	–	All	rights	reserved	

 brdfBToD0Tag	

Tag	signature:	‘bBD0’	(62424430	h)		

Permitted	tag	types:	multiProcessElementType		

This	 tag	 defines	 the	 transform	 to	 achieve	 perceptual	 intent	 rendering	 in	 relationship	 to	 viewing	 and	
lighting	angles.	Specifically,	it	describes	the	colour	transform	from	viewing	angle,	lighting	angle,	and	the	
spectral	based	PCS	specified	by	the	spectralPCS	field	in	the	profile	header	to	Device	or	Colour	Encoding.		

This	use	of	this	tag	is	not	defined	when	the	spectralPCS	field	in	the	profile	header	is	set	to	zero.	

The	number	of	input	channels	to	the	multiProcessElementsType	based	tag	shall	be	4	plus	the	number	of	
channels	defined	by	the	encoding	implied	by	the	spectralPCS	field	in	the	profile	header.	The	order	and	
encoding	 of	 the	 BRDF	 and	 device	 channels	 provided	 to	 the	 multiProcessElementType	 are	 shown	 in	
Table	28.		

Table	28	‐	brdf	Spectral	Encoding	

Input	
Channel	
Index	

Channel	Identification	 Encoding	Type	

0	 Viewing	azimuth	angle	Φr azimuthNumber	

1	 Viewing	zenith	angle	θr zenithNumber	

2	 Lighting	azimuth	angle	Φi azimuthNumber	

3	 Lighting	zenith	angle	θi zenithNumber	

4	 Spectral	PCS	channel	0

…	 …

4+N	 Spectral	PCS	channel	N‐1

		

The	output	channels	shall	be	the	number	of	channels	implied	by	the	colorSpace	signature	in	the	profile	
header.	

 brdfBToD1Tag	

Tag	signature:	‘bBD1’	(62424431h)		

Permitted	tag	types:	multiProcessElementType		

This	 tag	 defines	 the	 transform	 to	 achieve	 relative	 intent	 rendering	 in	 relationship	 to	 viewing	 and	
lighting	angles.	Specifically,	it	describes	the	colour	transform	from	viewing	angle,	lighting	angle,	and	the	
spectral	based	PCS	specified	by	the	spectralPCS	field	in	the	profile	header	to	Device	or	Colour	Encoding.		

This	use	of	this	tag	is	not	defined	when	the	spectralPCS	field	in	the	profile	header	is	set	to	zero.	

The	number	of	input	channels	to	the	multiProcessElementsType	based	tag	shall	be	4	plus	the	number	of	
channels	defined	by	the	encoding	implied	by	the	spectralPCS	field	in	the	profile	header.	The	order	and	

ICC.2:2017	

©	ICC	2017–	All	rights	reserved	 61	

encoding	 of	 the	 BRDF	 and	 device	 channels	 provided	 to	 the	 multiProcessElementType	 are	 shown	 in	
Table	28.		

The	output	channels	shall	be	the	number	of	channels	implied	by	the	colorSpace	signature	in	the	profile	
header.	

If	 this	 tag	 is	 not	 present	 then	 relative	 BRDF	 based	 spectral	 processing	 shall	 be	 performed	 by	 first	
adjusting	 the	 spectral	 PCS	 values	 by	 the	 spectral	 media	 white	 point,	 and	 then	 using	 the	 absolute	
brdfDToB3Tag	and	then.		

 brdfBToD2Tag	

Tag	signature:	‘bBD2’	(62424432h)		

Permitted	tag	types:	multiProcessElementType		

This	 tag	 defines	 the	 transform	 to	 achieve	 saturation	 intent	 rendering	 in	 relationship	 to	 viewing	 and	
lighting	angles.	Specifically,	it	describes	the	colour	transform	from	viewing	angle,	lighting	angle,	and	the	
spectral	based	PCS	specified	by	the	spectralPCS	field	in	the	profile	header	to	Device	or	Colour	Encoding.		

This	use	of	this	tag	is	not	defined	when	the	spectralPCS	field	in	the	profile	header	is	set	to	zero.	

The	number	of	input	channels	to	the	multiProcessElementsType	based	tag	shall	be	4	plus	the	number	of	
channels	defined	by	the	encoding	implied	by	the	spectralPCS	field	in	the	profile	header.	The	order	and	
encoding	 of	 the	 BRDF	 and	 device	 channels	 provided	 to	 the	 multiProcessElementType	 are	 shown	 in	
Table	28.		

The	output	channels	shall	be	the	number	of	channels	implied	by	the	colorSpace	signature	in	the	profile	
header.		

The	output	channels	are	defined	by	the	encoding	implied	by	the	spectralPCS	field	in	the	profile	header.	

 brdfBToD3Tag	

Tag	signature:	‘bBD3’	(62424433h)		

Permitted	tag	types:	multiProcessElementType		

This	 tag	 defines	 the	 transform	 to	 achieve	 saturation	 intent	 rendering	 in	 relationship	 to	 viewing	 and	
lighting	angles.	Specifically,	it	describes	the	colour	transform	from	viewing	angle,	lighting	angle,	and	the	
spectral	based	PCS	specified	by	the	spectralPCS	field	in	the	profile	header	to	Device	or	Colour	Encoding.		

This	use	of	this	tag	is	not	defined	when	the	spectralPCS	field	in	the	profile	header	is	set	to	zero.	

The	number	of	input	channels	to	the	multiProcessElementsType	based	tag	shall	be	4	plus	the	number	of	
channels	defined	by	the	encoding	implied	by	the	spectralPCS	field	in	the	profile	header.	The	order	and	
encoding	 of	 the	 BRDF	 and	 device	 channels	 provided	 to	 the	 multiProcessElementType	 are	 shown	 in	
Table	28.		

The	output	channels	shall	be	the	number	of	channels	implied	by	the	colorSpace	signature	in	the	profile	
header.	

ICC.2:2017	

62	 ©	ICC	2017	–	All	rights	reserved	

If	this	tag	is	not	present	then	relative	BRDF	based	spectral	processing	shall	be	performed	by	using	the	
relative	brdfDToB1Tag	and	then	adjusting	the	spectral	PCS	values	by	the	spectral	media	white	point.		

 brdfDToB0Tag	

Tag	signature:	‘bDB0’	(62444230	h)		

Permitted	tag	types:	multiProcessElementType		

This	 tag	 defines	 the	 transform	 to	 achieve	 perceptual	 intent	 rendering	 in	 relationship	 to	 viewing	 and	
lighting	 angles.	 Specifically,	 it	 describes	 the	 colour	 transform	 from	 viewing	 angle,	 lighting	 angle,	 and	
Device	or	Colour	Encoding	to	the	spectral	based	PCS	specified	by	the	spectralPCS	field	in	the	profile.		

This	use	of	this	tag	is	not	defined	when	the	spectralPCS	tag	is	set	to	zero.	

The	number	of	input	channels	to	the	multiProcessElementsType	based	tag	shall	be	4	plus	the	number	of	
channels	implied	by	the	colorSpace	signature	in	the	profile	header.	The	order	and	encoding	of	the	BRDF	
and	device	channels	provided	to	the	multiProcessElementType	are	shown	in	Table	26.		

The	output	channels	are	defined	by	the	encoding	implied	by	the	spectralPCS	field	in	the	profile	header.	

 brdfDToB1Tag	

Tag	signature:	‘bDB1’	(62444231h)		

Permitted	tag	types:	multiProcessElementType		

This	 tag	 defines	 the	 transform	 to	 achieve	 relative	 intent	 rendering	 in	 relationship	 to	 viewing	 and	
lighting	 angles.	 Specifically,	 it	 describes	 the	 colour	 transform	 from	 viewing	 angle,	 lighting	 angle,	 and	
Device	or	Colour	Encoding	to	the	spectral	based	PCS	specified	by	the	spectralPCS	field	in	the	profile.		

This	use	of	this	tag	is	not	defined	when	the	spectralPCS	tag	is	set	to	zero.	

The	number	of	input	channels	to	the	multiProcessElementsType	based	tag	shall	be	4	plus	the	number	of	
channels	implied	by	the	colorSpace	signature	in	the	profile	header.	The	order	and	encoding	of	the	BRDF	
and	device	channels	provided	to	the	multiProcessElementType	are	shown	in	Table	26.		

The	output	channels	are	defined	by	the	encoding	implied	by	the	spectralPCS	field	in	the	profile	header.	

If	this	tag	is	not	present	then	relative	BRDF	based	spectral	processing	shall	be	performed	by	using	the	
absolute	brdfDToB3Tag	and	then	adjusting	the	spectral	PCS	values	by	the	spectral	media	white	point.		

 brdfDToB2Tag	

Tag	signature:	‘bDB2’	(62444232h)		

Permitted	tag	types:	multiProcessElementType		

This	 tag	 defines	 the	 transform	 to	 achieve	 saturation	 intent	 rendering	 in	 relationship	 to	 viewing	 and	
lighting	 angles.	 Specifically,	 it	 describes	 the	 colour	 transform	 from	 viewing	 angle,	 lighting	 angle,	 and	
Device	or	Colour	Encoding	to	the	spectral	based	PCS	specified	by	the	spectralPCS	field	in	the	profile.		

This	use	of	this	tag	is	not	defined	when	the	spectralPCS	tag	is	set	to	zero.	

ICC.2:2017	

©	ICC	2017–	All	rights	reserved	 63	

The	number	of	input	channels	to	the	multiProcessElementsType	based	tag	shall	be	4	plus	the	number	of	
channels	implied	by	the	colorSpace	signature	in	the	profile	header.	The	order	and	encoding	of	the	BRDF	
and	device	channels	provided	to	the	multiProcessElementType	are	shown	in	Table	26.		

The	output	channels	are	defined	by	the	encoding	implied	by	the	spectralPCS	field	in	the	profile	header.	

 brdfDToB3Tag	

Tag	signature:	‘bDB3’	(62444233h)		

Permitted	tag	types:	multiProcessElementType		

This	 tag	 defines	 the	 transform	 to	 achieve	 saturation	 intent	 rendering	 in	 relationship	 to	 viewing	 and	
lighting	 angles.	 Specifically,	 it	 describes	 the	 colour	 transform	 from	 viewing	 angle,	 lighting	 angle,	 and	
Device	or	Colour	Encoding	to	the	spectral	based	PCS	specified	by	the	spectralPCS	field	in	the	profile.		

This	use	of	this	tag	is	not	defined	when	the	spectralPCS	tag	is	set	to	zero.	

The	number	of	input	channels	to	the	multiProcessElementsType	based	tag	shall	be	4	plus	the	number	of	
channels	implied	by	the	colorSpace	signature	in	the	profile	header.	The	order	and	encoding	of	the	BRDF	
and	device	channels	provided	to	the	multiProcessElementType	are	shown	in	Table	26.		

The	output	channels	are	defined	by	the	encoding	implied	by	the	spectralPCS	field	in	the	profile	header.	

If	this	tag	is	not	present	then	relative	BRDF	based	spectral	processing	shall	be	performed	by	using	the	
relative	brdfDToB1Tag	and	then	adjusting	the	spectral	PCS	values	by	the	spectral	media	white	point.		

 brdfMToB0Tag	

Tag	signature:	‘bMB0’	(624d4230h)		

Permitted	tag	types:	tagStructType	of	type	brdfTransformStructure	

This	 tag	 defines	 a	 BRDF	 model	 and	 its	 parameters	 for	 perceptual	 intent	 rendering	 using	 material	
channels	as	input.	Specifically,	it	describes	a	BRDF	model	that	transforms	viewing	angle,	lighting	angle,	
and	Device	or	Colour	Encoding	 to	 the	colorimetric‐based	PCS	specified	by	 the	PCS	 field	 in	 the	profile	
header.		

For	 the	 transform	 subtag	 of	 this	 structure,	 the	 number	 of	 input	 channels	 shall	 be	 the	 same	 as	 the	
number	of	channels	implied	by	the	MCS	signature	in	the	profile	header.			

The	 number	 of	 output	 channels	 of	 the	 transform	 subtag	 depends	 on	 the	 type	 of	 BRDF	 model.	 For	
monochrome	 type	 models	 the	 output	 of	 the	 transform	 subtag	 shall	 be	 the	 number	 of	 parameters	
defined	by	the	BRDF	model	type.		For	chromatic	type	models	the	number	of	output	values	shall	be	the	
number	of	parameters	defined	by	the	BRDF	model	type	multiplied	by	the	number	of	channels	implied	
by	the	PCS	signature	in	the	profile	header.	

 brdfMToB1Tag	

Tag	signature:	‘bMB1’	(624d4231h)		

Permitted	tag	types:	tagStructType	of	type	brdfTransformStructure	

ICC.2:2017	

64	 ©	ICC	2017	–	All	rights	reserved	

This	tag	defines	a	BRDF	model	and	its	parameters	for	media‐relative	rendering	using	material	channels	
as	 input.	 Specifically,	 it	 describes	 a	 BRDF	 model	 that	 transforms	 viewing	 angle,	 lighting	 angle,	 and	
Device	or	Colour	Encoding	to	the	colorimetric‐based	PCS	specified	by	the	PCS	field	in	the	profile	header.		

For	 the	 transform	 subtag	 of	 this	 structure,	 the	 number	 of	 input	 channels	 shall	 be	 the	 same	 as	 the	
number	of	channels	implied	by	the	MCS	signature	in	the	profile	header.			

The	 number	 of	 output	 channels	 of	 the	 transform	 subtag	 depends	 on	 the	 type	 of	 BRDF	 model.	 For	
monochrome	 type	 models	 the	 output	 of	 the	 transform	 subtag	 shall	 be	 the	 number	 of	 parameters	
defined	by	the	BRDF	model	type.		For	chromatic	type	models	the	number	of	output	values	shall	be	the	
number	of	parameters	defined	by	the	BRDF	model	type	multiplied	by	the	number	of	channels	implied	
by	the	PCS	signature	in	the	profile	header.	

 brdfMToB2Tag	

Tag	signature:	‘bMB2’	(624d4232h)		

Permitted	tag	types:	tagStructType	of	type	brdfTransformStructure	

This	 tag	 defines	 a	 BRDF	 model	 and	 its	 parameters	 for	 saturation	 intent	 rendering	 using	 material	
channels	as	input.	Specifically,	it	describes	a	BRDF	model	that	transforms	viewing	angle,	lighting	angle,	
and	Device	or	Colour	Encoding	 to	 the	colorimetric‐based	PCS	specified	by	 the	PCS	 field	 in	 the	profile	
header.		

For	 the	 transform	 subtag	 of	 this	 structure,	 the	 number	 of	 input	 channels	 shall	 be	 the	 same	 as	 the	
number	of	channels	implied	by	the	MCS	signature	in	the	profile	header.			

The	 number	 of	 output	 channels	 of	 the	 transform	 subtag	 depends	 on	 the	 type	 of	 BRDF	 model.	 For	
monochrome	 type	 models	 the	 output	 of	 the	 transform	 subtag	 shall	 be	 the	 number	 of	 parameters	
defined	by	the	BRDF	model	type.		For	chromatic	type	models	the	number	of	output	values	shall	be	the	
number	of	parameters	defined	by	the	BRDF	model	type	multiplied	by	the	number	of	channels	implied	
by	the	PCS	signature	in	the	profile	header.		

 brdfMToB3Tag	

Tag	signature:	‘bMB3’	(624d4233h)		

Permitted	tag	types:	tagStructType	of	type	brdfTransformStructure	

This	 tag	defines	a	BRDF	model	and	 its	parameters	 for	absolute‐colorimetric	rendering	using	material	
channels	as	input.	Specifically,	it	describes	a	BRDF	model	that	transforms	viewing	angle,	lighting	angle,	
and	Device	or	Colour	Encoding	 to	 the	colorimetric‐based	PCS	specified	by	 the	PCS	 field	 in	 the	profile	
header.		

For	 the	 transform	 subtag	 of	 this	 structure,	 the	 number	 of	 input	 channels	 shall	 be	 the	 same	 as	 the	
number	of	channels	implied	by	the	MCS	signature	in	the	profile	header.			

The	 number	 of	 output	 channels	 of	 the	 transform	 subtag	 depends	 on	 the	 type	 of	 BRDF	 model.	 For	
monochrome	 type	 models	 the	 output	 of	 the	 transform	 subtag	 shall	 be	 the	 number	 of	 parameters	
defined	by	the	BRDF	model	type.		For	chromatic	type	models	the	number	of	output	values	shall	be	the	
number	of	parameters	defined	by	the	BRDF	model	type	multiplied	by	the	number	of	channels	implied	
by	the	PCS	signature	in	the	profile	header.	

ICC.2:2017	

©	ICC	2017–	All	rights	reserved	 65	

 brdfMToS0Tag	

Tag	signature:	‘bMS0’	(624d5330h)		

Permitted	tag	types:	tagStructType	of	type	brdfTransformStructure	

This	 tag	 defines	 a	 BRDF	 model	 and	 its	 parameters	 for	 perceptual	 intent	 rendering	 using	 material	
channels	as	input.	Specifically,	it	describes	a	BRDF	model	that	transforms	viewing	angle,	lighting	angle,	
and	Device	or	Colour	Encoding	to	the	spectral	based	PCS	specified	by	the	spectralPCS	field	in	the	profile	
header.		

This	use	of	this	tag	is	not	defined	when	the	spectralPCS	tag	is	set	to	zero.	

For	 the	 transform	 subtag	 of	 this	 structure,	 the	 number	 of	 input	 channels	 shall	 be	 the	 same	 as	 the	
number	of	channels	implied	by	the	MCS	signature	in	the	profile	header.			

The	 number	 of	 output	 channels	 of	 the	 transform	 subtag	 depends	 on	 the	 type	 of	 BRDF	 model.	 For	
monochrome	 type	 models	 the	 output	 of	 the	 transform	 subtag	 shall	 be	 the	 number	 of	 parameters	
defined	by	the	BRDF	model	type.		For	chromatic	type	models	the	number	of	output	values	shall	be	the	
number	of	parameters	defined	by	the	BRDF	model	type	multiplied	by	the	number	of	channels	implied	
by	the	PCS	signature	in	the	profile	header.	

 brdfMToS1Tag	

Tag	signature:	‘bMS1’	(624d5331h)		

Permitted	tag	types:	tagStructType	of	type	brdfTransformStructure	

This	tag	defines	a	BRDF	model	and	its	parameters	for	media‐relative	rendering	using	material	channels	
as	 input.	 Specifically,	 it	 describes	 a	 BRDF	 model	 that	 transforms	 viewing	 angle,	 lighting	 angle,	 and	
Device	or	Colour	Encoding	 to	 the	 spectral	 based	PCS	 specified	by	 the	 spectralPCS	 field	 in	 the	profile	
header.		

This	use	of	this	tag	is	not	defined	when	the	spectralPCS	tag	is	set	to	zero.	

For	 the	 transform	 subtag	 of	 this	 structure,	 the	 number	 of	 input	 channels	 shall	 be	 the	 same	 as	 the	
number	of	channels	implied	by	the	MCS	signature	in	the	profile	header.			

The	 number	 of	 output	 channels	 of	 the	 transform	 subtag	 depends	 on	 the	 type	 of	 BRDF	 model.	 For	
monochrome	 type	 models	 the	 output	 of	 the	 transform	 subtag	 shall	 be	 the	 number	 of	 parameters	
defined	by	the	BRDF	model	type.		For	chromatic	type	models	the	number	of	output	values	shall	be	the	
number	of	parameters	defined	by	the	BRDF	model	type	multiplied	by	the	number	of	channels	implied	
by	the	PCS	signature	in	the	profile	header.	

 brdfMToS2Tag	

Tag	signature:	‘bMS2’	(624d5332h)		

Permitted	tag	types:	tagStructType	of	type	brdfTransformStructure	

This	 tag	 defines	 a	 BRDF	 model	 and	 its	 parameters	 for	 saturation	 intent	 rendering	 using	 material	
channels	as	input.	Specifically,	it	describes	a	BRDF	model	that	transforms	viewing	angle,	lighting	angle,	

ICC.2:2017	

66	 ©	ICC	2017	–	All	rights	reserved	

and	Device	or	Colour	Encoding	to	the	spectral	based	PCS	specified	by	the	spectralPCS	field	in	the	profile	
header.		

This	use	of	this	tag	is	not	defined	when	the	spectralPCS	tag	is	set	to	zero.	

For	 the	 transform	 subtag	 of	 this	 structure,	 the	 number	 of	 input	 channels	 shall	 be	 the	 same	 as	 the	
number	of	channels	implied	by	the	MCS	signature	in	the	profile	header.			

The	 number	 of	 output	 channels	 of	 the	 transform	 subtag	 depends	 on	 the	 type	 of	 BRDF	 model.	 For	
monochrome	 type	 models	 the	 output	 of	 the	 transform	 subtag	 shall	 be	 the	 number	 of	 parameters	
defined	by	the	BRDF	model	type.		For	chromatic	type	models	the	number	of	output	values	shall	be	the	
number	of	parameters	defined	by	the	BRDF	model	type	multiplied	by	the	number	of	channels	implied	
by	the	PCS	signature	in	the	profile	header.		

 brdfMToS3Tag	

Tag	signature:	‘bMS3’	(624d5333h)		

Permitted	tag	types:	tagStructType	of	type	brdfTransformStructure	

This	tag	defines	a	BRDF	model	and	its	parameters	for	perceptual	rendering	using	material	channels	as	
input.	Specifically,	it	describes	a	BRDF	model	that	transforms	viewing	angle,	lighting	angle,	and	Device	
or	Colour	Encoding	to	the	spectral	based	PCS	specified	by	the	spectralPCS	field	in	the	profile	header.		

This	use	of	this	tag	is	not	defined	when	the	spectralPCS	tag	is	set	to	zero.	

For	 the	 transform	 subtag	 of	 this	 structure,	 the	 number	 of	 input	 channels	 shall	 be	 the	 same	 as	 the	
number	of	channels	implied	by	the	MCS	signature	in	the	profile	header.			

The	 number	 of	 output	 channels	 of	 the	 transform	 subtag	 depends	 on	 the	 type	 of	 BRDF	 model.	 For	
monochrome	 type	 models	 the	 output	 of	 the	 transform	 subtag	 shall	 be	 the	 number	 of	 parameters	
defined	by	the	BRDF	model	type.		For	chromatic	type	models	the	number	of	output	values	shall	be	the	
number	of	parameters	defined	by	the	BRDF	model	type	multiplied	by	the	number	of	channels	implied	
by	the	PCS	signature	in	the	profile	header.	

 BToA0Tag		

Tag	signature:	‘B2A0’	(42324130h)		

Permitted	tag	types:	lutBToAType	or	multiProcessElementsType		

This	tag	defines	a	colour	transform	from	a	colorimetric‐based	PCS	to	Device	or	Colour	Encoding	using	
the	 lookup	 table	 tag	 element	 structures	 or	 multiProcessElementsType	 transforms.	 For	 most	 profile	
classes,	 it	 defines	 the	 transform	 to	 achieve	 perceptual	 rendering	 (see	 Table	 29).	 The	 processing	
mechanisms	are	described	in	lutBToAType	or	multiProcessElementsType	(see	10.2.13	and	10.2.16).	

Table	29	—	Profile	classes	and	defined	BToAx	rendering	intents	

Profile	class		 BToA0Tag		 BToA1Tag	 BToA2Tag	 BToA3Tag		

Input		 Colorimetric	
PCS	to	device:	

Colorimetric	
PCS	to	device:	

Colorimetric	
PCS	to	device:	

Colorimetric	
PCS	to	device:	

ICC.2:2017	

©	ICC	2017–	All	rights	reserved	 67	

perceptual		 media	relative	 saturation	 absolute		

Display		 Colorimetric	
PCS	to	device:	
perceptual		

Colorimetric	
PCS	to	device:	
media	relative		

Colorimetric	
PCS	to	device:	
saturation		

Colorimetric	
PCS	to	device:	
absolute	

Output		 Colorimetric	
PCS	to	device:	
perceptual		

Colorimetric	
PCS	to	device:	
media	relative		

Colorimetric	
PCS	to	device:	
saturation		

Colorimetric	
PCS	to	device:	
absolute	

ColorSpace		 Colorimetric	
PCS	to	colour	
encoding:	
perceptual		

Colorimetric	
PCS	to	colour	
encoding:	
colorimetric		

Colorimetric	
PCS	to	colour	
encoding:	
saturation		

Colorimetric	
PCS	to	colour	
encoding:	
saturation		

Abstract		 Undefined		 Undefined	 Undefined	 Undefined		

DeviceLink		 Undefined		 Undefined	 Undefined	 Undefined		

NamedColor		 Undefined		 Undefined	 Undefined	 Undefined		

ColorEncodingSpace		 Undefined		 Undefined	 Undefined	 Undefined		

MaterialIdentification		 Undefined		 Undefined	 Undefined	 Undefined		

MaterialLink		 Undefined		 Undefined	 Undefined	 Undefined		

MaterialVisualization		 Undefined		 Undefined	 Undefined	 Undefined		

	

 BToA1Tag		

Tag	signature:	‘B2A1’	(42324131h)		

Permitted	tag	types:	lutBToAType	or	multiProcessElementsType		

This	tag	defines	a	colour	transform	from	a	colorimetric‐based	PCS	to	Device	or	Colour	Encoding	using	
the	 lookup	 table	 tag	 element	 structures	 or	 multiProcessElementsType	 transforms.	 For	 most	 profile	
classes,	 it	 defines	 the	 transform	 to	 achieve	 relative	 colorimetric	 rendering	 (see	 Table	 29).	 The	
processing	mechanisms	are	described	in	 lutBToAType	or	multiProcessElementsType	(see	10.2.13	and	
10.2.16).	

If	 this	 tag	 is	 not	 present	 then	 relative	 colorimetric	 processing	 shall	 be	 performed	 by	 adjusting	 the	
colorimetric	PCS	values	by	the	media	white	point	and	then	using	the	absolute	colorimetric	BToA3Tag.	

 BToA2Tag		

Tag	signature:	‘B2A2’	(42324132h)		

Permitted	tag	types:	lutBToAType	or	multiProcessElementsType		

This	tag	defines	a	colour	transform	from	a	colorimetric‐based	PCS	to	Device	or	Colour	Encoding	using	
the	 lookup	 table	 tag	 element	 structures	 or	 multiProcessElementsType	 transforms.	 For	 most	 profile	
classes,	 it	 defines	 the	 transform	 to	 achieve	 saturation	 rendering	 (see	 Table	 29).	 The	 processing	
mechanisms	are	described	in	or	lutBToAType	or	multiProcessElementsType	(see	10.2.13	and	10.2.16).		

ICC.2:2017	

68	 ©	ICC	2017	–	All	rights	reserved	

 BToA3Tag		

Tag	signature:	‘B2A3’	(42324133h)		

Permitted	tag	types:	lutBToAType	or	multiProcessElementsType		

This	tag	defines	a	colour	transform	from	a	colorimetric‐based	PCS	to	Device	or	Colour	Encoding	using	
the	 lookup	 table	 tag	 element	 structures	 or	 multiProcessElementsType	 transforms.	 For	 most	 profile	
classes,	 it	 defines	 the	 transform	 to	 achieve	 absolute	 colorimetric	 rendering	 (see	 Table	 29).	 The	
processing	mechanisms	are	described	in	 lutBToAType	or	multiProcessElementsType	(see	10.2.13	and	
10.2.16).	

If	 this	 tag	 is	 not	 present	 then	 absolute	 colorimetric	 processing	 shall	 be	 performed	 by	 adjusting	 the	
colorimetric	PCS	values	by	the	media	white	point	and	then	using	the	relative	colorimetric	BToA1Tag.	

 BToD0Tag		

Tag	signature	‘B2D0’	(42324430h)		

Permitted	tag	types:	multiProcessElementsType		

This	tag	defines	a	colour	transform	from	either	a	colorimetric	or	spectrally‐based	PCS	(determined	by	
the	spectralPCS	and	PCS	fields	in	the	header)	to	Device.	If	the	spectralPCS	header	field	is	zero	then	this	
tag	 defines	 a	 colorimetric‐based	 override	 of	 the	 BToA0	 tag,	with	 the	 PCS	 defined	 by	 the	 PCS	 profile	
header	entry.	If	the	spectralPCS	header	field	is	non‐zero	then	this	tag	defines	a	spectrally‐based	PCS‐to‐
device	transform	with	the	spectral	PCS	defined	by	the	spectralPCS,	spectralRange,	and	biSpectralRange	
fields	 in	 the	 profile	 header.	 It	 supports	 float32Number‐encoded	 input	 range,	 output	 range	 and	
transform.	 As	 with	 the	 BToA0Tag,	 it	 defines	 a	 transform	 to	 achieve	 a	 perceptual	 rendering.	 The	
processing	mechanism	is	described	in	multiProcessElementsType	(see	10.2.16).		

Table	30	—	Profile	classes	and	defined	BToDx	rendering	intents	

Profile	class		 BToD0Tag		 BToD1Tag	 BToD2Tag	 BToD3Tag		

Input		 Spectral	PCS	/	
Colorimetric	
PCS	to	device:	
perceptual		

Spectral	PCS	/	
Colorimetric	
PCS	to	device:	
media	relative		

Spectral	PCS	/	
Colorimetric	
PCS	to	device:	
saturation		

Spectral	PCS	/	
Colorimetric	
PCS	to	device:	
absolute		

Display		 Spectral	PCS	/	
Colorimetric	
PCS	to	device:	
perceptual		

Spectral	PCS	/	
Colorimetric	
PCS	to	device:	
media	relative		

Spectral	PCS	/	
Colorimetric	
PCS	to	device:	
saturation		

Spectral	PCS	/	
Colorimetric	
PCS	to	device:	
absolute	

Output		 Spectral	PCS	/	
Colorimetric	
PCS	to	device:	
perceptual		

Spectral	PCS	/	
Colorimetric	
PCS	to	device:	
media	relative		

Spectral	PCS	/	
Colorimetric	
PCS	to	device:	
saturation		

Spectral	PCS	/	
Colorimetric	
PCS	to	device:	
absolute	

ColorSpace		 Spectral	PCS	/	
Colorimetric	
PCS	to	colour	
encoding:	

Spectral	PCS	/	
Colorimetric	
PCS	to	colour	
encoding:	

Spectral	PCS	/	
Colorimetric	
PCS	to	colour	
encoding:	

Spectral	PCS	/	
Colorimetric	
PCS	to	colour	
encoding:	

ICC.2:2017	

©	ICC	2017–	All	rights	reserved	 69	

perceptual		 colorimetric	 saturation	 saturation		

Abstract		 Undefined		 Undefined	 Undefined	 Undefined		

DeviceLink		 Undefined		 Undefined	 Undefined	 Undefined		

NamedColor		 Undefined		 Undefined	 Undefined	 Undefined		

ColorEncodingSpace		 Undefined		 Undefined	 Undefined	 Undefined		

MaterialIdentification		 Undefined		 Undefined	 Undefined	 Undefined		

MaterialLink		 Undefined		 Undefined	 Undefined	 Undefined		

MaterialVisualization		 Undefined		 Undefined	 Undefined	 Undefined		

	

 BToD1Tag		

Tag	signature	‘B2D1’	(42324431h)		

Permitted	tag	types:	multiProcessElementsType		

This	tag	defines	a	colour	transform	from	either	a	colorimetric	or	spectrally‐based	PCS	(determined	by	
the	spectralPCS	and	PCS	fields	in	the	header)	to	Device.	If	the	spectralPCS	header	field	is	zero	then	this	
tag	 defines	 a	 colorimetric‐based	 override	 of	 the	 BToA1	 tag	 with	 the	 PCS	 defined	 by	 the	 PCS	 profile	
header	entry.	If	the	spectralPCS	header	field	is	non‐zero	then	this	tag	defines	a	spectrally‐based	PCS	to	
device	transform	with	the	spectral	PCS	defined	by	the	spectralPCS,	spectralRange,	and	biSpectralRange	
fields	 in	 the	 profile	 header.	 It	 supports	 float32Number‐encoded	 input	 range,	 output	 range	 and	
transform.	 As	with	 the	 BToA0Tag,	 it	 defines	 a	 transform	 to	 achieve	 a	media	 relative	 rendering.	 The	
processing	mechanism	is	described	in	multiProcessElementsType	(see	10.2.16).	

If	this	tag	is	not	present	then	relative	processing	shall	be	performed	by	adjusting	the	PCS	values	by	the	
media	white	point	and	then	using	the	absolute	rendering	BToD3Tag.	

 BToD2Tag		

Tag	signature	‘B2D2’	(42324432h)		

Permitted	tag	types:	multiProcessElementsType		

This	tag	defines	a	colour	transform	from	either	a	colorimetric	or	spectrally‐based	PCS	(determined	by	
the	spectralPCS	and	PCS	fields	in	the	header)	to	Device.	If	the	spectralPCS	header	field	is	zero	then	this	
tag	 defines	 a	 colorimetric‐based	 override	 of	 the	 BToA0	 tag	 with	 the	 PCS	 defined	 by	 the	 PCS	 profile	
header	entry.	If	the	spectralPCS	header	field	is	non‐zero	then	this	tag	defines	a	spectrally‐based	PCS	to	
device	transform	with	the	spectral	PCS	defined	by	the	spectralPCS,	spectralRange,	and	biSpectralRange	
fields	 in	 the	 profile	 header.	 It	 supports	 float32Number‐encoded	 input	 range,	 output	 range	 and	
transform.	 As	 with	 the	 BToA0Tag,	 it	 defines	 a	 transform	 to	 achieve	 a	 saturation	 rendering.	 The	
processing	mechanism	is	described	in	multiProcessElementsType	(see	10.2.16).	

ICC.2:2017	

70	 ©	ICC	2017	–	All	rights	reserved	

 BToD3Tag		

Tag	signature	‘B2D3’	(42324433h)		

Permitted	tag	types:	multiProcessElementsType		

This	tag	defines	a	colour	transform	from	either	a	colorimetric	or	spectrally‐based	PCS	(determined	by	
the	spectralPCS	field	in	the	header)	to	Device.	If	the	spectralPCS	header	field	is	zero	then	this	tag	defines	
a	colorimetric‐based	override	of	the	BToA0	tag	with	the	PCS	defined	by	the	PCS	profile	header	entry.	If	
the	spectralPCS	header	field	is	non‐zero	then	this	tag	defines	a	spectrally‐based	PCS	to	device	transform	
with	 the	 spectral	 PCS	 defined	 by	 the	 spectralPCS,	 spectralRange,	 and	 biSpectralRange	 fields	 in	 the	
profile	header.	 It	 supports	 float32Number‐encoded	 input	 range,	output	 range	and	 transform.	As	with	
the	BToA0Tag,	 it	defines	a	 transform	to	achieve	an	absolute	 rendering.	The	processing	mechanism	 is	
described	in	multiProcessElementsType	(see	10.2.16).	

If	this	tag	is	not	present	then	absolute	processing	shall	be	performed	by	adjusting	the	PCS	values	by	the	
media	white	point	and	then	using	the	relative	rendering	BToD1Tag.	

 calibrationDateTimeTag	

Tag	signature:	‘calt’	(63616C74h)	

Permitted	tag	type:	dateTimeType	

Profile	calibration	date	and	time.	This	allows	applications	and	utilities	to	verify	if	this	profile	matches	a	
vendor’s	profile	and	how	recently	calibration	has	been	performed.	

 charTargetTag	

Tag	signature:	‘targ’	(74617267h)	

Permitted	tag	type:	utf8Type	or	utf8ZipType	

This	tag	contains	the	name	of	the	registered	characterization	data	set,	or	it	contains	the	measurement	
data	 for	 a	 characterization	 target.	 This	 tag	 is	 provided	 so	 that	 distributed	 utilities	 can	 identify	 the	
underlying	 characterization	 data,	 create	 transforms	 "on	 the	 fly"	 or	 check	 the	 current	 performance	
against	the	original	device	performance.	

The	first	seven	characters	of	the	text	shall	identify	the	nature	of	the	characterization	data.	

If	 the	 first	 seven	 characters	 are	 "ICCHDAT",	 then	 the	 remainder	 of	 the	 text	 shall	 be	 a	 single	 space	
followed	 by	 the	 Reference	Name	 of	 a	 characterization	 data	 set	 in	 the	 Characterization	Data	 Registry	
maintained	by	ICC,	and	terminated	with	a	NULL	byte	(00h).	The	Reference	Name	in	the	text	shall	match	
exactly	 (including	case)	 the	Reference	Name	 in	 the	registry,	which	may	be	 found	on	 the	 ICC	web	site	
(www.color.org).	

If	the	first	seven	characters	match	one	of	the	identifiers	defined	in	an	ANSI	or	ISO	standard,	then	the	tag	
embeds	 the	 exact	 data	 file	 format	 defined	 in	 that	 standard.	 Each	 of	 these	 file	 formats	 contains	 an	
identifying	character	string	as	 the	 first	seven	characters	of	 the	 format,	allowing	an	external	parser	 to	
determine	which	data	 file	 format	 is	being	used.	This	provides	 the	 facilities	 to	 include	a	wide	range	of	
targets	using	a	variety	of	measurement	specifications	in	a	standard	manner.	

ICC.2:2017	

©	ICC	2017–	All	rights	reserved	 71	

 colorEncodingParamsTag		

Tag	Signature:	‘cept’	(63657074h)	

Tag	Type:	tagStructType	of	type	colorEncodingParamsStructure	

The	colorEncodingParamsTag	 is	defined	using	a	colorEncodingParamsStructure.	Element	members	 in	
this	structure	are	assumed	to	be	overrides	of	parameters	assumed	by	the	encoding	reference	name.	

 colorSpaceNameTag	

Tag	Signature:	'csnm'	(63736e6dh)	

Tag	Type:	utf8Type	

This	tag	defines	the	reference	name	for	the	three	component	colour	encoding	when	the	profile	uniquely	
defines	all	the	necessary	parameters	for	the	encoding.	This	occurs	when	the	referenceNameTag	solely	
contains	the	text	“ISO	22028‐1”	(quotes	excluded).	

If	 the	referenceNameTag	does	not	solely	contain	 the	text	“ISO	22028‐1”	then	the	colorSpaceNameTag	
shall	contain	the	same	text	as	the	referenceNameTag	(if	the	profile	is	present).	

 colorantOrderTag	

Tag	signature:	’clro’	(636C726Fh)	

Permitted	tag	type:	colorantOrderType	

This	 tag	 specifies	 the	 laydown	 order	 of	 colorants	 associated	 with	 the	 data	 colour	 space	 field	 in	 the	
profile	header	(see	7.2.8)	when	the	data	colour	space	field	is	either	an	xCLR	where	x	is	a	hexadecimal	
value	from	1	to	F,	or	has	a	signature	representation	of	“ncXXXX”	where	X	is	a	hexadecimal	value	from	1	
to	FFFF.	

 colorantOrderOutTag	

Tag	signature:	’cloo’	(636c6f6fh)	

Permitted	tag	type:	colorantOrderType	

This	tag	specifies	the	laydown	order	of	colorants	associated	with	the	PCS	field	in	the	profile	header	(see	
7.2.8)	 when	 the	 PCS	 field	 is	 either	 an	 xCLR	 where	 x	 is	 a	 hexadecimal	 value	 from	 1	 to	 F,	 or	 has	 a	
signature	representation	of	“ncXXXX”	where	X	is	a	hexadecimal	value	from	1	to	FFFF.	This	tag	is	used	
for	DeviceLink	profiles	only.	

 colorantInfoTag		

Tag	signature:	'clin'	(636c696eh)	

Permitted	tag	type:	tagArrayType	with	an	array	type	identifier	of	‘cinf’	(63696e66h)	

ICC.2:2017	

72	 ©	ICC	2017	–	All	rights	reserved	

This	tag	identifies	the	colorants	associated	with	the	data	colour	space	field	header	(see	7.2.8)	when	the	
data	colour	space	field	is	either	an	xCLR	where	x	is	a	hexadecimal	value	from	1	to	F,	or	has	a	signature	
representation	of	“ncXXXX”	where	X	is	a	hexadecimal	value	from	1	to	FFFF.	The	colorant	information	is	
provided	 as	 an	 array	 of	 colorantInfoStructure	 elements.	 Each	 colorantInfoStructure	 entry	 provides	 a	
name	 for	 the	 colorant	 and	 optionally	 colorimetric	 or	 spectral	 information.	 See	 12.2.2	 for	 complete	
description	of	contents	and	usage	of	a	colorantInfoStructure.		

 colorantInfoOutTag		

Tag	signature:	‘clio’	(636C696fh)		

Permitted	tag	type:	tagArrayType	with	an	array	type	identifier	of	‘cinf’	(63696e66h)	

This	tag	identifies	the	colorants	associated	with	the	PCS	colour	space	field	header	(see	7.2.8)	when	the	
PCS	colour	space	field	is	either	an	xCLR	where	x	is	a	hexadecimal	value	from	1	to	F,	or	has	a	signature	
representation	of	“ncXXXX”	where	X	is	a	hexadecimal	value	from	1	to	FFFF.	The	colorant	information	is	
provided	 as	 an	 array	 of	 colorantInfoStructure	 elements.	 Each	 colorantInfoStructure	 entry	 provides	 a	
name	for	the	colorant	and	optionally	colorimetric	and/or	spectral	information.	See	12.2.2	for	complete	
description	of	contents	and	usage	of	a	colorantInfoStructure.	

This	tag	is	used	for	DeviceLink	profiles	only.	

 colorimetricIntentImageStateTag	

Tag	signature:	‘ciis’	(63696973h)	

Permitted	tag	type:	signatureType	

This	tag	is	fully	specified	by	ISO	15076‐1	colorimetricIntentImageStateTag	

This	tag	indicates	the	image	state	of	PCS	colorimetry	produced	using	the	colorimetric	intent	transforms.	
If	present,	the	colorimetricIntentImageStateTag	shall	specify	one	of	the	ICC‐defined	image	states	shown	
in	Table	31	and	described	herein.	Other	image	state	specifications	are	reserved	for	future	ICC	use.	

Note	1:	The	notable	difference	between	usage	in	ISO	15076‐1	and	this	ISO	20677	document	is	that	an	
arbitrary	 observer	 and	 white	 point	 can	 now	 be	 associated	 with	 the	 colorimetric	 PCS	 using	 profile	
connection	conditions	(see	6.3.2)	resulting	in	a	deprecation	of	the	chromaticAdaptationTag	defined	in	
ISO	15076‐1.	Therefore	colorimetry	for	each	of	the	states	defined	by	this	tag	should	be	directly	encoded	
without	the	need	for	chromatic	adaptation	in	the	colorimetric	color	transforms.		

NOTE	2:	When	the	state	of	the	image	colorimetry	represented	in	the	PCS	is	different	from	that	of	the	image	data	in	
the	 file,	 the	 colorimetric	 intent	 image	 state	 includes	 the	 word	 "estimates".	 This	 will	 be	 the	 case	 when	
transformation	of	the	image	file	data	to	colorimetry	is	not	fully	deterministic.	

EXAMPLE: If the spectral sensitivities of a digital camera sensor (or photographic film) are not a linear transform of the
CIE XYZ colour matching functions, there will not be a single "correct" transform to focal plane colorimetry.

Table 31 — colorimetricIntentImageStateTag signatures

Colorimetric intent image state Signature Hex encoding

scene colorimetry estimates 'scoe' 73636F65h

ICC.2:2017	

©	ICC	2017–	All	rights	reserved	 73	

scene appearance estimates 'sape' 73617065h

focal plane colorimetry estimates 'fpce' 66706365h

reflection hardcopy original colorimetry ‘rhoc’ 72686F63h

reflection print output colorimetry ‘rpoc’ 72706F63h

	

The	tag	value	'scoe'	(scene	colorimetry	estimates)	shall	indicate	that	colorimetry	in	the	PCS	represents	
estimates	of	 the	 colorimetry	of	 the	 scene,	 as	 viewed	 from	 the	 capture	point.	With	 the	media‐relative	
colorimetric	intent,	the	colorimetry	is	relative	to	the	scene	encoding	maximum.	With	the	ICC‐absolute	
colorimetric	 intent,	 the	colorimetry	 is	 relative	 to	 the	scene	adopted	white.	The	scene	colorimetry	can	
result	from	a	real	scene,	a	synthetically	generated	scene,	an	edited	scene,	or	some	combination	of	these,	
but	shall	be	interpreted	as	actual	scene	colorimetry	for	subsequent	processing.		

For	scene	colorimetry	estimates,	the	mediaWhitePointTag	is	populated	with	the	XYZ	tristimulus	values	
of	 the	scene	encoding	maximum	white,	normalized	to	be	relative	 to	 the	scene	adopted	white	(perfect	
diffuser),	 and	 then	 converted	 to	 the	 corresponding	 tristimulus	 values	 for	 the	 PCS	 white.	 The	 scene	
adopted	white	Y	 value	 is	 normalized	 to	1,0;	 the	mediaWhitePointTag	Y	 value	 is	 relative	 to	 the	 scene	
adopted	white	Y	value	and	can	be	larger	than	1,0.	

NOTE	3			 The	 un‐normalized	 adopted	 white	 values	 are	 stored	 in	 the	 illuminant	 field	 in	 the	 viewing	
conditions	tag.	

The	tag	value	'sape'	(scene	appearance	estimates)	shall	indicate	that	colorimetry	in	the	PCS	represents	
estimates	of	 the	 appearance	of	 the	 scene,	 as	 viewed	 from	 the	 capture	point,	 fully	 adapted	 to	 the	 ISO	
3664	P2	viewing	conditions.	With	the	media	relative	colorimetric	intent,	the	corresponding	colorimetry	
is	 relative	 to	 the	 scene	 encoding	 maximum	 white.	 	 With	 the	 ICC‐absolute	 colorimetric	 intent,	 the	
corresponding	colorimetry	is	relative	to	the	scene	adopted	white.	The	scene	appearance	estimates	may	
result	from	a	real	scene,	a	synthetically	generated	scene,	an	edited	scene,	or	some	combination	of	these,	
but	 shall	be	 interpreted	as	 scene	appearance	estimates	 for	an	actual	 scene	 in	subsequent	processing.	
When	this	image	state	is	specified,	the	ISO	3664	P2	viewing	conditions	shall	be	specified	in	the	spectral	
viewing	conditions	tag.	

For	scene	appearance	estimates,	the	mediaWhitePointTag	is	populated	with	the	XYZ	tristimulus	values	
of	 the	scene	encoding	maximum	white,	normalized	to	be	relative	 to	 the	scene	adopted	white	(perfect	
diffuser),	and	then	converted	to	the	corresponding	tristimulus	values	for	the	PCS	white	point	defined	in	
the	 spectral	 viewing	 conditions	 tag.	 The	 scene	 adopted	 white	 Y	 value	 is	 normalized	 to	 1,0;	 the	
mediaWhitePointTag	Y	value	is	relative	to	the	scene	adopted	white	Y	value	and	can	be	larger	than	1,0.	

The	 tag	 value	 'fpce'	 (focal	 plane	 colorimetry	 estimates)	 shall	 indicate	 that	 colorimetry	 in	 the	 PCS	
represents	 estimates	of	 the	 colorimetry	of	 the	 light	present	 at	 the	 focal	plane	of	 a	 camera	 (digital	 or	
film).	With	the	media	relative	colorimetric	intent,	the	colorimetry	is	relative	to	the	focal‐plane	encoding	
maximum	white.	With	the	ICC‐absolute	colorimetric	intent,	the	colorimetry	is	relative	to	the	focal	plane	
adopted	 white.	 The	 focal	 plane	 colorimetry	 may	 result	 from	 a	 real	 scene,	 a	 synthetically	 generated	
scene,	an	edited	scene,	or	some	combination	of	these,	but	shall	be	interpreted	as	focal	plane	colorimetry	
for	subsequent	processing.	When	this	colorimetric	intent	image	state	is	specified,	the	actual	focal	plane	
viewing	conditions,	 including	 the	adopted	white,	 shall	be	 specified	 in	 the	 spectral	viewing	conditions	
tag.	

ICC.2:2017	

74	 ©	ICC	2017	–	All	rights	reserved	

For	 focal	plane	colorimetry	estimates,	 the	mediaWhitePointTag	 is	populated	with	 the	XYZ	tristimulus	
values	of	the	focal	plane	encoding	maximum	white,	normalized	to	be	relative	to	the	focal	plane	adopted	
white	(perfect	diffuser),	and	then	converted	to	the	corresponding	tristimulus	values	for	the	PCS	white	
point	(if	required).	The	focal	plane	adopted	white	Y	value	is	normalized	to	1,0;	the	mediaWhitePointTag	
Y	value	is	relative	to	the	focal	plane	adopted	white	Y	value	and	can	be	larger	than	1,0.	

NOTE	 4	 The	 effects	 of	 any	 optics	 in	 or	 attached	 to	 the	 camera	 are	 included	 in	 the	 focal	 plane	 colorimetry	
estimates;	this	includes	lens	flare,	filters,	etc.	

NOTE	 5	 The	 un‐normalized	 adopted	 white	 values	 are	 stored	 in	 the	 illuminant	 field	 in	 the	 spectral	 viewing	
conditions	tag.	

The	tag	value	'rhoc'	(reflection	hardcopy	original	colorimetry)	shall	indicate	that	colorimetry	in	the	PCS	
represents	 the	colorimetry	of	a	 reflection	hardcopy	original	 that	has	been	digitally	scanned.	With	 the	
media	relative	colorimetric	intent,	the	colorimetry	is	normalized	relative	to	the	scan	condition	encoding	
maximum	white.	With	 the	 ICC‐absolute	 colorimetric	 intent,	 the	 colorimetry	 is	 relative	 to	 the	 perfect	
reflecting	 diffuser.	 When	 this	 colorimetric	 intent	 image	 state	 is	 specified,	 the	 scan	 illumination	
conditions,	including	the	adopted	white,	shall	be	specified	in	the	spectral	viewing	conditions.	

NOTE	 6	 The	 un‐normalized	 adopted	 white	 values	 are	 stored	 in	 the	 illuminant	 field	 in	 the	 spectral	 viewing	
conditions	tag.	

The	 tag	 value	 'rpoc'	 (reflection	 print	 output	 colorimetry)	 shall	 indicate	 that	 colorimetry	 in	 the	 PCS	
represents	 the	 colorimetry	of	 reflection	print	output.	With	 the	media	 relative	 colorimetric	 intent,	 the	
colorimetry	 is	normalized	 relative	 to	 the	print	medium	white	point,	measured	under	 the	actual	print	
viewing	conditions.	With	the	ICC‐absolute	colorimetric	intent,	the	colorimetry	is	relative	to	the	perfect	
reflecting	diffuser	after	chromatic	adaptation.	When	this	colorimetric	intent	image	state	is	specified,	the	
print	 viewing	 conditions,	 including	 the	 adopted	 white,	 shall	 be	 specified	 in	 the	 spectral	 viewing	
conditions	tag.	

NOTE	 7	 The	 un‐normalized	 adopted	 white	 values	 are	 stored	 in	 the	 illuminant	 field	 in	 the	 spectral	
viewing	conditions	tag.	

 copyrightTag	

Tag	signature:	‘cprt’	(63707274h)	

Permitted	tag	type:	multiLocalizedUnicodeType	

This	tag	contains	the	text	copyright	information	for	the	profile.	

 customToStandardPccTag	

Tag	signature:	'c2sp'	(63327370h)	

Permitted	Tag	types:	multiProcessElementsType	

This	 tag	provides	 the	 transform	needed	 to	convert	 from	the	colorimetry	defined	by	 the	observer	and	
illuminant	 defined	 in	 the	 spectralViewingConditionsTag	 to	 the	 colorimetry	 defined	 by	 the	 CIE	 1931	
Standard	Colorimetric	Observer	with	a	D50	illuminant.	The	multiProcessElementsType	structure	shall	
define	a	sequence	of	one	or	more	transforms	that	performs	this	conversion.		

ICC.2:2017	

©	ICC	2017–	All	rights	reserved	 75	

The	number	of	both	the	input	and	output	channels	of	the	transform	shall	be	three.	

 cxfTag	

Tag	signature:	‘CxF	’	(43784620)	

Permitted	tag	type:	utf8Type,	utf8ZipType		

This	tag	contains	a	Color	Exchange	Format	file.	The	CxF/X	file	contains	the	characterization	target	and	
corresponding	measurement	data.	The	CxF/X	 file	 is	 an	XML	document	and	 is	 specified	as	part	of	 ISO	
17972‐1.		The	CxF/X	specification	requires	that	UTF‐8	be	used.	

The	cxfTag	shall	contain	the	characterization	set	and	measurement	data	used	to	create	the	profile.	The	
tag	may	contain	any	other	data	that	conforms	to	the	CxF/X	specification.	

 deviceMfgDescTag	

Tag	signature:	‘dmnd’	(646D6E64h)	

Permitted	tag	type:	multiLocalizedUnicodeType	

Structure	 containing	 invariant	 and	 localizable	 versions	 of	 the	 device	 manufacturer	 for	 display.	 The	
content	of	this	structure	is	described	in	10.2.15.	

 deviceModelDescTag	

Tag	signature:	‘dmdd’	(646D6464h)	

Permitted	tag	type:	multiLocalizedUnicodeType	

Structure	containing	invariant	and	localizable	versions	of	the	device	model	for	display.	The	content	of	
this	structure	is	described	in	10.2.15.	

 directionalAToB0Tag	

Tag	signature:	‘dAB0’	(64414230	h)		

Permitted	tag	types:	multiProcessElementType		

This	tag	defines	the	transform	to	achieve	perceptual	intent	rendering	in	relationship	to	viewing	angles	
and	 relative	 position	 of	 a	 viewing	 area.	 Specifically,	 it	 describes	 the	 colour	 transform	 from	 viewing	
angle	and	relative	position	of	the	viewing	area,	and	Device	or	Colour	Encoding	to	the	colorimetric‐based	
PCS	specified	by	the	PCS	field	in	the	profile	header.		

This	use	of	this	tag	is	not	defined	when	the	PCS	field	in	the	profile	header	is	set	to	zero.		

The	number	of	input	channels	to	the	multiProcessElementsType	based	tag	shall	be	4	plus	the	number	of	
channels	 implied	 by	 the	 colorSpace	 signature	 in	 the	 profile	 header.	 The	 order	 and	 encoding	 of	 the	
directional	 information	 and	 device	 channels	 provided	 to	 the	multiProcessElementType	 are	 shown	 in	
Table	32.	

Table	32	‐	Directional	Device	Channel	Encoding	

ICC.2:2017	

76	 ©	ICC	2017	–	All	rights	reserved	

Input	
Channel	
Index	

Channel	Identification	 Encoding	Type	

0	 Viewing	azimuth	angle	Φr azimuthNumber	

1	 Viewing	zenith	angle	θr zenithNumber	

2	 Relative	Horizontal	Position	rx horizontalType	

3	 Relative	Vertical	Position	ry verticalType	

4	 Device	channel	0	

…	 …

4+N	 Device	channel	N‐1

		

The	output	channels	are	defined	by	the	encoding	implied	by	the	PCS	field	in	the	profile	header.		

 directionalAToB1Tag	

Tag	signature:	‘dAB1’	(64414231h)		

Permitted	tag	types:	multiProcessElementType		

This	tag	defines	the	transform	to	achieve	media‐relative	colorimetric	intent	rendering	in	relationship	to	
viewing	 angles	 and	 relative	 position	 of	 a	 viewing	 area.	 Specifically,	 it	 describes	 the	 colour	 transform	
from	 viewing	 angle	 and	 relative	 position	 of	 the	 viewing	 area,	 and	 Device	 or	 Colour	 Encoding	 to	 the	
colorimetric‐based	PCS	specified	by	the	PCS	field	in	the	profile	header.		

This	use	of	this	tag	is	not	defined	when	the	PCS	field	in	the	profile	header	is	set	to	zero.		

The	number	of	input	channels	to	the	multiProcessElementsType	based	tag	shall	be	4	plus	the	number	of	
channels	 implied	 by	 the	 colorSpace	 signature	 in	 the	 profile	 header.	 The	 order	 and	 encoding	 of	 the	
directional	 information	 and	 device	 channels	 provided	 to	 the	multiProcessElementType	 are	 shown	 in	
Table	32.	

The	output	channels	are	defined	by	the	encoding	implied	by	the	PCS	field	in	the	profile	header.	

If	this	tag	is	not	present	then	relative	directional	based	colorimetric	processing	shall	be	performed	by	
using	the	absolute	colorimetric	directionalAToB3Tag	and	then	adjusting	the	colorimetric	PCS	values	by	
the	media	white	point.	

 directionalfAToB2Tag	

Tag	signature:	‘dAB2’	(64414232h)		

Permitted	tag	types:	multiProcessElementType		

This	tag	defines	the	transform	to	achieve	saturation	intent	rendering	in	relationship	to	viewing	angles	
and	 relative	 position	 of	 a	 viewing	 area.	 Specifically,	 it	 describes	 the	 colour	 transform	 from	 viewing	
angle	and	relative	position	of	the	viewing	area,	and	Device	or	Colour	Encoding	to	the	colorimetric‐based	
PCS	specified	by	the	PCS	field	in	the	profile	header.		

ICC.2:2017	

©	ICC	2017–	All	rights	reserved	 77	

This	use	of	this	tag	is	not	defined	when	the	PCS	field	in	the	profile	header	is	set	to	zero.		

The	number	of	input	channels	to	the	multiProcessElementsType	based	tag	shall	be	4	plus	the	number	of	
channels	 implied	 by	 the	 colorSpace	 signature	 in	 the	 profile	 header.	 The	 order	 and	 encoding	 of	 the	
directional	 information	 and	 device	 channels	 provided	 to	 the	multiProcessElementType	 are	 shown	 in	
Table	32.	

The	output	channels	are	defined	by	the	encoding	implied	by	the	PCS	field	in	the	profile	header.		

 directionalAToB3Tag	

Tag	signature:	‘dAB3’	(64414233h)		

Permitted	tag	types:	multiProcessElementType		

This	 tag	defines	 the	 transform	 to	 achieve	 absolute	 intent	 rendering	 in	 relationship	 to	 viewing	angles	
and	 relative	 position	 of	 a	 viewing	 area.	 Specifically,	 it	 describes	 the	 colour	 transform	 from	 viewing	
angle	and	relative	position	of	the	viewing	area,	and	Device	or	Colour	Encoding	to	the	colorimetric‐based	
PCS	specified	by	the	PCS	field	in	the	profile	header.		

This	use	of	this	tag	is	not	defined	when	the	PCS	field	in	the	profile	header	is	set	to	zero.		

The	number	of	input	channels	to	the	multiProcessElementsType	based	tag	shall	be	4	plus	the	number	of	
channels	 implied	 by	 the	 colorSpace	 signature	 in	 the	 profile	 header.	 The	 order	 and	 encoding	 of	 the	
directional	 information	 and	 device	 channels	 provided	 to	 the	multiProcessElementType	 are	 shown	 in	
Table	32.	

The	output	channels	are	defined	by	the	encoding	implied	by	the	PCS	field	in	the	profile	header.	

If	this	tag	is	not	present	then	relative	directional	based	colorimetric	processing	shall	be	performed	by	
using	the	relative	colorimetric	directionalAToB1Tag	and	then	adjusting	the	colorimetric	PCS	values	by	
the	media	white	point.	

 directionalBToA0Tag	

Tag	signature:	‘dBA0’	(64424130	h)		

Permitted	tag	types:	multiProcessElementType		

This	tag	defines	the	transform	to	achieve	perceptual	intent	rendering	in	relationship	to	viewing	angles	
and	 relative	 position	 of	 a	 viewing	 area.	 Specifically,	 it	 describes	 the	 colour	 transform	 from	 viewing	
angle	and	relative	position	of	the	viewing	area,	and	colorimetric‐based	PCS	specified	by	the	PCS	field	in	
the	profile	header	to	Device	or	Colour	Encoding.	

This	use	of	this	tag	is	not	defined	when	the	PCS	field	in	the	profile	header	is	set	to	zero.		

The	number	of	input	channels	to	the	multiProcessElementsType	based	tag	shall	be	4	plus	the	number	of	
channels	defined	by	the	encoding	implied	by	the	PCS	field	in	the	profile	header.	The	order	and	encoding	
of	 the	 directional	 information	 and	 device	 channels	 provided	 to	 the	 multiProcessElementType	 are	
shown	in	Table	33.	

Table	33	‐	Directional	Colorimetric	Encoding	

ICC.2:2017	

78	 ©	ICC	2017	–	All	rights	reserved	

Input	
Channel	
Index	

Channel	Identification	 Encoding	Type	

0	 Viewing	azimuth	angle	Φr azimuthNumber	

1	 Viewing	zenith	angle	θr zenithNumber	

2	 Relative	Horizontal	Position	rx	
horizontalNumbe
r	

3	 Relative	Vertical	Position	ry verticalNumber	

4	 PCS	channel	0	

…	 …

4+N	 PCS	channel	N‐1	

		

The	 output	 channels	 shall	 be	 the	 number	 of	 device	 channels	 defined	 the	 colorSpace	 signature	 in	 the	
profile	header.		

 directionalBToA1Tag	

Tag	signature:	‘dBA1’	(64424131h)		

Permitted	tag	types:	multiProcessElementType		

This	tag	defines	the	transform	to	achieve	media‐relative	colorimetric	intent	rendering	in	relationship	to	
viewing	 angles	 and	 relative	 position	 of	 a	 viewing	 area.	 Specifically,	 it	 describes	 the	 colour	 transform	
from	viewing	angle	and	relative	position	of	the	viewing	area,	and	colorimetric‐based	PCS	specified	by	
the	PCS	field	in	the	profile	header	to	Device	or	Colour	Encoding.	

This	use	of	this	tag	is	not	defined	when	the	PCS	field	in	the	profile	header	is	set	to	zero.		

The	number	of	input	channels	to	the	multiProcessElementsType	based	tag	shall	be	4	plus	the	number	of	
channels	defined	by	the	encoding	implied	by	the	PCS	field	in	the	profile	header.	The	order	and	encoding	
of	 the	 directional	 information	 and	 device	 channels	 provided	 to	 the	 multiProcessElementType	 are	
shown	in	Table	33.	

The	number	of	output	channels	shall	be	the	number	of	device	channels	defined	the	colorSpace	signature	
in	the	profile	header.		

If	this	tag	is	not	present	then	relative	directional	based	colorimetric	processing	shall	be	performed	by	
first	 adjusting	 the	 colorimetric	 PCS	 values	 by	 the	 media	 white	 point	 and	 then	 using	 the	 absolute	
colorimetric	directionalBToA3Tag.	

 directionalBToA2Tag	

Tag	signature:	‘dBA2’	(64424132h)		

Permitted	tag	types:	multiProcessElementType		

This	tag	defines	the	transform	to	achieve	saturation	intent	rendering	in	relationship	to	viewing	angles	
and	 relative	 position	 of	 a	 viewing	 area.	 Specifically,	 it	 describes	 the	 colour	 transform	 from	 viewing	

ICC.2:2017	

©	ICC	2017–	All	rights	reserved	 79	

angle	and	relative	position	of	the	viewing	area,	and	colorimetric‐based	PCS	specified	by	the	PCS	field	in	
the	profile	header	to	Device	or	Colour	Encoding.	

This	use	of	this	tag	is	not	defined	when	the	PCS	field	in	the	profile	header	is	set	to	zero.		

The	number	of	input	channels	to	the	multiProcessElementsType	based	tag	shall	be	4	plus	the	number	of	
channels	defined	by	the	encoding	implied	by	the	PCS	field	in	the	profile	header.	The	order	and	encoding	
of	 the	 directional	 information	 and	 device	 channels	 provided	 to	 the	 multiProcessElementType	 are	
shown	in	Table	33.	

The	number	of	output	channels	shall	be	the	number	of	device	channels	defined	the	colorSpace	signature	
in	the	profile	header.	

 directionalBToA3Tag	

Tag	signature:	‘dBA3’	(64424133h)		

Permitted	tag	types:	multiProcessElementType		

This	 tag	defines	 the	 transform	 to	 achieve	 absolute	 intent	 rendering	 in	 relationship	 to	 viewing	angles	
and	 relative	 position	 of	 a	 viewing	 area.	 Specifically,	 it	 describes	 the	 colour	 transform	 from	 viewing	
angle	and	relative	position	of	the	viewing	area,	and	colorimetric‐based	PCS	specified	by	the	PCS	field	in	
the	profile	header	to	Device	or	Colour	Encoding.	

This	use	of	this	tag	is	not	defined	when	the	PCS	field	in	the	profile	header	is	set	to	zero.		

The	number	of	input	channels	to	the	multiProcessElementsType	based	tag	shall	be	4	plus	the	number	of	
channels	defined	by	the	encoding	implied	by	the	PCS	field	in	the	profile	header.	The	order	and	encoding	
of	 the	 directional	 information	 and	 device	 channels	 provided	 to	 the	 multiProcessElementType	 are	
shown	in	Table	33.	

The	number	of	output	channels	shall	be	the	number	of	device	channels	defined	the	colorSpace	signature	
in	the	profile	header.	

If	this	tag	is	not	present	then	relative	BRDF	based	colorimetric	processing	shall	be	performed	by	first	
adjusting	the	colorimetric	PCS	values	by	the	media	white	point	and	then	using	the	relative	colorimetric	
brdfAToB1Tag.	

 directionalBToD0Tag	

Tag	signature:	‘dBD0’	(64424430	h)		

Permitted	tag	types:	multiProcessElementType		

This	tag	defines	the	transform	to	achieve	perceptual	intent	rendering	in	relationship	to	viewing	angles	
and	 relative	 position	 of	 a	 viewing	 area.	 Specifically,	 it	 describes	 the	 colour	 transform	 from	 viewing	
angle	and	relative	position	of	the	viewing	area,	and	the	spectral	based	PCS	specified	by	the	spectralPCS	
field	in	the	profile	header	to	Device	or	Colour	Encoding.		

This	use	of	this	tag	is	not	defined	when	the	spectralPCS	field	in	the	profile	header	is	set	to	zero.	

ICC.2:2017	

80	 ©	ICC	2017	–	All	rights	reserved	

The	number	of	input	channels	to	the	multiProcessElementsType	based	tag	shall	be	4	plus	the	number	of	
channels	defined	by	the	encoding	implied	by	the	spectralPCS	field	in	the	profile	header.	The	order	and	
encoding	of	the	directional	information	and	device	channels	provided	to	the	multiProcessElementType	
are	shown	in	Table	34.		

Table	34	‐	directional	Spectral	Encoding	

Input	
Channel	
Index	

Channel	Identification	 Encoding	Type	

0	 Viewing	azimuth	angle	Φr azimuthNumber	

1	 Viewing	zenith	angle	θr zenithNumber	

2	 Relative	Horizontal	Position	rx	
horizontalNumbe
r	

3	 Relative	Vertical	Position	ry verticalNumber	

4	 Spectral	PCS	channel	0

…	 …

4+N	 Spectral	PCS	channel	N‐1

		

The	number	of	output	channels	shall	be	the	number	of	channels	implied	by	the	colorSpace	signature	in	
the	profile	header.	

 directionalBToD1Tag	

Tag	signature:	‘dBD1’	(64424431h)		

Permitted	tag	types:	multiProcessElementType		

This	tag	defines	the	transform	to	achieve	relative	intent	rendering	in	relationship	to	viewing	angles	and	
relative	position	of	 a	 viewing	 area.	 Specifically,	 it	 describes	 the	 colour	 transform	 from	viewing	 angle	
and	relative	position	of	the	viewing	area,	and	the	spectral	based	PCS	specified	by	the	spectralPCS	field	
in	the	profile	header	to	Device	or	Colour	Encoding.		

This	use	of	this	tag	is	not	defined	when	the	spectralPCS	field	in	the	profile	header	is	set	to	zero.	

The	number	of	input	channels	to	the	multiProcessElementsType	based	tag	shall	be	4	plus	the	number	of	
channels	defined	by	the	encoding	implied	by	the	spectralPCS	field	in	the	profile	header.	The	order	and	
encoding	of	the	directional	information	and	device	channels	provided	to	the	multiProcessElementType	
are	shown	in	Table	34.	

The	number	of	output	channels	shall	be	the	number	of	channels	implied	by	the	colorSpace	signature	in	
the	profile	header.	

If	 this	 tag	 is	 not	 present	 then	 relative	 BRDF	 based	 spectral	 processing	 shall	 be	 performed	 by	 first	
adjusting	 the	 spectral	 PCS	 values	 by	 the	 spectral	 media	 white	 point,	 and	 then	 using	 the	 absolute	
brdfDToB3Tag	and	then.		

ICC.2:2017	

©	ICC	2017–	All	rights	reserved	 81	

 directionalBToD2Tag	

Tag	signature:	‘bBD2’	(64424432h)		

Permitted	tag	types:	multiProcessElementType		

This	tag	defines	the	transform	to	achieve	saturation	intent	rendering	in	relationship	to	viewing	angles	
and	 relative	 position	 of	 a	 viewing	 area.	 Specifically,	 it	 describes	 the	 colour	 transform	 from	 viewing	
angle	and	relative	position	of	the	viewing	area,	and	the	spectral	based	PCS	specified	by	the	spectralPCS	
field	in	the	profile	header	to	Device	or	Colour	Encoding.		

This	use	of	this	tag	is	not	defined	when	the	spectralPCS	field	in	the	profile	header	is	set	to	zero.	

The	number	of	input	channels	to	the	multiProcessElementsType	based	tag	shall	be	4	plus	the	number	of	
channels	defined	by	the	encoding	implied	by	the	spectralPCS	field	in	the	profile	header.	The	order	and	
encoding	of	the	directional	information	and	device	channels	provided	to	the	multiProcessElementType	
are	shown	in	Table	34.The	number	of	output	channels	shall	be	the	number	of	channels	implied	by	the	
colorSpace	signature	in	the	profile	header.		

The	output	channels	are	defined	by	the	encoding	implied	by	the	spectralPCS	field	in	the	profile	header.	

 directionalBToD3Tag	

Tag	signature:	‘dBD3’	(64424433h)		

Permitted	tag	types:	multiProcessElementType		

This	tag	defines	the	transform	to	achieve	saturation	intent	rendering	in	relationship	to	viewing	angles	
and	 relative	 position	 of	 a	 viewing	 area.	 Specifically,	 it	 describes	 the	 colour	 transform	 from	 viewing	
angle	and	relative	position	of	the	viewing	area,	and	the	spectral	based	PCS	specified	by	the	spectralPCS	
field	in	the	profile	header	to	Device	or	Colour	Encoding.		

This	use	of	this	tag	is	not	defined	when	the	spectralPCS	field	in	the	profile	header	is	set	to	zero.	

The	number	of	input	channels	to	the	multiProcessElementsType	based	tag	shall	be	4	plus	the	number	of	
channels	defined	by	the	encoding	implied	by	the	spectralPCS	field	in	the	profile	header.	The	order	and	
encoding	of	the	directional	information	and	device	channels	provided	to	the	multiProcessElementType	
are	shown	in	Table	34.The	number	of	output	channels	shall	be	the	number	of	channels	implied	by	the	
colorSpace	signature	in	the	profile	header.	

If	this	tag	is	not	present	then	relative	BRDF	based	spectral	processing	shall	be	performed	by	using	the	
relative	brdfDToB1Tag	and	then	adjusting	the	spectral	PCS	values	by	the	spectral	media	white	point.		

 directionalDToB0Tag	

Tag	signature:	‘dDB0’	(64444230	h)		

Permitted	tag	types:	multiProcessElementType		

This	tag	defines	the	transform	to	achieve	perceptual	intent	rendering	in	relationship	to	viewing	angles	
and	 relative	 position	 of	 a	 viewing	 area.	 Specifically,	 it	 describes	 the	 colour	 transform	 from	 viewing	
angle	and	relative	position	of	the	viewing	area,	and	Device	or	Colour	Encoding	to	the	spectral	based	PCS	
specified	by	the	spectralPCS	field	in	the	profile	header.		

ICC.2:2017	

82	 ©	ICC	2017	–	All	rights	reserved	

This	use	of	this	tag	is	not	defined	when	the	spectralPCS	tag	is	set	to	zero.	

The	number	of	input	channels	to	the	multiProcessElementsType	based	tag	shall	be	4	plus	the	number	of	
channels	 implied	 by	 the	 colorSpace	 signature	 in	 the	 profile	 header.	 The	 order	 and	 encoding	 of	 the	
directional	 information	 and	 device	 channels	 provided	 to	 the	multiProcessElementType	 are	 shown	 in	
Table	32.		

The	output	channels	are	defined	by	the	encoding	implied	by	the	spectralPCS	field	in	the	profile	header.	

 directionalDToB1Tag	

Tag	signature:	‘dDB1’	(64444231h)		

Permitted	tag	types:	multiProcessElementType		

This	 tag	defines	 the	 transform	to	achieve	relative	 intent	rendering	 in	relationship	viewing	angles	and	
relative	position	of	 a	 viewing	 area.	 Specifically,	 it	 describes	 the	 colour	 transform	 from	viewing	 angle	
and	 relative	 position	 of	 the	 viewing	 area,	 and	 Device	 or	 Colour	 Encoding	 to	 the	 spectral	 based	 PCS	
specified	by	the	spectralPCS	field	in	the	profile	header.		

This	use	of	this	tag	is	not	defined	when	the	spectralPCS	tag	is	set	to	zero.	

The	number	of	input	channels	to	the	multiProcessElementsType	based	tag	shall	be	4	plus	the	number	of	
channels	 implied	 by	 the	 colorSpace	 signature	 in	 the	 profile	 header.	 The	 order	 and	 encoding	 of	 the	
directional	 information	 and	 device	 channels	 provided	 to	 the	multiProcessElementType	 are	 shown	 in	
Table	32.		

The	output	channels	are	defined	by	the	encoding	implied	by	the	spectralPCS	field	in	the	profile	header.	

If	this	tag	is	not	present	then	relative	directional	based	spectral	processing	shall	be	performed	by	using	
the	 absolute	 directionalDToB3Tag	 and	 then	 adjusting	 the	 spectral	 PCS	 values	 by	 the	 spectral	media	
white	point.		

 directionalDToB2Tag	

Tag	signature:	‘dDB2’	(64444232h)		

Permitted	tag	types:	multiProcessElementType		

This	tag	defines	the	transform	to	achieve	saturation	intent	rendering	in	relationship	to	viewing	angles	
and	 relative	 position	 of	 a	 viewing	 area.	 Specifically,	 it	 describes	 the	 colour	 transform	 from	 viewing	
angle	and	relative	position	of	the	viewing	area,	and	Device	or	Colour	Encoding	to	the	spectral	based	PCS	
specified	by	the	spectralPCS	field	in	the	profile	header.		

This	use	of	this	tag	is	not	defined	when	the	spectralPCS	tag	is	set	to	zero.	

The	number	of	input	channels	to	the	multiProcessElementsType	based	tag	shall	be	4	plus	the	number	of	
channels	 implied	 by	 the	 colorSpace	 signature	 in	 the	 profile	 header.	 The	 order	 and	 encoding	 of	 the	
directional	 information	 and	 device	 channels	 provided	 to	 the	multiProcessElementType	 are	 shown	 in	
Table	32.		

The	output	channels	are	defined	by	the	encoding	implied	by	the	spectralPCS	field	in	the	profile	header.	

ICC.2:2017	

©	ICC	2017–	All	rights	reserved	 83	

 directionalDToB3Tag	

Tag	signature:	‘dDB3’	(64444233h)		

Permitted	tag	types:	multiProcessElementType		

This	tag	defines	the	transform	to	achieve	saturation	intent	rendering	in	relationship	to	viewing	angles	
and	 relative	 position	 of	 a	 viewing	 area.	 Specifically,	 it	 describes	 the	 colour	 transform	 from	 viewing	
angle	and	relative	position	of	the	viewing	area,	and	Device	or	Colour	Encoding	to	the	spectral	based	PCS	
specified	by	the	spectralPCS	field	in	the	profile	header.		

This	use	of	this	tag	is	not	defined	when	the	spectralPCS	tag	is	set	to	zero.	

The	number	of	input	channels	to	the	multiProcessElementsType	based	tag	shall	be	4	plus	the	number	of	
channels	 implied	 by	 the	 colorSpace	 signature	 in	 the	 profile	 header.	 The	 order	 and	 encoding	 of	 the	
directional	 information	 and	 device	 channels	 provided	 to	 the	multiProcessElementType	 are	 shown	 in	
Table	32.		

The	output	channels	are	defined	by	the	encoding	implied	by	the	spectralPCS	field	in	the	profile	header.	

If	this	tag	is	not	present	then	relative	directional	based	spectral	processing	shall	be	performed	by	using	
the	 relative	 directionalDToB1Tag	 and	 then	 adjusting	 the	 spectral	 PCS	 values	 by	 the	 spectral	 media	
white	point.		

 DToB0Tag		

Tag	signature	‘D2B0’	(44324230h)		

Permitted	tag	types:	multiProcessElementsType		

This	 tag	 has	 extended	 behaviour	 over	 ISO	 15076‐1,	 and	 defines	 a	 colour	 transform	 from	 Device	 to	
either	a	colorimetric	or	spectrally‐based	PCS	(determined	by	the	spectralPCS	field	in	the	header).	If	the	
spectralPCS	header	 field	 is	 zero	 then	 this	 tag	defines	 a	 colorimetric‐based	override	of	 the	AToB0	 tag	
with	the	PCS	defined	by	the	PCS	profile	header	entry.	 If	 the	spectralPCS	header	field	is	non‐zero	then	
this	 tag	 defines	 a	 Device	 to	 spectrally‐based	 PCS	 transform	 with	 the	 spectral	 PCS	 defined	 by	 the	
spectralPCS,	 spectralRange,	 and	 biSpectralRange	 fields	 in	 the	 profile	 header.	 It	 supports	
float32Number‐encoded	input	range,	output	range	and	transforms.	As	with	the	AToB0Tag,	it	defines	a	
transform	 to	 achieve	 a	 perceptual	 rendering.	 The	 processing	 mechanism	 is	 described	 in	
multiProcessElementsType	(see	10.2.16).	

 DToB1Tag		

Tag	signature	‘D2B1’	(44324231h)		

Permitted	tag	types:	multiProcessElementsType		

This	 tag	 has	 extended	 behaviour	 over	 ISO	 15076‐1,	 and	 defines	 a	 colour	 transform	 from	 Device	 to	
either	a	colorimetric	or	spectrally‐based	PCS	(determined	by	the	spectralPCS	field	in	the	header).	If	the	
spectralPCS	header	 field	 is	 zero	 then	 this	 tag	defines	 a	 colorimetric‐based	override	of	 the	AToB0	 tag	
with	the	PCS	defined	by	the	PCS	profile	header	entry.	 If	 the	spectralPCS	header	field	is	non‐zero	then	
this	 tag	 defines	 a	 Device	 to	 spectrally‐based	 PCS	 transform	 with	 the	 spectral	 PCS	 defined	 by	 the	

ICC.2:2017	

84	 ©	ICC	2017	–	All	rights	reserved	

spectralPCS,	 spectralRange,	 and	 biSpectralRange	 fields	 in	 the	 profile	 header.	 It	 supports	
float32Number‐encoded	input	range,	output	range	and	transforms.	As	with	the	AToB0Tag,	it	defines	a	
transform	 to	 achieve	 a	 relative	 rendering.	 The	 processing	 mechanism	 is	 described	 in	
multiProcessElementsType	(see	10.2.16).	

If	this	tag	is	not	present	then	relative	colorimetric	processing	shall	be	performed	by	using	the	absolute	
DToB3Tag	and	then	adjusting	the	PCS	values	by	the	media	white	point.	

 DToB2Tag		

Tag	signature	‘D2B2’	(44324232h)		

Permitted	tag	types:	multiProcessElementsType		

This	 tag	 has	 extended	 behaviour	 over	 ISO	 15076‐1,	 and	 defines	 a	 colour	 transform	 from	 Device	 to	
either	a	colorimetric	or	spectrally‐based	PCS	(determined	by	the	spectralPCS	field	in	the	header).	If	the	
spectralPCS	header	 field	 is	 zero	 then	 this	 tag	defines	 a	 colorimetric‐based	override	of	 the	AToB0	 tag	
with	the	PCS	defined	by	the	PCS	profile	header	entry.	 If	 the	spectralPCS	header	field	is	non‐zero	then	
this	 tag	 defines	 a	 Device	 to	 spectrally‐based	 PCS	 transform	 with	 the	 spectral	 PCS	 defined	 by	 the	
spectralPCS,	 spectralRange,	 and	 biSpectralRange	 fields	 in	 the	 profile	 header.	 It	 supports	
float32Number‐encoded	input	range,	output	range	and	transforms.	As	with	the	AToB0Tag,	it	defines	a	
transform	 to	 achieve	 a	 saturation	 rendering.	 The	 processing	 mechanism	 is	 described	 in	
multiProcessElementsType	(see	10.2.16).	

 DToB3Tag		

Tag	signature	‘D2B3’	(44324233h)		

Permitted	tag	types:	multiProcessElementsType		

This	 tag	 has	 extended	 behaviour	 over	 ISO	 15076‐1,	 and	 defines	 a	 colour	 transform	 from	 Device	 to	
either	a	colorimetric	or	spectrally‐based	PCS	(determined	by	the	spectralPCS	field	in	the	header).	If	the	
spectralPCS	header	 field	 is	 zero	 then	 this	 tag	defines	 a	 colorimetric‐based	override	of	 the	AToB0	 tag	
with	the	PCS	defined	by	the	PCS	profile	header	entry.	 If	 the	spectralPCS	header	field	is	non‐zero	then	
this	 tag	 defines	 a	 Device	 to	 spectrally‐based	 PCS	 transform	 with	 the	 spectral	 PCS	 defined	 by	 the	
spectralPCS,	 spectralRange,	 and	 biSpectralRange	 fields	 in	 the	 profile	 header.	 It	 supports	
float32Number‐encoded	input	range,	output	range	and	transforms.	As	with	the	AToB0Tag,	it	defines	a	
transform	 to	 achieve	 an	 absolute	 rendering.	 The	 processing	 mechanism	 is	 described	 in	
multiProcessElementsType	(see	10.2.16).	

If	this	tag	is	not	present	then	absolute	colorimetric	processing	shall	be	performed	by	using	the	relative	
DToB1Tag	and	then	adjusting	the	PCS	values	by	the	media	white	point.	

 gamutBoundaryDescription0Tag	

Tag	signature:	‘gbd0’	(67626430h)	

Permitted	tag	types:	gamutBoundaryDescriptionType	

ICC.2:2017	

©	ICC	2017–	All	rights	reserved	 85	

This	tag	defines	the	gamut	boundary	of	the	reference	medium	gamut	that	was	used	for	the	creation	of	
the	perceptual	transform.	

 gamutBoundaryDescription1Tag	

Tag	signature:	‘gbd1’	(67626431h)	

Permitted	tag	types:	gamutBoundaryDescriptionType	

This	tag	defines	the	gamut	boundary	for	the	relative	colorimetric	transform.	

 gamutBoundaryDescription2Tag	

Tag	signature:	‘gbd2’	(67626432h)	

Permitted	tag	types:	gamutBoundaryDescriptionType	

This	tag	defines	the	gamut	boundary	for	the	saturation	intent	transform.	

 gamutBoundaryDescription3Tag	

Tag	signature:	‘gbd3’	(67626433h)	

Permitted	tag	types:	gamutBoundaryDescriptionType	

This	tag	defines	the	gamut	boundary	for	the	absolute	colorimetric	intent	transform.	The	presence	of	the	
DToB3	 or	 BToD3	 tags	 may	 require	 a	 gamut	 boundary	 description	 that	 is	 different	 from	
gamutBoundaryDescription1Tag.	

 materialDefaultValuesTag	

Tag	signature:	‘mdv	’	(6d647620h)	

Permitted	 tag	 types:	 uInt8NumberArray,	 uInt16NumberArray,	 float16NumberArray	
float32NumberArray	

The	materialDefaultValuesTag	defines	a	default	material	value	 for	each	material	 channel	 identified	 in	
the	materialTypeArrayTag.	 The	default	 values	 shall	 be	 used	 for	processing	 by	 the	 destination	profile	
when	the	source	profile	does	contain	the	material	channel	identifier	in	its	materialTypeArrayTag.	

The	encoding	of	integer	based	values	shall	be	interpreted	as	a	logical	0,0	to	1,0	when	processed	by	the	
MToA0Tag,	 MToB0Tag,	 MToB1Tag,	 MToB2Tag,	 MToB3Tag,	 MToS0Tag,	 MToS1Tag,	 MToS2Tag,	 or	
MToS3Tag.	 	 Floating	 point	 values	 shall	 be	 directly	 used	 by	 the	 MToA0Tag,	 MToB0Tag,	 MToB1Tag,	
MToB2Tag,	MToB3Tag,	MToS0Tag,	MToS1Tag,	MToS2Tag,	or	MToS3Tag.	

The	materialDefaultValuesTag	is	optional,	and	if	not	present	then	a	default	value	of	0,0	shall	be	used	for	
processing	when	source	material	channel	data	is	not	available.	

The	number	of	array	entries	in	a	materialDefaultValuesTag	shall	be	the	same	as	the	number	of	material	
colour	channels	indicated	by	the	signature	used	in	the	MCS	profile	header	field.	

ICC.2:2017	

86	 ©	ICC	2017	–	All	rights	reserved	

 materialTypeArrayTag	

Tag	signature:	‘mcta’	(6d637461h)	

Permitted	tag	type:	tagArray	of	utf8Type		

tagArray	type	signature:	‘mcta’	(6d637461h)	

The	materialTypeArrayTag	defines	a	material	 type	name	 for	each	channel	 in	 the	Material	Connection	
Space	for	the	purpose	of	profile	connection.		

MCS	connection	between	profiles	is	performed	by	passing	material	values	between	channels	that	have	
identical	material	identifications.	Channels	with	a	material	type	in	the	source	profile	that	are	not	in	the	
destination	profile	are	 ignored.	Channels	with	material	 types	 in	the	destination	profile	 that	are	not	 in	
the	source	profile	are	processed	with	a	material	value	of	zero.	

(NOTE	 	the	order	of	material	channel	identification	of	connected	profiles	does	not	need	to	be	the	same).	

Each	material	type	name	shall	be	unique	within	a	materialTypeArrayTag.		

Matching	of	material	type	names	shall	be	case	sensitive.	

The	number	of	sub‐tag	entries	in	a	materialTypeArrayTag	shall	be	the	same	as	the	number	of	material	
colour	channels	indicated	by	the	signature	used	in	the	MCS	profile	header	field.	

 measurementInfoTag	

Tag	signature:	‘minf’	(6d696e66h)		

Permitted	tag	type:	structType	of	type	measurementInfo	

This	tag	defines	measurement	conditions	 for	the	colorimetric	and/or	spectral	PCS	(defined	by	PCS	or	
spectralPCS	 fields	 of	 the	 profile	 header	 respectively).	 If	 this	 tag	 is	 not	 present	 the	 measurement	
conditions	shall	be	assumed	to	have	white	backing,	zero	flare,	0°:45°	geometry,	using	M1	illumination	
(ISO	13655).		

NOTE	 	Unless	 otherwise	 specified,	 this	 tag	 is	 informative	 only	 with	 no	 CMM	 processing	 associated	 with	 the	
contents	of	this	tag.	

 measurementInputInfoTag	

Tag	signature:	‘miin’	(6d69696eh)	

Permitted	tag	type:	structType	of	type	measurementInfo	

This	tag	defines	measurement	information	for	measurements	related	to	values	on	input	side	of	abstract	
profiles	 (defined	by	device	 field	 of	 the	 profile	 header).	 This	 tag	may	 therefore	 only	 be	 present	 if	 the	
profile	is	an	abstract	profile.		

If	this	tag	is	not	present	the	measurement	conditions	shall	be	assumed	to	have	white	backing,	zero	flare,	
0°:45°	geometry,	using	M1	illumination	(ISO	13655).		

ICC.2:2017	

©	ICC	2017–	All	rights	reserved	 87	

NOTE	 	Unless	 otherwise	 specified,	 this	 tag	 is	 informative	 only	 with	 no	 CMM	 processing	 associated	 with	 the	
contents	of	this	tag.	

 mediaWhitePointTag	

Tag	signature:	‘wtpt’	(77747074h)	

Permitted	tag	type:	XYZType	

This	tag,	which	is	used	for	generating	the	ICC‐absolute	colorimetric	 intent,	specifies	the	chromatically	
adapted	nCIEXYZ	tristimulus	values	of	the	media	white	point.	 It	 is	used	for	generating	either	the	ICC‐
absolute	colorimetric	 intent	using	an	 ICC‐relative	 intent	 tag	when	an	 ICC‐absolute	colorimetric	 intent	
tag	 is	 not	 used	 or	 the	 ICC‐relative	 colorimetric	 intent	 using	 an	 ICC‐absolute	 intent	 tag	when	 an	 ICC‐
relative	colorimetric	intent	tag	is	not	used.		When	the	measurement	data	used	to	create	the	profile	were	
specified	relative	to	an	adopted	white	with	a	chromaticity	different	from	that	of	the	PCS	adopted	white,	
the	 media	 white	 point	 nCIEXYZ	 values	 shall	 be	 adapted	 to	 be	 relative	 to	 the	 PCS	 adopted	 white	
chromaticity	using	the	chromaticAdaptationTag	matrix,	before	recording	in	the	tag.	

Note:	It	is	recommended	that	the	profile	connection	conditions	(see	6.3.2)	be	configured	so	that	the	PCS	
uses	the	measurement	data	white	chromaticity.	

 metadataTag	

Tag	signature:	‘meta’	(6d657461h)	

Permitted	tag	type:	dictType	

This	tag	contains	a	set	of	metadata	items	for	the	profile.	

The	names	and	values	in	the	set	shall	be	taken	from	the	ICC	metadata	registry,	available	on	the	ICC	web	
site	 http://www.color.org/.	 Display	 elements	 should	 be	 taken	 from	 the	 metadata	 registry,	 as	 this	
provides	common	localizations.	

 MToA0Tag	

Tag	signature:	‘M2A0’	(4d324130h)		

Permitted	tag	type:	multiProcessElementsType	

This	 tag	provides	a	 transformation	using	a	multiProcessElementsType	(see	10.2.16)	tag	that	converts	
from	material	channel	values	to	device	channel	values.		

The	number	of	data	channels	provided	to	the	transform	shall	match	the	number	of	channels	associated	
with	 the	MCS	 field	 in	 the	Profile	 header.	MCS	 connection	 shall	 result	 in	material	 values	 for	 channels	
with	matching	material	identifications	(see	9.2.85).	Channels	that	have	no	material	identification	match	
with	 the	 source	 MCS	 shall	 be	 processed	 the	 value	 as	 input	 from	 the	 associated	 channel	 in	 the	
materialDefaultValuesTag	(see	9.2.84)	or	a	value	of	zero	material	value	if	this	tag	is	not	present.	

The	number	of	data	channels	resulting	from	the	transform	shall	match	the	number	of	channels	defined	
by	the	deviceColor	field	in	the	Profile	header.	

ICC.2:2017	

88	 ©	ICC	2017	–	All	rights	reserved	

 MToB0Tag	

Tag	signature:	‘M2B0’	(4d324230h)		

Permitted	tag	type:	multiProcessElementsType	

This	 tag	provides	a	 transformation	using	a	multiProcessElementsType	(see	10.2.16)	tag	that	converts	
from	material	channel	values	to	colorimetric	PCS	values	for	the	perceptual	rendering	intent.		

The	number	of	data	channels	provided	to	the	transform	shall	match	the	number	of	channels	associated	
with	 the	MCS	 field	 in	 the	Profile	 header.	MCS	 connection	 shall	 result	 in	material	 values	 for	 channels	
with	matching	material	identifications	(see	9.2.85).	Channels	that	have	no	material	identification	match	
with	 the	 source	MCS	 shall	 be	 processed	with	 the	 value	 as	 input	 from	 the	 associated	 channel	 in	 the	
materialDefaultValuesTag	(see	9.2.84)	or	a	zero	material	value	if	this	tag	is	not	present.	

The	number	of	data	channels	resulting	from	the	transform	shall	match	the	number	of	channels	defined	
by	the	PCS	field	in	the	Profile	header.	

 MToB1Tag	

Tag	signature:	‘M2B1’	(4d324231h)		

Permitted	tag	type:	multiProcessElementsType	

This	 tag	provides	a	 transformation	using	a	multiProcessElementsType	(see	10.2.16)	tag	that	converts	
from	material	channel	values	to	colorimetric	PCS	values	for	the	media‐relative	rendering	intent.		

The	number	of	data	channels	provided	to	the	transform	shall	match	the	number	of	channels	associated	
with	 the	MCS	 field	 in	 the	Profile	 header.	MCS	 connection	 shall	 result	 in	material	 values	 for	 channels	
with	matching	material	identifications	(see	9.2.85).	Channels	that	have	no	material	identification	match	
with	 the	 source	MCS	 shall	 be	 processed	with	 the	 value	 as	 input	 from	 the	 associated	 channel	 in	 the	
materialDefaultValuesTag	(see	9.2.84)	or	a	zero	material	value	if	this	tag	is	not	present.	

The	number	of	data	channels	resulting	from	the	transform	shall	match	the	number	of	channels	defined	
by	the	PCS	field	in	the	Profile	header.	

If	this	tag	is	not	present	then	relative	colorimetric	processing	shall	be	performed	by	using	the	absolute	
MToB3Tag	and	then	adjusting	the	PCS	values	by	the	media	white	point.	

 MToB2Tag	

Tag	signature:	‘M2B2’	(4d324232h)		

Permitted	tag	type:	multiProcessElementsType	

This	 tag	provides	a	 transformation	using	a	multiProcessElementsType	(see	10.2.16)	tag	that	converts	
from	material	channel	values	to	colorimetric	PCS	values	for	the	saturation	rendering	intent.		

The	number	of	data	channels	provided	to	the	transform	shall	match	the	number	of	channels	associated	
with	 the	MCS	 field	 in	 the	Profile	 header.	MCS	 connection	 shall	 result	 in	material	 values	 for	 channels	
with	matching	material	identifications	(see	9.2.85).	Channels	that	have	no	material	identification	match	

ICC.2:2017	

©	ICC	2017–	All	rights	reserved	 89	

with	 the	 source	MCS	 shall	 be	 processed	with	 the	 value	 as	 input	 from	 the	 associated	 channel	 in	 the	
materialDefaultValuesTag	(see	9.2.84)	or	a	zero	material	value	if	this	tag	is	not	present.	

The	number	of	data	channels	resulting	from	the	transform	shall	match	the	number	of	channels	defined	
by	the	PCS	field	in	the	Profile	header.	

 MToB3Tag	

Tag	signature:	‘M2B3’	(4d324233h)		

Permitted	tag	type:	multiProcessElementsType	

This	 tag	provides	a	 transformation	using	a	multiProcessElementsType	(see	10.2.16)	tag	that	converts	
from	material	channel	values	to	colorimetric	PCS	values	for	the	absolute	rendering	intent.		

The	number	of	data	channels	provided	to	the	transform	shall	match	the	number	of	channels	associated	
with	 the	MCS	 field	 in	 the	Profile	 header.	MCS	 connection	 shall	 result	 in	material	 values	 for	 channels	
with	matching	material	identifications	(see	9.2.85).	Channels	that	have	no	material	identification	match	
with	 the	 source	MCS	 shall	 be	 processed	with	 the	 value	 as	 input	 from	 the	 associated	 channel	 in	 the	
materialDefaultValuesTag	(see	9.2.84)	or	a	zero	material	value	if	this	tag	is	not	present.	

The	number	of	data	channels	resulting	from	the	transform	shall	match	the	number	of	channels	defined	
by	the	PCS	field	in	the	Profile	header.	

If	this	tag	is	not	present	then	absolute	colorimetric	processing	shall	be	performed	by	using	the	relative	
MToB1Tag	and	then	adjusting	the	PCS	values	by	the	spectral	media	white	point.	

 MToS0Tag	

Tag	signature:	‘M2S0’	(4d325330h)		

Permitted	tag	type:	multiProcessElementsType	

This	 tag	provides	a	 transformation	using	a	multiProcessElementsType	(see	10.2.16)	tag	that	converts	
from	material	channel	values	to	spectral	PCS	values	for	the	perceptual	rendering	intent.		

The	number	of	data	channels	provided	to	the	transform	shall	match	the	number	of	channels	associated	
with	 the	MCS	 field	 in	 the	Profile	 header.	MCS	 connection	 shall	 result	 in	material	 values	 for	 channels	
with	matching	material	identifications	(see	9.2.85).	Channels	that	have	no	material	identification	match	
with	 the	 source	MCS	 shall	 be	 processed	with	 the	 value	 as	 input	 from	 the	 associated	 channel	 in	 the	
materialDefaultValuesTag	(see	9.2.84)	or	a	zero	material	value	if	this	tag	is	not	present.	

The	number	of	data	channels	resulting	from	the	transform	shall	match	the	number	of	channels	defined	
by	the	spectralPCS	field	in	the	Profile	header.	

 MToS1Tag	

Tag	signature:	‘M2S1’	(4d325331h)		

Permitted	tag	type:	multiProcessElementsType	

ICC.2:2017	

90	 ©	ICC	2017	–	All	rights	reserved	

This	 tag	provides	a	 transformation	using	a	multiProcessElementsType	(see	10.2.16)	tag	that	converts	
from	material	channel	values	to	spectral	PCS	values	for	the	media‐relative	rendering	intent.		

The	number	of	data	channels	provided	to	the	transform	shall	match	the	number	of	channels	associated	
with	 the	MCS	 field	 in	 the	Profile	 header.	MCS	 connection	 shall	 result	 in	material	 values	 for	 channels	
with	matching	material	identifications	(see	9.2.85).	Channels	that	have	no	material	identification	match	
with	 the	 source	MCS	 shall	 be	 processed	with	 the	 value	 as	 input	 from	 the	 associated	 channel	 in	 the	
materialDefaultValuesTag	(see	9.2.84)	or	a	zero	material	value	if	this	tag	is	not	present.	

The	number	of	data	channels	resulting	from	the	transform	shall	match	the	number	of	channels	defined	
by	the	spectralPCS	field	in	the	Profile	header.	

If	 this	 tag	 is	 not	 present	 then	 relative	 spectral	 processing	 shall	 be	 performed	 by	 using	 the	 absolute	
MToS3Tag	and	then	adjusting	the	PCS	values	by	the	spectral	media	white	point.	

 MToS2Tag	

Tag	signature:	‘M2S2’	(4d325332h)		

Permitted	tag	type:	multiProcessElementsType	

This	 tag	provides	a	 transformation	using	a	multiProcessElementsType	(see	10.2.16)	tag	that	converts	
from	material	channel	values	to	spectral	PCS	values	for	the	saturation	rendering	intent.		

The	number	of	data	channels	provided	to	the	transform	shall	match	the	number	of	channels	associated	
with	 the	MCS	 field	 in	 the	Profile	 header.	MCS	 connection	 shall	 result	 in	material	 values	 for	 channels	
with	matching	material	identifications	(see	9.2.85).	Channels	that	have	no	material	identification	match	
with	 the	 source	MCS	 shall	 be	 processed	with	 the	 value	 as	 input	 from	 the	 associated	 channel	 in	 the	
materialDefaultValuesTag	(see	9.2.84)	or	a	zero	material	value	if	this	tag	is	not	present.	

The	number	of	data	channels	resulting	from	the	transform	shall	match	the	number	of	channels	defined	
by	the	spectralPCS	field	in	the	Profile	header.	

 MToS3Tag	

Tag	signature:	‘M2S3’	(4d325333h)		

Permitted	tag	type:	multiProcessElementsType	

This	 tag	provides	a	 transformation	using	a	multiProcessElementsType	(see	10.2.16)	tag	that	converts	
from	material	channel	values	to	spectral	PCS	values	for	the	absolute	rendering	intent.		

The	number	of	data	channels	provided	to	the	transform	shall	match	the	number	of	channels	associated	
with	 the	MCS	 field	 in	 the	Profile	 header.	MCS	 connection	 shall	 result	 in	material	 values	 for	 channels	
with	matching	material	identifications	(see	9.2.85).	Channels	that	have	no	material	identification	match	
with	 the	 source	MCS	 shall	 be	 processed	with	 the	 value	 as	 input	 from	 the	 associated	 channel	 in	 the	
materialDefaultValuesTag	(see	9.2.84)	or	a	zero	material	value	if	this	tag	is	not	present.	

The	number	of	data	channels	resulting	from	the	transform	shall	match	the	number	of	channels	defined	
by	the	spectralPCS	field	in	the	Profile	header.	

ICC.2:2017	

©	ICC	2017–	All	rights	reserved	 91	

If	 this	 tag	 is	 not	 present	 then	 absolute	 spectral	 processing	 shall	 be	 performed	 by	 using	 the	 relative	
MToB1Tag	and	then	adjusting	the	PCS	values	by	the	media	white	point.	

 namedColorTag	

Tag	signature:	‘nmcl’	(6e6d636ch)		

Permitted	tag	type:	tagArrayType	as	a	namedColorArray	

Named	colour	information	is	provided	as	a	namedColorArray	(see	13.2.1)	defined	as	a	tagArrayType	of	
zeroTintStruct	and	namedColorStruct	elements.	Information	related	to	a	named	colour	can	include	PCS	
and	as	optional	device	representation	for	a	list	of	named	colours.	The	first	element	in	the	array	shall	be	
a	zeroTintStruct	which	corresponds	to	colour	values	when	a	zero	tint	of	any	named	colour	is	used.	See	
12.2.7	for	complete	description	of	contents	and	usage	of	a	zeroTintStruct.	Succeeding	elements	shall	be	
defined	 as	 a	 namedColorStruct.	 See	 12.2.5	 for	 complete	 description	 of	 contents	 and	 usage	 of	 a	
namedColorStruct.		

 perceptualRenderingIntentGamutTag	

Tag	signature:	‘rig0’	(72696730h)	

Permitted	tag	type:	signatureType	

There	is	only	one	standard	reference	medium	gamut,	defined	per	ISO	12640‐3.	When	the	signature	is	
present,	the	specified	gamut	is	defined	to	be	the	reference	medium	gamut	for	the	PCS	side	of	both	the	
AToB0	and	BToA0	 tags,	 if	 they	 are	present.	 If	 this	 tag	 is	 not	present	 the	perceptual	 rendering	 intent	
reference	gamut	is	unspecified.	

The	standard	PCS	reference	medium	gamut	signatures	that	shall	be	used	are	listed	in	Table	35:	

Table	35	—	Perceptual	rendering	intent	gamut	

	 Signature	 Hex	Encoding	

Perceptual	reference	medium	gamut	 ‘prmg’	 70726D67h	

	

NOTE	1		 Because	 the	 perceptual	 intent	 is	 the	 typical	 default	 rendering	 intent,	 it	 is	most	 important	 to	 use	 the	
PRMG	for	this	rendering	intent.	

NOTE	2		 It	is	possible	that	the	ICC	will	define	other	signature	values	in	the	future.	

 profileDescriptionTag	

Tag	signature:	‘desc’	(64657363h)	

Permitted	tag	type:	multiLocalizedUnicodeType	

Structure	 containing	 invariant	 and	 localizable	 versions	 of	 the	 profile	 description	 for	 display.	 The	
content	of	this	structure	is	described	in	10.2.15.	This	invariant	description	has	no	fixed	relationship	to	
the	actual	profile	disk	file	name.	

ICC.2:2017	

92	 ©	ICC	2017	–	All	rights	reserved	

NOTE	 It	is	helpful	if	an	identification	of	the	characterization	data	that	was	used	in	the	creation	of	the	profile	is	
included	in	the	profileDescriptionTag	(e.g.	"based	on	CGATS	TR	001")	[3]		

 profileSequenceInformationTag	

Tag	signature:	‘psin’	(7073696eh)	

Permitted	tag	type:	tagArrayType	with	an	array	type	identifier	of	'pinf'	(70696e66h)	

The	 profileSequenceInformationTag	 shall	 contain	 a	 profileInfoArray	 (see	 13.2.2)	 which	 contains	 an	
array	of	profileInfoStructure	 structures	 that	 each	 contain	 information	about	 a	profile.	The	 successive	
elements	 of	 the	 array	 provide	 a	 description	 of	 the	 successive	 profiles	 in	 a	 sequence	 from	 source	 to	
destination.	The	profileSequenceInformation	tag	is	typically	used	with	the	DeviceLink	profile.	See	12.2.6	
for	a	complete	description	of	contents	and	usage	of	a	profileInfoStructure.	

 referenceNameTag	

Tag	Signature:	‘rfnm’	(72666e6dh)	

Tag	Type:	utf8Type	

This	text	shall	contain	the	Reference	name	for	the	three	component	encoding.	This	may	correspond	to	
the	Reference	Name	field	in	the	3‐component	colour	encoding	registry	on	the	ICC	web	site.		

When	the	three	component	colour	encoding	profile	utilizes	a	standardized	colour	space	encoding,	the	
elements	 of	 the	 colorEncodingParamsTag	 can	 be	 assumed	 and	 any	 elements	 existing	 in	 the	
colorEncodingParamsTag	shall	be	considered	as	overrides	of	the	default	values.		

If	the	referenceName	tag	solely	contains	the	text	“ISO	22028‐1”	(quotes	excluded)	then	the	profile	shall	
uniquely	 define	 the	 necessary	 parameters	 in	 the	 colorEncodingParamsTag.	 In	 this	 case	 the	
colorEncodingParamsTag	shall	be	included	and	all	elements	shall	be	fully	defined	for	the	colour	space.	
Additionally,	the	colorSpaceNameTag	shall	exist	and	define	the	assumed	reference	name	for	the	colour	
space	encoding.	

 saturationRenderingIntentGamutTag	

Tag	signature:	‘rig2’	(72696732h)	

Permitted	tag	type:	signatureType	

This	tag	is	fully	specified	by	ISO	15076‐1.	

 spectralViewingConditionsTag	

Tag	signature:	‘svcn’	(7376636eh)	

Permitted	Tag	types:	spectralViewingConditionsType	

The	reference	colorimetric	observer	and	the	reference	illuminant	are	defined	in	this	tag.	When	this	tag	
is	present	 it	describes	 the	viewing	conditions	associated	with	both	 the	colorimetric	and	spectral	PCS.	
The	content	of	this	structure	is	described	in	10.2.21.	

ICC.2:2017	

©	ICC	2017–	All	rights	reserved	 93	

The	 colorimetric	 observer	 type	 and	 illuminant	 type	 fields	 of	 this	 structure	 provide	 information	 that	
shall	 be	 used	 for	 the	 purposes	 of	 matching	 viewing	 conditions	 of	 profiles	 and	 determining	 the	 PCS	
conversion	transforms	to	use	for	PCS	processing.	The	correlated	colour	temperature	field	is	also	used	
for	the	purposes	of	matching	viewing	conditions	when	the	illuminant	type	value	is	“Black	body	defined	
by	CCT	“	(00000009h)	or	“Daylight	defined	by	CCT	“	(0000000Ah).	

 spectralWhitePointTag	

Tag	signature:	‘swpt’	(73777074h)	

Permitted	tag	type:	float16ArrayType,	float32ArrayType,	uInt16ArrayType	

This	tag	is	required	when	the	spectral	PCS	is	non‐zero	to	define	the	PCS	for	the	white	point	associated	
with	 the	 data	 in	 the	 profile.	 The	 number	 of	 entries	 in	 the	 array	 shall	 match	 the	 number	 of	 entries	
implied	by	the	spectral	PCS	that	is	being	used.		

This	tag	is	used	when	converting	absolute	spectral	measurement	data	to	relative	spectral	measurement	
data	or	relative	spectral	measurement	data	to	absolute	spectral	measurement	data.	

 standardToCustomPccTag	

Tag	signature:	's2cp'	(73326370h)	

Permitted	Tag	types:	multiProcessElementsType	

This	tag	provides	the	transform	needed	to	convert	from	the	colorimetry	defined	by	the1931	standard	
colorimetric	observer	with	a	D50	illuminant	to	the	colorimetry	defined	by	the	observer	and	illuminant	
defined	 in	 the	 spectralViewingConditionsTag.	The	multiProcessElementsType	 structure	 shall	 define	 a	
sequence	of	one	or	more	transforms	that	performs	this	conversion.		

The	number	of	both	the	input	and	output	channels	of	the	transform	shall	be	three.		

 surfaceMapTag	

Tag	signature:	‘smap’	(736d6170h)	

Permitted	tag	type:	embeddedNormalImageType	or	embeddedHeightImageType	

This	tag	allows	a	normal	map	or	height	map	to	be	associated	with	surface	characteristics	of	all	colours	
specified	by	the	encapsulating	profile.	

 technologyTag	

Tag	signature:	‘tech’	(74656368h)	

Permitted	tag	type:	signatureType	

Values	for	this	tag	are	specified	by	either	ISO	15076‐1	or	separate	profile	class	specifications.	

ICC.2:2017	

94	 ©	ICC	2017	–	All	rights	reserved	

10 Tag	Type	definitions	

 General	

All	 tags,	 including	 private	 tags,	 shall	 have	 as	 their	 first	 four	 bytes	 a	 tag	 type	 signature	 to	 identify	 to	
profile	readers	what	kind	of	data	is	contained	within	a	tag.	This	encourages	tag	type	reuse	and	allows	
profile	 parsers	 to	 reuse	 code	when	 tags	 use	 common	 tag	 types.	 The	 second	 four	 bytes	 (4	 to	 7)	 are	
reserved	for	future	expansion	and	shall	be	0	in	this	part	of	ISO	20677.	The	tag	signature	for	all	private	
tags	and	any	tag	type	signature	not	defined	in	Clause	10	shall	be	registered	with	the	International	Color	
Consortium	(see	Clause	5ሻ	in	order	to	prevent	signature	collisions.	

One	 or	more	 tag	 types	 are	 associated	with	 each	 tag	 defined	 in	 9.2.	 The	 tag	 type	 definitions	 in	 10.2	
specify	the	data	structure	that	shall	be	used	in	creating	the	contents	of	the	tag	data	element	for	each	tag.		

All	 tag	data	 elements,	 including	 those	of	 private	 tags,	 shall	 have	 a	 tag	 type	 signature	 in	bytes	0	 to	3.	
Bytes	4	to	7	are	reserved	for	future	expansion	and	shall	be	0.		

Any	private	tag	types	used	shall	be	registered	with	the	International	Color	Consortium	to	prevent	tag	
type	signature	collisions.	

NOTE		 An	 effort	 was	 made	 to	 make	 sure	 one‐byte,	 2‐byte	 and	 4‐byte	 data	 lies	 on	 1‐byte,	 2‐byte	 and	 4‐byte	
boundaries	respectively.	To	achieve	this	extra	spaces	indicated	with	“reserved	for	padding”	are	included	in	some	
tag	type	definitions.		

Where	not	otherwise	 specified,	 value	0	 is	defined	 to	 imply	 “unknown	value”	 for	 all	 enumerated	data	
structures.		

Where	not	otherwise	specified,	 the	 least‐significant	16	bits	of	all	32‐bit	 flags	 in	 the	 type	descriptions	
below	are	reserved	for	use	by	the	International	Color	Consortium.	

In	many	of	the	tables	shown	in	Clause	10	the	following	syntax	is	used	in	the	encoding	column	for	the	
various	numeric	types	 listed	 in	4.2:	numeric	type[X]	where	X	 represents	the	number	of	values	 in	that	
position.	Where	[...]	is	used	the	number	of	values	depends	on	the	number	of	channels	in	the	tag	type	or	
number	of	entries	in	a	table.	

 Specific	tag	type	listing	

 colorantOrderType	

This	is	an	optional	tag	that	specifies	the	laydown	order	in	which	colorants	are	printed	on	an	n‐colorant	
device.	 The	 laydown	 order	 may	 be	 the	 same	 as	 the	 channel	 generation	 order	 listed	 in	 the	
colorantTableTag	or	the	channel	order	of	a	colour	encoding	type	such	as	CMYK,	in	which	case	this	tag	is	
not	needed.	When	this	is	not	the	case	(for	example,	ink‐towers	sometimes	use	the	order	KCMY),	this	tag	
may	be	used	to	specify	the	laydown	order	of	the	colorants.	When	used	the	byte	assignments	shall	be	as	
given	in	Table	36.		

Table	36	—	colorantOrderType	encoding	

Byte	
positio

Field	length	
(bytes)	

Content	 Encoded	as	

ICC.2:2017	

©	ICC	2017–	All	rights	reserved	 95	

n	

0	to	3	 4	 ‘clro’	(636c726fh)	type	signature	 	

4	to	7	 4	 Reserved,	shall	be	0	 	

8	to	11	 4	 Count	of	colorants	(n)	 uInt32Number	

12	 1	 Number	of	the	colorant	to	be	printed	first.	 uInt8Number	

13	to	
(11+n)	 n‐1	

The	remaining	n‐1	colorants	are	described	in	a	manner	
consistent	with	the	first	colorant	 uInt8Number	

	

The	size	of	the	array	is	the	same	as	the	number	of	colorants.	The	first	position	in	the	array	contains	the	
number	of	 the	 first	 colorant	 to	be	 laid	down,	 the	 second	position	contains	 the	number	of	 the	 second	
colorant	to	be	laid	down,	and	so	on,	until	all	colorants	are	listed.	

When	 this	 tag	 is	 used,	 the	 "count	 of	 colorants"	 shall	 be	 in	 agreement	 with	 the	 data	 colour	 space	
signature	of	7.2.8.	

 curveType	

The	curveType	contains	a	4‐byte	count	value	and	a	one‐dimensional	table	of	2‐byte	values.	When	used	
the	byte	assignment	shall	be	as	given	in	Table	37.	

Table	37	—	curveType	encoding	

Byte	
positio
n	

Field	
length	
(bytes)	

Content	 Encoded as

0	to	3	 4	 ‘curv’	(63757276h)	type	signature	

4	to	7	 4	 Reserved,	shall	be	0	

8	to	11	 4	
Count	value	specifying	the	number	of	entries	(n)	that	
follow	

uInt32Number

12	to	
end	 2	n	a	

Actual	curve	values	starting	with	the	zeroth	entry	and	
ending	with	the	entry	n	‐1	 uInt16Number [...] a

a	If	n	=1	the	field	length	is	1	and	the	value	is	encoded	as	a	u8Fixed8Number		

	

The	 curveType	 embodies	 a	 one‐dimensional	 function	 that	maps	 an	 input	 value	 in	 the	 domain	 of	 the	
function	to	an	output	value	 in	 the	range	of	 the	 function.	The	domain	and	range	values	shall	be	 in	 the	
range	of	0,0	to	1,0.	

 when	n	is	equal	to	0	an	identity	response	is	assumed,		

 when	n	is	equal	to	1,	then	the	curve	value	shall	be	interpreted	as	a	gamma	value,	encoded	as	a	
u8Fixed8Number.	Gamma	shall	be	interpreted	as	the	exponent	in	the	equation	y=x	and	not	as	an	
inverse.	

 	when	n	is	greater	than	1	the	curve	values	(which	embody	a	sampled	one‐dimensional	function)	
shall	be	defined	as	follows:	

ICC.2:2017	

96	 ©	ICC	2017	–	All	rights	reserved	

The	first	entry	shall	be	located	at	0,0,	the	last	entry	at	1,0,	and	intermediate	entries	shall	be	uniformly	
spaced	 using	 an	 increment	 of	 1,0÷(n-1).	 These	 entries	 shall	 be	 encoded	 as	 uInt16Numbers	 (i.e.	 the	
values	represented	by	 the	entries,	 in	 the	range	0,0	 to	1,0	shall	be	encoded	 in	 the	range	0	 to	65	535).	
Function	values	between	the	entries	shall	be	obtained	through	linear	interpolation.	

If	the	input	is	PCSXYZ,	1+(32	767/32	768)	shall	be	mapped	to	the	value	1,0.	If	the	output	is	PCSXYZ,	the	
value	1,0	shall	be	mapped	to	1+(32	767/32	768).	

 dataType	

The	dataType	is	a	simple	data	structure	that	contains	either	UTF8	or	binary	data,	i.e.	utf8Type	data	or	
transparent	8‐bit	bytes.	The	length	of	the	string	is	obtained	by	subtracting	12	from	the	tag	data	element	
size	portion	of	the	tag	itself	as	defined	in	6.3.5.	If	this	type	is	used	for	UTF8	data,	it	shall	be	terminated	
with	a	00h	byte.	When	used,	the	byte	assignment	shall	be	as	given	in	Table	38.	

NOTE	 	This	 represents	 an	 extension	 of	 the	 dataType	 in	 ISO	 15076‐1	 that	 uses	 ASCII	 encoding	 for	 text.	 Since	
ASCII	 encoding	 is	 a	 proper	 subset	 of	 UTF8	 encoding	 the	 use	 of	 ASCII	 encoding	 has	 been	 replaced	 with	 UTF8	
encoding	for	text	based	data.	

Table	38	—	dataType	encoding	

Byte	
position	

Field	
length	
(bytes)	

Content	

0	to	3	 4	 ‘data’	(64617461h)	type	signature	

4	to	7	 4	 Reserved,	shall	be	0	

8	to	11	 4	
Data	flag,	00000000h	represents	UTF8	data,	00000001h	represents	binary	data,	
other	values	are	reserved	for	future	use	

12	to	
end	

(tag	data	
element	
size)	‐
	12	

A	string	of	((tag	data	element	size)	–	12)	UTF8	characters	or	((tag	data	element	
size)	–	12)	bytes		

		

 dateTimeType	

This	 dateTimeType	 is	 a	 12‐byte	 value	 representation	 of	 the	 time	 and	 date.	 The	 actual	 values	 are	
encoded	as	a	dateTimeNumber	described	in	4.2.1.2.	When	used	the	byte	assignment	shall	be	as	given	in	
Table	39.		

Table	39	—		dateTimeType	encoding	

Byte	
position	

Field	
length	
(bytes)	

Content	 Encoded	as	

0	to	3	 4	 ‘dtim’	(6474696Dh)	type	signature	 	

4	to	7	 4	 Reserved,	shall	be	0	 	

8	to	19	 12	 Date	and	time		 dateTimeNumber	

	

ICC.2:2017	

©	ICC	2017–	All	rights	reserved	 97	

 dictType	

The	dictTypeStructure	contains	a	dictionary	array	of	name‐value	pairs	with	each	name	being	uniquely	
associated	with	 a	 single	 value.	 Each	 name	 and	 value	 can	 optionally	 be	 associated	with	 localized	 text	
strings	for	display	purposes.	

The	byte	assignment	and	encoding	shall	be	as	giving	in	Table	40	and	Table	41.	

Table	40	—		dictType	encoding	

Byte	
position	

Field	
length	
(bytes)	

Content	 Encoded	as	

0	to	3	 4	 ‘dict’	(64696374h)	type	signature	 	

4	to	7	 4	 Reserved,	shall	be	0	 	

8	to	11	 4	 Number	of	name‐value	records	(M)	 uInt32Number	

12	to	15	 4	
The	length	of	each	name‐value	record,	in	bytes	(N).	
The	value	shall	be	16,	24,	or	32	 uInt32Number	

16	to	
15+N	

N	 The	first	name‐value	record	 See	table	41	

16+N	to	
15+M*N	

N*(M‐1)	 Additional	name‐value	records	as	needed	 	

16+M*N	
to	end	

(tag	data	
element	
size)	–
	(16+M*N)	

Storage	area	of	strings	of	Unicode	characters	and	
multiLocalizedType	tags	

	

Table	41—		Name‐Value	record	structure	

Byte	
position	

Field	
length	
(bytes)	

Content	 Encoded	as	

0	to	7	 8	 Name	string	position	of	UTF16	text	array	 positionNumber	

8	to	15	 8	 Value	string	position	of	UTF‐16	text	array	 positionNumber	

16	to	23	 8	 Display	name	element	position	of	multiLocalizedType	
tag	element	

positionNumber	

24	to	31	 8	
Display	value	element	position	of	multiLocalizedType	
tag	element	 positionNumber	

	

The	value	in	the	length	of	each	name‐value	record	filed	(N)	shall	determine	how	many	entries	shall	be	
present	in	each	name‐value	record.	

 When	the	length	value	is	16,	each	name‐value	record	shall	be	16	bytes	long	and	only	the	
positionNumber	values	for	the	name	and	value	items	shall	be	present.	

 When	the	length	value	is	24,	each	name‐value	record	shall	be	24	bytes	long	and	only	the	
positionNumber	values	for	the	name,	value	and	display	name	items	shall	be	present.	

 When	the	length	value	is	32,	each	name‐value	record	shall	be	32	bytes	long	and	the	
positionNumber	values	for	the	name,	value,	display	name,	and	display	value	items	shall	be	present	

ICC.2:2017	

98	 ©	ICC	2017	–	All	rights	reserved	

In	the	general	use	of	dictType,	 there	may	be	no	 localized	values,	so	a	name‐value	record	 length	of	16	
would	be	appropriate.	 In	other	use	cases,	 localized	display	values	are	needed,	and	32	would	be	used.	
When	using	localization	for	value	fields	and	not	localizing	names,	use	32	byte	name‐value	records	with	
the	display	name	positionNumber	fields	set	to	zero.	

A	name	string	shall	be	present	for	each	name‐value	record	and	name	string	positionNumber	size	shall	
be	greater	than	zero.	Other	data	items	referenced	by	the	name‐value	record	are	optional	according	to	
dictType,	although	particular	dictType	tag	definitions	my	impose	restrictions.	

Both	 the	 name	 string	 and	 value	 string	 shall	 be	 encoded	 as	 UTF‐16	 strings	 and	 shall	 NOT	 be	 zero	
terminated.	

Name	strings	shall	contain	at	least	one	Unicode	character,	and	the	string	contents	of	each	name	string	
shall	be	unique	within	a	dictTypeTag.	 In	general,	a	zero‐length	string	(NUL)	 is	valid	 for	value	strings,	
and	 shall	 be	 indicated	 by	 a	 non‐zero	 value	 string	 positionNumber	 offset	 and	 a	 value	 string	
positionNumber	size	equal	to	zero.	

NOTE	1	 Value	string	=	NUL	may	be	restricted	for	particular	dictType	tags.	

A	positionNumber	offset	of	zero	shall	 indicate	that	the	corresponding	data	 item	is	not	present	as	 it	 is	
undefined.	When	a	positionNumber	offset	 is	 zero,	 the	meaning	of	 the	 corresponding	positionNumber	
size	is	undefined	and	shall	be	zero.	When	a	localized	display	name	or	display	value	positionNumber	is	
undefined	(positionNumber	offset	equal	to	zero),	no	translation	is	provided	for	the	corresponding	name	
string	or	value	string,	and	the	name	string	or	value	string	may	be	displayed.	This	 is	equivalent	to	 the	
behaviour	for	all	name	string	and	value	strings	when	the	name‐value	record	length	is	16.	

Alternatively,	a	defined	display	name	element	positionNumber	offset	 (non‐zero)	with	a	display	name	
element	positionNumber	size	equal	 to	zero	 indicates	that	the	name	string	 is	not	 intended	for	display.	
Similarly	 a	 defined	 display	 value	 element	 positionNumberOffset	 (non‐zero)	 with	 a	 display	 value	
element	 size	 equal	 to	 zero	 indicates	 that	 the	 value	 string,	 if	 provided,	 is	 not	 intended	 for	 display.	 A	
localized	display	value	may	be	provided	without	a	localized	display	name.	

NOTE	2	 It	is	permitted	to	share	data	between	the	name‐value	records	of	a	dictType	tag.	For	example,	the	offsets	
for	the	value	strings	can	be	identical,	as	well	as	the	offsets	for	display	value	elements	can	be	identical.	

The	 following	 pseudocode	 can	 be	 used	 to	 determine	 string	 validity	 where	 pos	 is	 value	 string	
positionNumber,	display	name	positionNumber,	or	display	value	positionNumber:	

If	pos.offset	==	0	

Then	item	is	undefined	(pos.length	can	be	ignored	when	pos.offset	is	zero)	

Else	

If	((pos.offset	>=	20+N*M)	&&	((pos.length>=	minSizeofItemType)	||	(Length=0))	&&	

	 			(pos.offset	+	pos.length	<=end+1)	

	 	 Then	item	is	defined.	

	 If	((item	==	value	string)	&&(pos.length==0)	

	 	 Then	value	string	is	NUL	string	

	 Else	if	((item==	display	name	element)	&&	(pos.length)==0)	

ICC.2:2017	

©	ICC	2017–	All	rights	reserved	 99	

	 	 Then	name	string	is	not	for	display	use	and	no	display	name	is	provided	

	 Else	if	((item==display	name	element)	&&	pos.length)==0)	

					 	 Then	value	string	is	not	for	display	use	and	no	display	value	is	provided	

	 Else	

	 	 THROW_ERROR(“pos.offset	is	not	zero	and	pos.offset	or	pos.length	are	invalid”)	

	

Unless	otherwise	stated,	numbers	shall	be	encoded	in	the	string	value	as	follows:	

- A number shall be encoded as zero or more blanks and/or tabs, an optional ‘+’ or ‘-‘ sign, a string of
decimal digits that contain one decimal point ‘.’, and an optional exponent part. The exponent part
shall consist of ‘e’ or ‘E’, an optional ‘+’ or ‘-‘ sign, and one or two decimal digits. The exponent shall
indicate a power of 10.

- Multiple numbers stored in a single string shall be separated by one comma ‘,’ between adjacent
numbers.

 embeddedHeightImageType	

This	type	provides	support	for	embedding	an	image	that	defines	a	height	map.	The	structure	encoding	
shall	be	as	given	in	Table	42.	

Table	42—		embeddedHeightImageType	encoding	

Byte	
position	

Field	
length	
(bytes)	

Content	 Encoded	as	

0	to	3	 4	 ‘ehim’	(6568696dh)	type	signature	 	

4	to	7	 4	 Reserved,	shall	be	0	 	

8	to	11	 4	 Seamless	Indicator	 See	Table	43	

12	to	15	 4	 Height	Image	Encoding	Format		 See	Table	44	

16	to	19	 4	 Height	in	meters	of	minimum	pixel	value	 float32Number	

20	to	23	 4	 Height	in	meters	of	maximum	pixel	value	 float32Number	

24	to	
end	

(tag	data	
element	
size)	‐
	12	

Height	Image	data	 	

	

The	displacement	image	data	can	be	created	so	that	when	the	displacement	map	is	tiled	across	a	surface	
it	has	no	visible	seams.	The	Seamless	indicator	field	indicates	if	the	displacement	image	is	seamless	and	
has	the	values	as	given	in	Table	43.	

Table	43	—	Displacement	Image	Type	

Image	Type	 Value	

Not	seamless	 0	

ICC.2:2017	

100	 ©	ICC	2017	–	All	rights	reserved	

Seamless	 1	

	

The	image	data	shall	be	encoded	using	the	image	file	format	defined	by	the	Displacement	Image	Format	
field	which	can	have	the	values	as	given	in	Table	44.		

Table	44	—	Displacement	Image	Encoding	Formats	

Image	Encoding	Format	 Value	

PNG	 0	

TIFF	 1	

	

The	contents	of	a	Displacement	Image	shall	be	encoded	as	greyscale	pixels	used	to	identify	the	height	of	
the	displacement.	A	pixel	with	a	minimum	pixel	value	shall	have	a	displacement	equal	to	the	height	in	
meters	 defined	 by	 the	 height	 in	meters	 of	minimum	pixel	 value	 field.	 A	 pixel	with	 a	maximum	pixel	
value	 shall	 have	 a	 displacement	 equal	 to	 the	 height	 in	 meters	 defined	 by	 the	 height	 in	 meters	 of	
maximum	pixel	value	field.	

The	physical	dimensions	of	the	pixels	in	the	image	shall	be	encoded	by	using	the	appropriate	encoding	
mechanisms	of	the	image‐encoding	format.	The	PNG	format	uses	the	pHYs	chunk	to	specify	the	physical	
size	 of	 the	 image.	 The	 TIFF	 format	 uses	 the	 perResolutionUnit,	 XResolution,	 &	 YResolution	 tags	 to	
specify	the	physical	dimensions.	

 embeddedNormalImageType	

This	type	provides	support	for	embedding	an	image	that	defines	a	normal	map.	The	structure	encoding	
shall	be	as	given	in	Table	45.	

Table	45	—		embeddedNormalImageType	encoding	

Byte	
position	

Field	
length	
(bytes)	

Content	 Encoded	as	

0	to	3	 4	 ‘enim’	(656e696dh)	type	signature	 	

4	to	7	 4	 Reserved,	shall	be	0	 	

8	to	11	 4	 Seamless	Indicator	 See	Table	41	

12	to	15	 4	 Normal	Image	Encoding	Format		 See	Table	42	

16	to	
end	

(tag	data	
element	
size)	‐
	12	

Normal	Image	data	 	

	

The	normal	image	data	can	be	created	so	that	when	the	normal	map	is	tiled	across	a	surface	it	has	no	
visible	seams.	The	Seamless	indicator	field	indicates	if	the	normal	image	is	seamless	and	has	the	values	
as	given	in	Table	46.	

ICC.2:2017	

©	ICC	2017–	All	rights	reserved	 101	

Table	46	—	Normal	Image	Type	

Image	Type	 Value	

Not	seamless	 0	

Seamless	 1	

	

The	image	data	shall	be	encoded	using	the	image	file	format	defined	by	the	Normal	Image	Format	field	
which	can	have	the	values	as	given	in	Table	47.		

Table	47	—	Normal	Image	Encoding	Formats	

Image	Encoding	Format	 Value	

PNG	 0	

TIFF	 1	

	

The	contents	of	a	Normal	 Image	shall	be	encoded	as	RGB	pixels	used	 to	 identify	XYZ	direction	of	 the	
normal	vector	for	each	point	in	the	image.	RGBs	are	mapped	to	XYZ	directions	as	follows:	

 Red	maps	from	(0	‐	maximum	red	value)	to	X	(‐1.0	‐	1.0)	

 Green	maps	from	(0	‐	maximum	green	value)	to	Y	(‐1.0	‐	1.0)	

 Blue	maps	from	(0	‐	maximum	blue	value)	to	Z	(0.0	‐	1.0)	

Since	normals	point	towards	the	observer,	negative	values	of	Z	are	not	encoded.	The	maximum	values	
for	the	red,	green,	and	blue	channels	can	be	found	by	accessing	the	appropriate	fields	of	the	PNG	and	
TIFF	files.	The	length	of	the	vector	specified	by	the	XYZ	direction	shall	be	equal	to	1.0.	

The	physical	dimensions	of	the	pixels	in	the	image	shall	be	encoded	by	using	the	appropriate	encoding	
mechanisms	of	the	image‐encoding	format.	The	PNG	format	uses	the	pHYs	chunk	to	specify	the	physical	
size	 of	 the	 image.	 The	 TIFF	 format	 uses	 the	 perResolutionUnit,	 XResolution,	 &	 YResolution	 tags	 to	
specify	the	physical	dimensions.	

 float16ArrayType		

This	 type	 represents	 an	 array	 of	 generic	 16‐bit	 encoded	 half‐precision	 floating	 point	 values.	 The	
number	of	values	is	determined	from	the	size	of	the	tag.		

When	used	the	byte	assignment	and	encoding	shall	be	as	given	in	Table	48.	

Table	48	–	float16ArrayType	Encoding	

Byte	Position	 Field	
Length	
(bytes)	

Content Encoded	as…	

ICC.2:2017	

102	 ©	ICC	2017	–	All	rights	reserved	

0..3	 4	 'fl16'	(666c3136h)	type	signature 	

4..7	 4	 Reserved,	shall	be	0 	

8..end	 2N	 An	 array	 of	 16‐bit	 half‐precision	 floating	
point	numbers	

float16Number[...]

	

 float32ArrayType		

This	type	represents	an	array	of	generic	32‐bit	encoded	single‐precision	floating	point	numbers	values.	
The	number	of	values	is	determined	from	the	size	of	the	tag.		

When	used	the	byte	assignment	and	encoding	shall	be	as	given	in	Table	49.	

Table	49	–	float32ArrayType	Encoding	

Byte	Position	 Field	
Length	
(bytes)	

Content Encoded	as…	

0..3	 4	 'fl32'	(666c3332h)	type	signature 	

4..7	 4	 Reserved,	shall	be	0 	

8..end	 4N	 An	 array	 of	 32‐bit	 single‐precision	 floating	
point	numbers	

float32Number[...]

	

 float64ArrayType		

This	type	represents	an	array	of	generic	64‐bit	encoded	double‐precision	floating	point	numbers	values.	
The	number	of	values	is	determined	from	the	size	of	the	tag.		

When	used	the	byte	assignment	and	encoding	shall	be	as	given	in	Table	50.	

Table	50	–	float64ArrayType	Encoding	

Byte	Position	 Field	
Length	
(bytes)	

Content Encoded	as…	

0..3	 4	 'fl64'	(666c3634h)	type	signature 	

4..7	 4	 Reserved,	shall	be	0 	

8..end	 8N	 An	 array	 of	 64‐bit	 double‐precision	 floating	
point	numbers	

float64Number[...]

	

ICC.2:2017	

©	ICC	2017–	All	rights	reserved	 103	

 gamutBoundaryDescriptionType	

The	GamutBoundaryDescriptionType	structure	encodes	a	collection	of	vertices	and	faces	that	describe	a	
gamut	boundary.	The	vertices	contain	a	PCS	value	and	an	optional	device	value.	The	faces	contain	a	list	
of	vertex	 IDs.	The	order	of	 the	vertex	IDs	shall	be	clockwise	when	viewed	from	outside	of	 the	gamut.	
The	encoding	shall	be	as	shown	in	Table	51.	

Table	51	–	Gamut	Boundary	Description	Encoding	

Byte	Position	 Field	
Length	
(bytes)	

Content Encoded	as…	

0..3	 4	 'gbd	'	(67626420h)	type	signature 	

4..7	 4	 Reserved,	shall	be	0 	

8..9	 2	 Number	of	PCS	Channels	(P) uInt16Number	

10..11	 2	 Number	of	Device	Channels	(Q) uInt16Number	

12..15	 4	 Number	of	vertices	(V) uInt32Number	

16..19	 4	 Number	of	faces	(F) uInt32Number	

20	..	19+F*12	 F*12 Array	of	vertex	IDs	for	each	face uInt32Number	

20+F*12	..	
19+F*12+V*P*4	

V*P*4	 Array	of	PCS	coordinates	for	each	vertex float32Number

20+F*12+V*P*4	
…	end	

V*Q*4	 Array	of	device	coordinates	for	each	vertex float32Number

	

The	number	of	PCS	channels	(P)	shall	be	3	or	greater.	The	number	of	output	channels	(Q)	can	be	zero	if	
device	values	are	not	included.		

The	number	of	vertices	shall	be	4	or	greater.		

The	number	of	faces	shall	be	4	or	greater.	

The	 array	 of	 vertex	 IDs	 is	 an	 array	 that	 specifies	 the	 IDs	 of	 each	 vertex	 of	 each	 face.	 The	 array	 is	
organized	so	that	the	three	IDs	of	the	first	face	are	specified	first,	the	three	IDs	of	the	second	face	next,	
and	so	on.	The	ID	of	the	vertex	is	a	number	that	shall	be	between	0	and	V‐1.	This	ID	corresponds	to	the	
order	of	the	vertices	in	the	vertex	array.	

The	 array	 of	 vertex	 PCS	 values	 contains	 one	 PCS	 value	 for	 each	 vertex.	 The	 order	 of	 the	 vertices	
corresponds	with	 the	 vertex	 IDS	 from	 the	 face	 description.	 The	 range	 of	 the	 Output	 Channels	 is	 the	
range	of	values	that	can	be	represented	as	float32Number.	

ICC.2:2017	

104	 ©	ICC	2017	–	All	rights	reserved	

The	optional	array	of	device	values	contains	one	device	value	for	each	vertex.	The	order	of	the	vertices	
corresponds	with	 the	 vertex	 IDS	 from	 the	 face	 description.	 The	 range	 of	 the	 Output	 Channels	 is	 the	
range	of	values	that	can	be	represented	as	float32Number.	

The	set	of	faces	should	constitute	a	closed	volume.		

NOTE		 Euler’s	formula	can	be	used	to	verify	that	the	volume	is	closed.	

 lutAToBType	

10.2.12.1 General	

This	structure	represents	a	colour	transform.	The	type	contains	up	to	five	processing	elements	that	are	
stored	in	the	AToBTag	tag	in	the	following	order:	a	set	of	one‐dimensional	curves,	a	3	×	3	matrix	with	
offset	 terms,	 a	 set	 of	 one‐dimensional	 curves,	 a	 multi‐dimensional	 lookup	 table,	 and	 a	 set	 of	 one‐
dimensional	output	curves.	Data	are	processed	using	these	elements	via	the	following	sequence:	

("A" curves)  (multi-dimensional lookup table, CLUT)  ("M" curves)  (matrix)("B" curves).

NOTE	1	 The	processing	elements	are	not	 in	this	order	 in	the	 tag	to	allow	for	simplified	reading	and	writing	of	
profiles.	

It	 is	possible	 to	use	any	or	all	of	 these	processing	elements.	At	 least	one	processing	element	shall	be	
included.	Only	the	following	combinations	are	permitted:	

	 B	
	 M,	Matrix,	B	
	 A,	CLUT,	B	
	 A,	CLUT,	M,	Matrix,	B	

Other	combinations	may	be	achieved	by	setting	processing	element	values	to	identity	transforms.	The	
domain	and	range	of	the	A	and	B	curves	and	CLUT	are	defined	to	consist	of	all	real	numbers	between	
0,0	and	1,0	inclusive.	The	first	entry	is	located	at	0,0,	the	last	entry	at	1,0,	and	intermediate	entries	are	
uniformly	spaced	using	an	increment	of	1,0/(m‐1).	For	the	A	and	B	curves	m	is	the	number	of	entries	in	
the	 table.	 For	 the	CLUT	M	 is	 the	 number	 of	 grid	 points	 along	 each	dimension.	 Since	 the	 domain	 and	
range	of	the	tables	are	0,0	to	1,0	it	is	necessary	to	convert	all	device	values	and	PCSLAB	values	to	this	
numeric	range.	It	shall	be	assumed	that	the	maximum	value	in	each	case	is	set	to	1,0	and	the	minimum	
value	to	0,0	and	all	intermediate	values	are	linearly	scaled	accordingly.	

When	using	this	type,	it	is	necessary	to	assign	each	data	colour	space	component	to	an	input	and	output	
channel.	The	channel	order	shall	be	 the	same	as	 that	associated	with	 the	 colour	space	signature	 (see	
7.2.8	and	7.2.9)	

When	used,	the	byte	assignment	and	encoding	shall	be	as	given	in	Table	52.	

Table	52	—	lutAToBType	encoding	

Byte	position	
Field	length	
(bytes)	

Content	 Encoded	as	

0	to	3	 4	 ‘mAB	’	(6D414220h)	[multi‐function	A‐to‐B	
table]	type	signature	

	

ICC.2:2017	

©	ICC	2017–	All	rights	reserved	 105	

4	to	7	 4	 Reserved,	shall	be	0	 	

8	 1	 Number	of	Input	Channels	(i)	 uInt8Number	

9	 1	 Number	of	Output	Channels	(o)	 uInt8Number	

10	to	11	 2	 Reserved	for	padding,	shall	be	0	 	

12	to	15	 4	 Offset	to	first	"B"	curve	 uInt32Number	

16	to	19	 4	 Offset	to	matrix	 uInt32Number	

20	to	23	 4	 Offset	to	first	"M"	curve	 uInt32Number	

24	to	27	 4	 Offset	to	CLUT	 uInt32Number	

28	to	31	 4	 Offset	to	first	"A"	curve	 uInt32Number	

32	to	end	 	Variable		 Data	 	

	

Each	curve	and	processing	element	shall	start	on	a	4‐byte	boundary.	To	achieve	this,	each	item	shall	be	
followed	by	up	to	three	00h	pad	bytes	as	needed.		

NOTE	2	 It	 is	 permitted	 to	 share	 curve	 data	 elements.	 For	 example,	 the	 offsets	 for	 A,	 B	 and	M	 curves	 can	 be	
identical.	

The	offset	entries	(bytes	12	to	31)	point	to	the	various	processing	elements	found	in	the	tag.	The	offsets	
indicate	the	number	of	bytes	from	the	beginning	of	the	tag	to	the	desired	data.	If	any	of	the	offsets	are	
zero,	it	is	an	indication	that	processing	element	is	not	present	and	the	operation	is	not	performed.	

This	tag	type	may	be	used	independent	of	the	value	of	the	PCS	field	specified	in	the	header.		

10.2.12.2 "A"	curves	

The	number	of	"A"	curves	is	the	same	as	the	number	of	input	channels.	The	"A"	curves	may	only	be	used	
when	the	CLUT	is	used.	The	curves	are	stored	sequentially,	with	00h	bytes	used	for	padding	between	
them	 if	 needed.	Each	 "A"	 curve	 is	 stored	 as	 an	 embedded	 curveType	or	 a	parametricCurveType	 (see	
10.2.2	or	10.1.17).	The	length	is	as	indicated	by	the	specification	of	the	respective	curve	type.	Note	that	
the	entire	tag	type,	including	the	tag	type	signature	and	reserved	bytes,	is	included	for	each	curve.	

10.2.12.3 CLUT	

The	 CLUT	 appears	 as	 an	 n‐dimensional	 array,	 with	 each	 dimension	 having	 a	 number	 of	 entries	
corresponding	to	the	number	of	grid	points.	

The	CLUT	values	are	arrays	of	8‐bit	or	16‐bit	unsigned	values,	normalized	to	the	range	of	0	to	255	or	0	
to	65	535.	

The	 CLUT	 is	 organized	 as	 an	 i‐dimensional	 array	 with	 a	 variable	 number	 of	 grid	 points	 in	 each	
dimension,	where	i	is	the	number	of	input	channels	in	the	transform.	The	dimension	corresponding	to	
the	first	channel	varies	least	rapidly	and	the	dimension	corresponding	to	the	last	input	channel	varies	
most	rapidly.	Each	grid	point	value	is	an	o‐integer	array,	where	o	is	the	number	of	output	channels.	The	
first	sequential	integer	of	the	entry	contains	the	function	value	for	the	first	output	function,	the	second	
sequential	integer	of	the	entry	contains	the	function	value	for	the	second	output	function	and	so	on	until	
all	of	the	output	functions	have	been	supplied.	The	size	of	the	CLUT	in	bytes	is	(nGrid1	×	nGrid2	×…×	
nGridN)	×	number	of	output	channels	(o)	×	size	of	(channel	component).	

ICC.2:2017	

106	 ©	ICC	2017	–	All	rights	reserved	

When	used	the	byte	assignment	and	encoding	for	the	CLUT	shall	be	as	given	in	Table	53.	

Table	53	—	lutAToBType	CLUT	encoding	

Byte	position	 Field	length	
(bytes)	

Content	 Encoded	as	

0	to	15	 16	

Number	of	grid	points	in	each	dimension.	
Only	the	first	i	entries	are	used,	where	i	is	
the	number	of	input	channels.	Unused	
entries	shall	be	00h.	

uInt8Number[16]	

16	 1	
Precision	of	data	elements	in	bytes.	
Shall	be	either	01h	or	02h.	 uInt8Number	

17	to	19	 3	 Reserved	for	padding,	shall	be	0	 	

20	to	end	 	Variable		
CLUT	data	points	(arranged	as	described	in	
the	text).	

uInt8Number	[...]	or	
uInt16Number	[...]	

	

If	 the	 number	 of	 input	 channels	 does	 not	 equal	 the	 number	 of	 output	 channels,	 the	 CLUT	 shall	 be	
present.	

If	the	number	of	grid	points	in	a	one‐dimensional	curve,	or	in	a	particular	dimension	of	the	CLUT,	is	two,	
the	data	for	those	points	shall	be	set	so	that	the	correct	results	are	obtained	when	linear	interpolation	is	
used	to	generate	intermediate	values.	

10.2.12.4 "M"	curves	

When	 present,	 the	 number	 of	 "M"	 curves	 shall	 be	 the	 same	 as	 the	 number	 of	 output	 channels.	 The	
curves	 are	 stored	 sequentially,	 with	 00h	 bytes	 used	 for	 padding	 between	 them	 if	 needed.	 Each	 "M"	
curve	 is	 stored	 as	 an	 embedded	 curveType	 or	 a	 parametricCurveType	 (see	 10.2.2	 or	 10.2.17).	 The	
length	 is	 as	 indicated	by	 the	 specification	 of	 the	 respective	 curve	 type.	Note	 that	 the	 entire	 tag	 type,	
including	the	tag	type	signature	and	reserved	bytes,	is	included	for	each	curve.	The	"M"	curves	may	only	
be	used	when	the	matrix	is	used.	

10.2.12.5 Matrix	

The	matrix	is	organized	as	a	3×4	array.	The	elements	appear	in	order	from	e1‐e12.	The	matrix	elements	
are	each	s15Fixed16Numbers.		

array = [e11, e12, …, e1P, e21, e22, …, e2P, …, eQ1, eQ2, …, eQP, e1, e2, …, eQ] (5)

The	matrix	is	used	to	convert	data	to	a	different	colour	space,	according	to	the	following	equation:	





















































































QPQPQQ

P

P

Q e

e

e

X

X

X

eee

eee

eee

Y

Y

Y

..................

...

...

...
2

1

2

1

21

22221

11211

2

1

 (6)

The	range	of	input	values	X1,	X2	and	X3	is	0,0	to	1,0.	The	resultant	values	Y1,	Y2	and	Y3	shall	be	clipped	to	
the	range	0,0	to	1,0	and	used	as	inputs	to	the	"B"	curves.	

ICC.2:2017	

©	ICC	2017–	All	rights	reserved	 107	

10.2.12.6 “B"	curves	

The	number	of	"B"	curves	shall	be	the	same	as	the	number	of	output	channels.	The	curves	are	stored	
sequentially,	with	00h	bytes	used	for	padding	between	them	if	needed.	Each	"B"	curve	is	stored	as	an	
embedded	curveType	or	a	parametricCurveType	(see	10.2.2	or	10.2.17).	The	length	is	as	 indicated	by	
the	 specification	 of	 the	 respective	 curve	 type.	 Note	 that	 the	 entire	 tag	 type,	 including	 the	 tag	 type	
signature	and	reserved	bytes,	are	included	for	each	curve.	

 lutBToAType	

10.2.13.1 General	

This	structure	represents	a	colour	transform.	The	type	contains	up	to	 five	processing	elements	which	
are	stored	in	the	BToATag	in	the	following	order:	a	set	of	one‐dimensional	curves,	a	3	×	3	matrix	with	
offset	 terms,	 a	 set	 of	 one‐dimensional	 curves,	 a	 multi‐dimensional	 lookup	 table,	 and	 a	 set	 of	 one‐
dimensional	curves.	Data	are	processed	using	these	elements	via	the	following	sequence:	

("B" curves) (matrix) ("M" curves) (multi-dimensional lookup table, CLUT) ("A" curves).

It	 is	possible	 to	use	any	or	all	of	 these	processing	elements.	At	 least	one	processing	element	shall	be	
included.	Only	the	following	combinations	are	permitted:	

	 B	
	 B,	Matrix,	M	
	 B,	CLUT,	A	
	 B,	Matrix,	M,	CLUT,	A	

Other	combinations	may	be	achieved	by	setting	processing	element	values	to	identity	transforms.	The	
domain	and	range	of	the	A	and	B	curves	and	CLUT	are	defined	to	consist	of	all	real	numbers	between	
0,0	and	1,0	inclusive.	The	first	entry	is	located	at	0,0,	the	last	entry	at	1,0,	and	intermediate	entries	are	
uniformly	spaced	using	an	increment	of	1,0/(m‐1).	For	the	A,	M	and	B	curves	m	is	the	number	of	entries	
in	the	table.	For	the	CLUT	m	 is	the	number	of	grid	points	along	each	dimension.	Since	the	domain	and	
range	of	the	tables	are	0,0	to	1,0	it	is	necessary	to	convert	all	device	values	and	PCSLAB	values	to	this	
numeric	range.	It	shall	be	assumed	that	the	maximum	value	in	each	case	is	set	to	1,0	and	the	minimum	
value	to	0,0	and	all	intermediate	values	are	linearly	scaled	accordingly.	

When	using	this	type,	it	is	necessary	to	assign	each	data	colour	space	component	to	an	input	and	output	
channel.	The	channel	order	shall	be	 the	same	as	 that	associated	with	 the	 colour	space	signature	 (see	
7.2.8	and	7.2.9)	

When	used	the	byte	assignment	and	encoding	shall	be	as	given	in	Table	54.	

Table	54	—	lutBToAType	encoding	

Byte	position	 Field	length	
(bytes)	

Content	 Encoded	as	

0	to	3	 4	
‘mBA’	(6D424120h)	[multi‐function	BToA	
table]	type	signature	 	

4	to	7	 4	 Reserved,	shall	be	0	 	

8	 1	 Number	of	Input	Channels	(i)	 uInt8Number	

ICC.2:2017	

108	 ©	ICC	2017	–	All	rights	reserved	

9	 1	 Number	of	Output	Channels	(o)	 uInt8Number	

10‐11	 2	 Reserved	for	padding,	shall	be	0	 	

12	to	15	 4	 Offset	to	first	"B"	curve	 uInt32Number	

16	to	19	 4	 Offset	to	matrix	 uInt32Number	

20	to	23	 4	 Offset	to	first	"M"	curve	 uInt32Number	

24	to	27	 4	 Offset	to	CLUT	 uInt32Number	

28	to	31	 4	 Offset	to	first	"A"	curve	 uInt32Number	

32	to	end	 	Variable		 Data	 	

	

Each	curve	and	processing	element	shall	start	on	a	4‐byte	boundary.	To	achieve	this,	each	item	may	be	
followed	by	up	to	three	00h	pad	bytes	as	needed.	

Curve	data	elements	may	be	shared.	For	example,	the	offsets	for	A,	B	and	M	curves	may	be	identical.	

The	offset	entries	(bytes	12	to	31)	point	to	the	various	processing	elements	found	in	the	tag.	The	offsets	
indicate	the	number	of	bytes	from	the	beginning	of	the	tag	to	the	desired	data.	If	any	of	the	offsets	are	
zero,	it	is	an	indication	that	processing	element	is	not	present	and	the	operation	is	not	performed.	

This	tag	type	shall	only	be	used	when	the	PCS	field	in	the	header	specifies	either	PCSXYZ	or	PCSLAB.		

10.2.13.2 "B"	curves	

The	 number	 of	 "B"	 curves	 is	 the	 same	 as	 the	 number	 of	 input	 channels.	 The	 curves	 are	 stored	
sequentially,	with	00h	bytes	used	for	padding	between	them	if	needed.	Each	"B"	curve	is	stored	as	an	
embedded	curveType	tag	or	a	parametricCurveType	(see	10.2.2	or	10.2.17).	The	length	is	as	indicated	
by	the	specification	of	the	curve	type.	Note	that	the	entire	tag	type,	including	the	tag	type	signature	and	
reserved	bytes,	is	included	for	each	curve.	

10.2.13.3 Matrix	

The	matrix	is	organized	as	a	3	×	4	array.	The	elements	of	the	matrix	appear	in	the	type	in	order	from	e1	
to	e12.	The	matrix	elements	are	each	s15Fixed16Numbers.		

array = [e1, e2, e3, e4, e5, e6, e7, e8, e9, e10, e11, e12] (7)

The	matrix	is	used	to	convert	data	to	a	different	colour	space,	according	to	the	following	equation:	




























































12

11

10

3

2

1

987

654

321

3

2

1

e
e
e

X
X
X

eee
eee
eee

Y
Y
Y

 (8)

The	range	of	input	values	X1,	X2	and	X3	is	0,0	to	1,0.	The	resultant	values	Y1,	Y2	and	Y3	shall	be	clipped	to	
the	range	0,0	to	1,0	and	used	as	inputs	to	the	"M"	curves.	

The	matrix	is	permitted	only	if	the	number	of	output	channels,	or	"M"	curves,	is	3.	

ICC.2:2017	

©	ICC	2017–	All	rights	reserved	 109	

10.2.13.4 "M"	curves	

When	present,	the	number	of	"M"	curves	shall	be	the	same	as	the	number	of	input	channels.	The	curves	
are	 stored	 sequentially,	with	00h	bytes	used	 for	padding	between	 them	 if	needed.	Each	 "M"	 curve	 is	
stored	as	an	embedded	curveType	or	a	parametricCurveType	(see	10.2.2	or	10.2.17).	The	length	is	as	
indicated	by	the	specification	of	the	proper	curve	type.	Note	that	the	entire	tag	type,	including	the	tag	
type	signature	and	reserved	bytes,	are	included	for	each	curve.	The	"M"	curves	may	only	be	used	when	
the	matrix	is	used.	

10.2.13.5 CLUT	

The	 CLUT	 appears	 as	 an	 n‐dimensional	 array,	 with	 each	 dimension	 having	 a	 number	 of	 entries	
corresponding	to	the	number	of	grid	points.	

The	CLUT	values	are	arrays	of	8‐bit	or	16‐bit	unsigned	values,	normalized	to	the	range	of	0	to	255	or	0	
to	65	535.The	CLUT	is	organized	as	an	i‐dimensional	array	with	a	variable	number	of	grid	points	in	each	
dimension,	where	i	is	the	number	of	input	channels	in	the	transform.	The	dimension	corresponding	to	
the	first	channel	varies	least	rapidly	and	the	dimension	corresponding	to	the	last	input	channel	varies	
most	rapidly.	Each	grid	point	value	is	an	o‐integer	array,	where	o	is	the	number	of	output	channels.	The	
first	sequential	integer	of	the	entry	contains	the	function	value	for	the	first	output	function,	the	second	
sequential	integer	of	the	entry	contains	the	function	value	for	the	second	output	function	and	so	on	until	
all	of	the	output	functions	have	been	supplied.	The	size	of	the	CLUT	in	bytes	is	(nGrid1	×	nGrid2	×…×	
nGridN)	×	number	of	output	channels	(o)	×	size	of	(channel	component).	 	

When	used	the	byte	assignment	and	encoding	for	the	CLUT	shall	be	as	given	in	Table	55.		

Table	55	—	lutBToAType	CLUT	encoding	

Byte	position	
Field	length	
(bytes)	 Content	 Encoded	as	

0	to15	 16	

Number	of	grid	points	in	each	dimension.	
Only	the	first	i	entries	are	used,	where	i	is	
the	number	of	input	channels.	Unused	
entries	shall	be	00h.	

uInt8Number[16]	

16	 1	
Precision	of	data	elements	in	bytes.	
Shall	be	either	01h	or	02h.	

uInt8Number	

17	to	19	 3	 Reserved	for	padding.	 	

20	to	end	 	Variable		 CLUT	data	points	(arranged	as	described	in	
the	text).	

uInt8Number	[...]	or	
uInt16Number	[...]	

		

If	the	number	of	grid	points	in	a	one‐dimensional	curve,	or	in	a	particular	dimension	of	the	CLUT,	is	two,	
the	data	for	those	points	shall	be	set	so	that	the	correct	results	are	obtained	when	linear	interpolation	is	
used	to	generate	intermediate	values.	

If	 the	 number	 of	 input	 channels	 does	 not	 equal	 the	 number	 of	 output	 channels,	 the	 CLUT	 shall	 be	
present.	

10.2.13.6 "A"	curves	

When	present,	the	number	of	"A"	curves	shall	be	the	same	as	the	number	of	output	channels.	The	"A"	
curves	may	only	be	used	when	 the	CLUT	 is	used.	The	curves	are	 stored	sequentially,	with	00h	bytes	

ICC.2:2017	

110	 ©	ICC	2017	–	All	rights	reserved	

used	 for	 padding	between	 them	 if	 needed.	 Each	 "A"	 curve	 is	 stored	 as	 an	 embedded	 curveType	 or	 a	
parametricCurveType	 (see	 10.2.2	 or	 10.2.17).	 The	 length	 is	 as	 indicated	 by	 the	 specification	 of	 the	
proper	curve	type.	Note	that	the	entire	tag	type,	including	the	tag	type	signature	and	reserved	bytes,	is	
included	for	each	curve.	

 measurementType	

This	tag	structure	represents	a	backwards	compatible	extension	of	the	ISO	15076‐1	with	the	same	tag	
signature.	 An	 additional	 optional	 element	 can	 be	 included	 as	well	 as	 extended	 values	 for	 illuminant	
specification	have	been	defined.		

If	 the	encoded	tag	structure	 length	 is	only	36	bytes	then	the	value	for	the	measurement	type	shall	be	
assumed	to	be	zero.	

The	 measurementType	 information	 refers	 only	 to	 the	 internal	 profile	 data	 and	 is	 meant	 to	 provide	
profile	 makers	 an	 alternative	 to	 the	 default	 measurement	 specifications.	 When	 used	 the	 byte	
assignment	and	encoding	shall	be	as	given	in	Table	56.		

Table	56	—	measurementType	structure	

Byte	
position	

Field	
length	
(bytes)	

Content	 Encoded	as	

0	to	3	 4	 ‘meas’	(6D656173h)	type	signature	 	

4	to	7	 4	 Reserved,	shall	be	0	 	

8	to	11	 4	 Encoded	value	for	standard	observer	 see	Table 57	

12	to	23	 12	 nCIEXYZ	tristimulus	values	for	measurement	backing	 XYZNumber	

24	to	27	 4	 Encoded	value	for	measurement	geometry	 see	Table 58		

28	to	31	 4	 Encoded	value	for	measurement	flare	 see	Table 59	

32	to	35	 4	 Encoded	value	for	standard	illuminant	 see	Table 60	

36	to	39	

(optional
)	

4	

(optional)	
Encoded	measurement	condition	(optional	extension)	 see	Table 61	

	

The	encoding	for	the	standard	observer	field	is	shown	in	Table	57.	

Table	57	—	Standard	observer	encodings	

Standard	observer	 Hex	encoding	

Unknown	 00000000h	

CIE	1931	standard	colorimetric	observer	 00000001h	

CIE	1964	standard	colorimetric	observer	 00000002h	

	

The	encoding	for	the	measurement	geometry	field	is	shown	in	Table	58.	

ICC.2:2017	

©	ICC	2017–	All	rights	reserved	 111	

Table	58	—	Measurement	geometry	encodings	

Geometry	 Hex	encoding	

Unknown	 00000000h	

0:45	or	45:0	 00000001h	

0:d	or	d:0	 00000002h	

	

The	 encoding	 for	 the	measurement	 flare	 value	 is	 shown	 in	Table	59,	 and	 is	 equivalent	 to	 the	 basic	
numeric	type	u16Fixed16Number	in	4.2.1.7.	

Table	59	—	Measurement	flare	encodings	

Flare	 Hex	encoding	

0	(0	%)	 00000000h	

1,0	(or	100	%)	 00010000h	

	

The	encoding	 for	 the	standard	 illuminant	 field	 is	shown	in	Table	60.	This	represents	an	extension	of	
encodings	found	in	ISO	15076‐1	

Table	60	—	Standard	illuminant	encodings	

Standard	illuminant	 Encoding	

Custom	 00000000h	

D50	 00000001h	

D65	 00000002h	

D93	 00000003h	

F2	 00000004h	

D55	 00000005h	

A	 00000006h	

Equi‐Power	(E)	 00000007h	

F8	 00000008h	

Black	body	defined	by	CCT	 00000009h	

Daylight	defined	by	CCT	 0000000Ah	

B	 0000000Bh	

C	 0000000Ch	

F1	 0000000Dh	

F3	 0000000Eh	

F4	 0000000Fh	

F5	 00000010h	

ICC.2:2017	

112	 ©	ICC	2017	–	All	rights	reserved	

F6	 00000011h	

F7	 00000012h	

F9	 00000013h	

F10	 00000014h	

F11	 00000015h	

F12	 00000016h	

	

The	 encoding	 for	 the	 optional	 ISO	13655	measurement	 condition	 value	 is	 shown	 in	Table	61.	 If	 the	
length	of	the	measurementInfo	tag	storage	is	less	than	40	then	the	measurementType	shall	be	assumed	
to	be	unknown	(00000000h).	

Table	61	—	ISO	13655	measurement	condition	encodings	

Type	 Hex	encoding	

Unknown	 00000000h	

M0	 00000001h	

M1	 00000002h	

M2	 00000003h	

M3	 00000004h	

	

 multiLocalizedUnicodeType	

This	 tag	structure	contains	a	 set	of	 records	each	 referencing	a	multilingual	Unicode	string	associated	
with	a	profile.	Each	string	is	referenced	in	a	separate	record	with	the	information	about	what	language	
and	region	the	string	is	for.	

The	byte	assignment	and	encoding	shall	be	as	given	in	Table	62.	

Note	 that	 the	 fourth	 field	of	 this	 tag,	 the	 record	 size	should,	 for	 the	 time	being,	 contain	 the	value	12,	
which	corresponds	 to	 the	size	 in	bytes	of	each	record.	Any	code	 that	needs	 to	access	 the	n‐th	 record	
should	determine	the	record’s	offset	by	multiplying	n	by	the	contents	of	this	size	field	and	adding	16.	
This	 minor	 extra	 effort	 allows	 for	 future	 expansion	 of	 the	 record	 encoding,	 should	 the	 need	 arise,	
without	having	to	define	a	new	tag	type.		

Multiple	strings	within	this	tag	may	share	storage	locations.	For	example,	en/US	and	en/UK	can	refer	to	
the	same	string	data.	

For	 the	 specification	of	Unicode,	 see	The	Unicode	Standard	published	by	The	Unicode	Consortium	or	
visit	their	website	at	http://www.unicode.org.	For	the	definition	of	language	code	and	region	codes,	see	
ISO‐639	 and	 ISO	3166.	 The	Unicode	 strings	 in	 storage	 should	 be	 encoded	 as	 16‐bit	 big‐endian,	 UTF‐
16BE,	and	should	not	be	NULL	terminated.		

NOTE		 For	 additional	 clarification	 on	 the	 encodings	 used,	 see	 the	 ICC	 technical	 note	 01‐2002	 available	 on	
www.color.org.	

ICC.2:2017	

©	ICC	2017–	All	rights	reserved	 113	

If	the	specific	record	for	the	desired	region	is	not	stored	in	the	tag,	the	record	with	the	same	language	
code	 should	be	 used.	 If	 the	 specific	 record	 for	 the	desired	 language	 is	 not	 stored	 in	 the	 tag,	 the	 first	
record	in	the	tag	is	used	if	no	other	user	preference	is	available.	

Table	62	—	multiLocalizedUnicodeType	

Byte	position	
Field	length	
(bytes)	 Content	 Encoded	as	

0	to	3	 4	 ‘mluc’	(0x6D6C7563)	type	signature	 	

4	to	7	 4	 Reserved,	shall	be	0	 	

8	to	11	 4	 Number	of	records	(n)		 uInt32Number	

12	to	15	 4	 Record	size:	the	length	in	bytes	of	every	record.	
The	value	is	12.	

0000000Ch	

16	to	17	 2	
First	record	language	code:	language	code	
specified	in	ISO‐639	

uInt16Number	

18	to	19	 2	 First	record	country	code:	region	code	specified	
in	ISO	3166	

uInt16Number	

20	to	23	 4	
First	record	string	length:	the	length	in	bytes	of	
the	string	 uInt32Number	

24	to	27	 4	
First	record	string	offset:	the	offset	from	the	
start	of	the	tag	to	the	start	of	the	string,	in	bytes	

uInt32Number	

28	to	28+(12(n	‐
1))‐1	(or	
15+12n)	

12(n	–	1)	 Additional	records	as	needed	 	

28+(12(n	‐1)	(or	
(16+12n))	to	end	

	Variable		 Storage	area	of	strings	of	Unicode	characters	 	

	

 multiProcessElementsType		

10.2.16.1 General		

This	 structure	 represents	 a	 colour	 transform,	 containing	 a	 sequence	 of	 processing	 elements.	 The	
processing	elements	contained	in	the	structure	are	defined	in	the	structure	itself,	allowing	for	a	flexible	
structure.	 Supported	 processing	 elements	 are	 defined	 in	 Clause	 11	 of	 this	 part	 of	 ISO	 20677.	 Other	
processing	 element	 types	 may	 be	 added	 in	 the	 future.	 Each	 type	 of	 processing	 element	 may	 be	
contained	 any	 number	 of	 times	 in	 the	 structure.	 The	 processing	 elements	 support	 float32Number‐
encoded	input	and	output	ranges.		

If	 undefined	 processing	 element	 types	 are	 present	 in	 a	 multiProcessElementsType	 tag,	 the	
multiProcessElementsType	tag	shall	not	be	used	and	fall	back	behaviour	shall	be	followed	(if	possible).		

When	 using	 this	 type,	 it	 is	 necessary	 to	 assign	 each	 colour	 space	 component	 to	 an	 input	 and	 output	
channel.	These	assignments	shall	be	as	shown	in	Table	63.	

The	encoding	of	a	multiProcessElementsType	structure	shall	be	as	given	in	Table	63.	

Table	63–	multiProcessElementsType	encoding	

ICC.2:2017	

114	 ©	ICC	2017	–	All	rights	reserved	

Byte	Position	 Field	
Length	
(bytes)	

Content Encoded	as…	

0…3	 4 ‘mpet’	(6D706574h)	[multi‐process	
elements	table]	type	signature	

4…7	 4 Reserved,	shall	be	0

8..9	 2 Number	of	Input	channels	(F) uInt16Number	

10..11	 2 Number	of	Output	channels	(T) uInt16Number	

12..15	 4 Number	of	processing	elements	(N)

	

uInt32Number	

16..15+8N	 8N Process	element	positions	table positionNumber[...]	

16+8N..end	 	 Data	

	

The	 number	 of	 processing	 elements	 (n)	 shall	 be	 greater	 than	 or	 equal	 to	 1.	 The	 process	 element	
positions	table	contains	information	on	where	and	how	large	the	process	elements	are.	Offset	locations	
are	 relative	 to	 the	 start	 of	 the	multiProcessElementsType	 tag.	 Thus	 the	 offset	 of	 first	 stored	 process	
element	shall	be	16+8n.		

Each	processing	element	shall	start	on	a	4‐byte	boundary.	To	achieve	this,	each	item	shall	be	followed	
by	up	to	three	00h	pad	bytes	as	needed.		

It	is	permitted	to	share	data	between	processing	elements.	For	example,	the	offsets	for	some	processing	
elements	can	be	identical.	

Processing	elements	in	the	multiProcessElementsType	are	processed	in	the	order	that	they	are	defined	
in	the	processing	elements	position	table.	The	results	of	a	processing	element	are	passed	on	to	the	next	
processing	 element.	 The	 last	 processing	 element	 provides	 the	 final	 result	 for	 the	 containing	
multiProcessElementsType.	Therefore,	the	input/output	channels	specified	by	the	processing	elements	
and	the	containing	multiProcessElementsType	need	to	be	in	agreement.		

The	first	processing	element’s	input	channels	shall	be	the	same	as	the	input	channels	of	the	containing	
multiProcessElementsType.	 The	 input	 channels	 of	 a	 processing	 element	 shall	 be	 the	 same	 as	 the	
previous	processing	element’s	output	channels.	The	last	processing	element’s	output	channels	shall	be	
the	same	as	the	output	channels	of	the	containing	multiProcessElementsType.	

The	 definition	 of	 supported	 processing	 elements	 can	 be	 found	 in	 Clause	 11	 multiProcessElement	
Definitions.	

ICC.2:2017	

©	ICC	2017–	All	rights	reserved	 115	

 parametricCurveType	

The	parametricCurveType	describes	a	one‐dimensional	curve	by	specifying	one	of	a	predefined	set	of	
functions	using	the	parameters.	When	used	the	byte	assignment	and	encoding	shall	be	as	given	in	Table	
64.	

Table	64	—	parametricCurveType	encoding	

Byte	
position	

Field	
length	
(bytes)	

Content	 Encoded	as	

0	to	3	 4	 ‘para’		 (70617261h)	type	signature	 	

4	to	7	 4	 Reserved,	shall	be	0	 	

8	to	9	 2	 Encoded	value	of	the	function	type	 uInt16Number		
(see	Table	65)	

10	to	11	 2	 Reserved,	shall	be	0	 	

12	to	
end	

see	
Table	65	

One	or	more	parameters	(see	Table 65)	 s15Fixed16Number	[...]	

	

The	encoding	for	the	function	type	field	and	the	parameters	are	shown	in	Table	65.	

Table	65	—	parametricCurveType	function	type	encoding	

Field	
length	
(bytes)	

Function	type	
Encoded	
value	

Parameters	 Note

4	 gXY  	 0000h	 g	

12	
 gbaXY  				  abX / 	

0Y 								  abX / 	
0001h	 g	a	b	 CIE 122-1966 [10]

16	
  cbaXY g  		  abX / 			

cY  								  abX / 	
0002h	 g	a	b	c	 IEC 61966-3

20	
 gbaXY  								  dX  	

cXY  							  dX  	
0003h	 g	a	b	c	d	 IEC 61966-2.1

(sRGB)

28	
  cbaXY g  				  dX  			

 feXY  											  dX  	
0004h	 g	a	b	c	d	e	f	

NOTE	 More	functions	can	be	added	as	necessary.	

		

The	order	of	the	parameters	in	the	data,	Table	64,	follows	the	left‐to‐right	order	of	the	parameters	in	
Table	65.	

ICC.2:2017	

116	 ©	ICC	2017	–	All	rights	reserved	

The	domain	and	range	of	each	function	shall	be	[0,0	1,0].	Any	function	value	outside	the	range	shall	be	
clipped	 to	 the	 range	 of	 the	 function.	 When	 unsigned	 integer	 data	 is	 supplied	 as	 input,	 it	 shall	 be	
converted	 to	 the	 domain	by	dividing	 it	 by	 a	 factor	 of	 (2N)	 ‐1,	where	N	 is	 the	 number	 of	 bits	 used	 to	
represent	the	input	data.	When	the	output	is	required	to	be	unsigned	integer	data,	it	shall	be	converted	
from	the	range	by	multiplying	it	by	a	factor	of	(2M)	‐1,	where	M	is	the	number	of	bits	used	to	represent	
the	output	data.	

If	the	input	is	PCSXYZ,	the	PCSXYZ	X,	Y,	or	Z	value	1+	(32	767÷32	768)	shall	be	mapped	to	the	function	
input	value	1,0.	If	the	output	is	PCSXYZ,	the	function	output	value	1,0	shall	be	mapped	to	the	PCSXYZ	X,	
Y,	or	Z	value	1+	(32	767÷32	768).	

NOTE		 The	parameters	selected	for	a	parametric	curve	can	result	 in	complex	or	undefined	values	for	the	input	
range	used.	This	can	occur	for	example	if	d	<	‐b/a.	In	such	cases	the	behaviour	of	the	curve	is	undefined.	

 s15Fixed16ArrayType	

This	type	represents	an	array	of	generic	4‐byte	(32‐bit)	 fixed	point	quantity.	The	number	of	values	 is	
determined	from	the	size	of	the	tag.	

When	used	the	byte	assignment	and	encoding	shall	be	as	given	in	Table	66.	

Table	66	—	s15Fixed16ArrayType	encoding	

Byte	
position	

Field	
length	
(bytes)	

Content	

0	to	3	 4	 ‘sf32’	(73663332h)	type	signature	

4	to	7	 4	 reserved,	shall	be	0	

8	to	end	 Variable	 an	array	of	s15Fixed16Number	values	

	

 signatureType	

The	signatureType	contains	a	4‐byte	sequence.	Sequences	of	less	than	four	characters	are	padded	at	the	
end	with	 spaces,	 20h.	 Typically	 this	 type	 is	 used	 for	 registered	 tags	 that	 can	 be	 displayed	 on	many	
development	systems	as	a	sequence	of	four	characters.		

When	used,	the	byte	assignment	and	encoding	shall	be	as	given	in	Table	67.	

Table	67	—	signatureType	encoding	

Byte	
position	

Field	
length	
(bytes)	

Content	

0	to	3	 4	 ‘sig	’	(73696720h)	type	signature	

4	to	7	 4	 Reserved,	shall	be	0	

8	to	11	 4	 4‐byte	signature	

	

ICC.2:2017	

©	ICC	2017–	All	rights	reserved	 117	

 sparseMatrixArrayType	

The	sparseMatrixArrayType	defines	a	 tag	 type	 for	encoding	an	array	of	sparse	matrices.	 	When	used,	
the	byte	assignment	and	encoding	shall	be	as	given	in	Table	68.	

Table	68–	sparseMatrixArrayType	encoding	

Byte	Position	 Field	
Length	
(bytes)	

Content Encoded	as…	

0…3	 4 'smat'	(736d6174h)	type	
signature	

4…7	 4 Reserved,	shall	be	0

8..9	 2 Number	of	Equivalent	Output	
Channels	used	by	sparse	matrix	
encoding	(Q)	

uInt16Number	

10..11	 2 Sparse	Matrix	LUT	Encoding	
Type	

	

sparseMatrixEncodingType	

12..15	 4 Number	of	Sparse	Matrices	in	
list	

uInt32Number	

12…end	 N*B	 List	of	(N)	Sparse	Matrices List	of	compact	
sparseMatrixUInt8	or	

sparseMatrixUInt16	or	

sparseMatrixFloat16	or	

sparseMatrixFloat32	

	

The	sparse	matrices	encoded	in	the	list	shall	all	be	encoded	according	to	the	value	in	the	Sparse	Matrix	
LUT	Encoding	Type	element.	

The	sparse	matrices	encoded	in	the	 list	of	sparse	matrices	shall	use	compact	padding	resulting	 in	 the	
Matrix	Entry	Data	Values	and	end	of	each	sparse	matrix	being	aligned	on	a	4	byte	boundary.	

All	sparse	matrices	in	the	sparseMatrixArrayType	shall	have	the	same	number	of	Rows	and	Columns.		

 spectralViewingConditionsType	

Spectral	data	is	always	coded	equidistantly	defined	by	a	start	wavelength,	interval	step	wavelength	and	
end	wavelength	such	that	the	difference	between	the	end	wavelength	and	start	wavelength	is	an	integer	
number	of	interval	steps.	

ICC.2:2017	

118	 ©	ICC	2017	–	All	rights	reserved	

A	profile	may	encode	both	standard	and	custom	settings	 for	 the	colorimetric	observer.	 In	both	cases,	
the	 observer’s	 colour	matching	 functions	 are	 stored	 in	 a	 3XN	matrix	with	 N	 the	 spectral	 dimension	
defined	 by	 the	 fields	 “start	 wavelength	 colorimetric	 observer”,	 “interval	 wavelength	 colorimetric	
observer”	 and	 “end	wavelength	 colorimetric	 observer”.	 The	 3XN	matrix	 is	 stored	 row	by	 row,	 in	 the	
“Matrix	colorimetric	observer”	field.	

For	 object	 colours,	 both	 custom	 and	 standard	 illuminants	 are	 supported.	 The	 illuminant	 is	 specified	
both	by	its	illuminant	type	as	well	as	its	power	distribution	function.	When	the	illuminant	type	value	is	
either	 “Black	 body	 defined	 by	 CCT”	 (00000009h)	 or	 “Daylight	 defined	 by	 CCT”	 (0000000Ah)	 the	
(correlated)	colour	temperature	field	is	also	used	to	define	the	illuminant.	If	the	illuminant	type	is	not	
one	of	these	values	then	the	(correlated)	colour	temperature	field	is	merely	informative	and	may	be	set	
to	zero.	

The	power	distribution	of	the	illuminant	is	represented	by	an	M‐dimensional	vector	with	M	defined	by	
the	 fields	 “start	 wavelength	 illuminant”,	 “interval	 wavelength	 illuminant”	 and	 “end	 wavelength	
illuminant”.	

To	remain	compatible	with	the	viewingConditions	tag,	the	unnormalized	XYZ	values	for	the	illuminant	
and	surround	are	also	provided,	both	defined	in	cd/m^2.	

For	 luminous	 colours	no	 illuminant	 is	 specified.	 In	 this	 case,	 the	 fields	 “start	wavelength	 illuminant”,	
“interval	wavelength	illuminant”,	“end	wavelength	illuminant”	and	“Vector	illuminant”	are	replaced	by	
the	corresponding	values	for	the	white	emission	spectrum.	And	as	a	result	the	“un‐normalized	CIEXYZ	
values	 for	 illuminant”	 field	 is	 filled	 with	 the	 un‐normalized	 CIEXYZ	 values	 for	 the	 reference	 white	
emission	spectrum.	

When	 used	 the	 spectralViewingConditions	 Type	 byte	 assignment	 and	 encoding	 shall	 be	 as	 given	 in	
Table	69.	Encodings	for	the	standard	observer	field	are	provide	in	Table	70,	and	the	Encodings	for	the	
standard	illuminants	are	provided	in	Table	71.	

Table	69	—	spectralViewingConditions	Type	tag	type	

Byte	position	
Field	
length	
(bytes)	

Content	 Encoded	as	

0	..	3	 4	 ‘svcn’	(7376636eh)	type	signature 	

4	..	7	 4	 Reserved,	shall	be	0 	

8	..	11	 4	 Colorimetric	observer	type See	Table	70

12	..	17	 6	
Spectral	 range	 for	 colorimetric	 observer	 with	 (N)	
steps	

spectralRange	

18..19	 2	 Reserved,	shall	be	0 	

20..	

20+12*N‐1	
12N	

Matrix	colorimetric	observer	(X	vector,	then	Y	vector,	
then	Z	vector)	

float32Number[]	

ICC.2:2017	

©	ICC	2017–	All	rights	reserved	 119	

20+12*N	..	

23+12*N	
4	 Illuminant	type	 See	Table	71	

24+12*N	 ..	
27+12*N	

4	 (Correlated)	colour	temperature	 float32Number	

28+12*N	 ..	
33+12*N	

6	 Illuminant	spectral	range	with	(M)	steps	 spectralRange	

34+12*N	 ..	
35+12*N	

2	 Reserved,	shall	be	0	 	

36+12*N.	
36+12*N+4*M‐1	

4M	 Vector	illuminant		 float32Number[]	

36+12*N+4*M	 ..	
36+12*N+4*M+11	

12	
Un‐normalized	 CIEXYZ	 values	 for	 illuminant	 (with	 Y	
in	cd/m2)	

XYZNumber	

48+12*N+4*M	 ..	
48+12*N+4*M+11	

12	
Un‐normalized	CIEXYZ	values	for	surround	(with	Y	in	
cd/m2)	 XYZNumber	

	

Table	70	—	Standard	observer	encodings	

Standard	observer	 Value

Custom	colorimetric	observer 00000000h

CIE	1931	standard	colorimetric	observer 00000001h

CIE	1964	standard	colorimetric	observer 00000002h

	

Table	71	—	Illuminant	encodings	

Standard	illuminant	 Encoding	

Custom	 00000000h	

D50	 00000001h	

D65	 00000002h	

D93	 00000003h	

F2	 00000004h	

D55	 00000005h	

A	 00000006h	

Equi‐Power	(E)	 00000007h	

F8	 00000008h	

ICC.2:2017	

120	 ©	ICC	2017	–	All	rights	reserved	

Black	body	defined	by	CCT	 00000009h	

Daylight	defined	by	CCT	 0000000Ah	

B	 0000000Bh	

C	 0000000Ch	

F1	 0000000Dh	

F3	 0000000Eh	

F4	 0000000Fh	

F5	 00000010h	

F6	 00000011h	

F7	 00000012h	

F9	 00000013h	

F10	 00000014h	

F11	 00000015h	

F12	 00000016h	

	

Having	 the	 ability	 to	 use	 custom	 reference	 viewing	 conditions	 introduces	 the	 need	 for	 additional	
processing	by	the	CMM	when	connecting	profiles	that	use	a	colorimetric‐based	PCS.	The	CMM	needs	to	
both	determine	the	compatibility	of	the	implied	PCS	for	each	of	the	profiles	and	then	insert	the	proper	
PCS	transforms	that	are	needed.	

	

For	 both	 the	 source	 and	 destination	 profile,	 the	 reference	 observer	 and	 reference	 illuminant	 are	
determined	in	the	following	manner:	

If	 the	 profile	 version	 is	 less	 than	 V5,	 then	 the	 CIE	 1931	 standard	 observer	 and	 a	 D50	 illuminant	 is	
assumed.	Else	if	no	reference	spectral	viewing	condition	tag	exists	and	the	illuminant	field	in	the	profile	
header	matches	 the	 CIE	 1931	 standard	 observer	 and	 a	 D50	 illuminant,	 then	 the	 CIE	 1931	 standard	
observer	and	D50	illuminant	are	assumed.	Else	if	a	reference	spectral	viewing	condition	tag	exists,	then	
the	observer	and	illuminant	are	defined	by	the	observer	and	illuminant	fields	in	the	reference	spectral	
viewing	condition	tag.		

Remark:	 the	 illuminant	 field	 in	 the	profile	 header	 should	 always	be	 in	 agreement	with	 the	 reference	
spectral	viewing	conditions	tag	if	available.	

Once	the	reference	observer	and	reference	illuminant	for	both	source	and	destination	are	determined,	
then	the	decision	about	what	(if	any)	transformations	are	needed	to	connect	the	profiles	can	be	made.		

If	 both	 the	 reference	 observer	 and	 reference	 illuminant	 match	 between	 the	 two	 profiles	 then	 no	
additional	transformations	are	needed.	

Otherwise:	

ICC.2:2017	

©	ICC	2017–	All	rights	reserved	 121	

If	 the	reference	observer	of	the	source	profile	 is	not	the	CIE	1931	standard	observer	or	the	reference	
illuminant	 of	 the	 source	profile	 is	 not	 a	D50	 illuminant,	 then	 the	 transform	 from	 the	 source	profile’s	
customToStandardPccTag	 is	 first	 used,	 unless	 the	CMM	provides	 its	 own	 transform.	 If	 this	 tag	 is	 not	
present	and	the	CMM	does	not	provide	an	alternative,	then	the	source	profile	cannot	be	connected.	

If	 the	 reference	 observer	 of	 the	 destination	 profile	 is	 not	 the	 CIE	 1931	 standard	 observer	 or	 the	
reference	 illuminant	 of	 the	 destination	 profile	 is	 not	 a	 D50	 illuminant,	 then	 the	 transform	 from	 the	
destination	profile’s	 standardToCustomPccTag	profile	 is	 then	used,	unless	 the	CMM	provides	 its	own	
transform.	 If	 this	 tag	 is	 not	 present	 and	 the	 CMM	 does	 not	 provide	 an	 alternative,	 then	 the	 profile	
cannot	be	connected.	

 tagArrayType	

The	tagArrayType	structure	encodes	an	array	of	tags	that	have	an	identical	tag	type.		Clause	13	defines	
valid	tag	arrays	with	their	associated	array	type	identifiers.	

The	structure	type	indentifiers	may	vary	when	tag	array	elements	are	of	tagStructType.		How	they	vary	
shall	be	associated	with	the	array	type	identifier.		(See	Clause	13).	

The	format	of	the	tagArrayType	structure	can	be	found	in	Table	72.	

Table	72	–	tagArrayType	encoding	

Byte	Position	 Field	Length	
(bytes)	

Content Encoded	as…	

0..3	 4	 ‘tary’	(74617279h)	type	signature

4..7	 4	 Reserved,	shall	be	0

8..11	 4	 Array	Type	Identifier 4‐byte	signature	

12..15	 4	 Number	of	tag	elements	in	array	(N) uInt32Number	

16..23	 8	 Tag	element	1	position positionNumber	

…	 …	 …	 …

16+(N‐1)*8	 ..	
16+N*8‐1	

8	 Tag	element	N	position positionNumber	

16+N*8	..	end	 	 Tag	element	data

	

Each	tag	array	element	has	an	offset	and	size.	Each	offset	is	relative	to	the	beginning	of	the	associated	
tagArrayType	structure.	Tag	array	elements	should	always	begin	at	an	offset	divisible	by	4	with	padding	
between	elements	as	needed.	

The	 Element	 tag	 type	 signature	 shall	match	 the	 signature	 of	 the	 tag	 type	 for	 all	 tag	 elements	 in	 the	
array.		

The	Element	tag	type	signature	can	be	the	signature	of	any	valid	profile	tag	type.		

ICC.2:2017	

122	 ©	ICC	2017	–	All	rights	reserved	

If	the	Element	tag	type	signature	is	‘tags’	(74616773h)	then	the	tag	array	is	an	array	of	tagStructType	
tags.	In	this	case	the	Element	struct	type	identifier	shall	be	the	same	as	the	Struct	Type	Identifier	(Byte	
position	8..11)	in	each	of	the	tagStructType	tags.	

If	the	Element	tag	type	signature	is	not	‘tags’	(74616773h)	then	the	Element	struct	type	identifier	shall	
be	zero	(0h).	

The	Offset	of	multiple	tag	elements	can	be	the	same	(IE	tag	elements	can	share	tag	data).	

 tagStructType	

The	tagStructType	structure	allows	a	collection	of	tag	elements	to	be	grouped	into	a	single	structure.		

The	format	of	the	tagStructType	structure	can	be	found	in	Table	73.	

Table	73	–	tagStructType	encoding	

Byte	Position	 Field	Length	
(bytes)	

Content Encoded	as…	

0..3	 4	 ‘tstr’	 (74737472h)	 tagStructType	
signature	

4..7	 4	 Reserved,	shall	be	0

8..11	 4	 Struct	Type	Identifier 4‐byte	signature	

12..15	 4	 Number	of	tag	elements	N	in	structure uInt32Number	

16..19	 4	 Tag	element	1	signature 4‐byte	signature	

20..27	 8	 Tag	element	1	position positionNumber	

…	 …	 …	 …

N*12+4..N*12+7	 4	 Tag	element	N	signature 4‐byte	signature	

N*12+8..N*12+15	 8	 Tag	element	N	position positionNumber	

N*12+16..end	 	 Tag	element	data

	

Each	 tag	 element	 (or	 sub‐tag)	 of	 a	 tagStructType	 has	 a	 tag	 signature,	 offset	 and	 size.	 Each	 offset	 is	
relative	 to	 the	 beginning	 of	 the	 associated	 tagStructType	 structure.	 All	 elements	 should	 begin	 at	 an	
offset	divisible	by	4	with	padding	between	tag	elements	as	needed.	The	struct	type	 identifier	shall	be	
used	 to	 identify	 the	 required	 and	 optional	 sub‐tag	 elements	 in	 the	 tag	 structure.	 	 (See	 Clause	 12	 for	
publicly	defined	tagStructType	structure	definitions.)	

Tag	elements	can	be	any	valid	profile	tag	type.		

Tag	element	signatures	shall	be	unique	within	a	tagStructType	structure.	

ICC.2:2017	

©	ICC	2017–	All	rights	reserved	 123	

The	Offset	of	multiple	elements	can	be	the	same	(i.e.	elements	can	share	tag	data).	

 u16Fixed16ArrayType	

This	type	represents	an	array	of	generic	4‐byte	(32‐bit)	quantity.	The	number	of	values	is	determined	
from	the	size	of	the	tag.	

When	used	the	byte	assignment	and	encoding	shall	be	as	given	in	Table	74.	

Table	74	—	u16Fixed16ArrayType	encoding	

Byte	
position	

Field	
length	
(bytes)	

Content	

0	to	3	 4	 ‘uf32’	(75663332h)	type	signature	

4	to	7	 4	 Reserved,	shall	be	0	

8	to	end	 Variable	 An	array	of	u16Fixed16Number	values	

	

 uInt16ArrayType	

This	type	represents	an	array	of	generic	2‐byte	(16‐bit)	quantity.	The	number	of	values	is	determined	
from	the	size	of	the	tag.	

When	used	the	byte	assignment	and	encoding	shall	be	as	given	in	Table	75.	

Table	75	—	uInt16ArrayType	encoding	

Byte	
position	

Field	
length	
(bytes)	

Content	

0	to	3	 4	 ‘ui16’	(75693136h)	type	signature	

4	to	7	 4	 Reserved,	shall	be	0	

8	to	end	 Variable	 An	array	of	unsigned	16bit	integers	

	

 uInt32ArrayType	

This	type	represents	an	array	of	generic	4–byte	(32‐‐bit)	quantity.	The	number	of	values	is	determined	
from	the	size	of	the	tag.	

When	used	the	byte	assignment	and	encoding	shall	be	as	given	in	Table	76.	

Table	76	—	uInt32ArrayType	encoding	

Byte	
position	

Field	
length	
(bytes)	

Content	

ICC.2:2017	

124	 ©	ICC	2017	–	All	rights	reserved	

0	to	3	 4	 ‘ui32’	(75693332h)	type	signature	

4	to	7	 4	 Reserved,	shall	be	0	

8	to	end	 Variable	 An	array	of	unsigned	32‐bit	integers	

	

 uInt64ArrayType	

This	type	represents	an	array	of	generic	8–byte	(64‐bit)	quantity.	The	number	of	values	is	determined	
from	the	size	of	the	tag.	

When	used	the	byte	assignment	and	encoding	shall	be	as	given	in	Table	77.	

Table	77	—	uInt64ArrayType	encoding	

Byte	
position	

Field	
length	
(bytes)	

Content	

0	to	3	 4	 ‘ui64’	(75693634h)	type	signature	

4	to	7	 4	 Reserved,	shall	be	0	

8	to	end	 Variable	 An	array	of	unsigned	64‐bit	integers	

	

 uInt8ArrayType	

This	 type	represents	an	array	of	generic	1–byte	(8‐bit)	quantity.	The	number	of	values	 is	determined	
from	the	size	of	the	tag.	

When	used	the	byte	assignment	and	encoding	shall	be	as	given	in	Table	78.	

Table	78	—	uInt8ArrayType	encoding	

Byte	
position	

Field	length	
(bytes)	 Content	

0	to	3	 4	 ‘ui08’	(75693038h)	type	signature	

4	to	7	 4	 Reserved,	shall	be	0	

8	to	end	 Variable	 An	array	of	unsigned	8‐bit	integers	

	

 utf16Type	

This	tag	structure	contains	a	text	structure	that	contains	a	16‐bit	UTF‐16	string.	The	length	of	the	string	
is	 obtained	 by	 subtracting	 8	 from	 the	 element	 size	 portion	 of	 the	 tag	 itself.	 For	 the	 specification	 of	
Unicode,	 see	 The	 Unicode	 Standard	 published	 by	 The	 Unicode	 Consortium	 or	 visit	 their	 website	 at	
http://www.unicode.org.	

The	format	of	the	utf16Type	structure	can	be	found	in	Table	79.	

ICC.2:2017	

©	ICC	2017–	All	rights	reserved	 125	

Table	79	–	utf16Type	encoding	

Byte	
Position	

Field	
Length	
(bytes)	

Content	 Encoded	as…

0..3	 4	 ‘ut16’	(75743136h)	type signature

4..7	 4	 Reserved,	shall	be	0

8..end	 	 UTF‐16	data	 uInt16Number[…]	

	

 utf8Type	

This	tag	structure	contains	a	text	structure	that	contains	an	8‐bit	UTF‐8	string.	The	length	of	the	string	
is	 obtained	 by	 subtracting	 8	 from	 the	 element	 size	 portion	 of	 the	 tag	 itself.	 For	 the	 specification	 of	
Unicode,	 see	 The	 Unicode	 Standard	 published	 by	 The	 Unicode	 Consortium	 or	 visit	 their	 website	 at	
http://www.unicode.org.	

The	format	of	the	utf8Type	structure	can	be	found	in	Table	80.	

Table	80	–	utf8Type	encoding	

Byte	Position	 Field	Length	
(bytes)	

Content Encoded	as…	

0..3	 4	 ‘utf8’	(75746638h)	type signature

4..7	 4	 Reserved,	shall	be	0

8..end	 	 UTF‐8	data

	

 utf8ZipType	

This	 tag	 structure	 is	 a	 container	 for	 a	 UTF‐8	 string	 that	 has	 been	 compressed	 using	 the	 DEFLATE	
compression	method	specified	by	RFC	1951	(http://tools.ietf.org/html/rfc1951)	 into	 the	compressed	
data	format	specified	by	RFC	1950	(http://tools.ietf.org/html/rfc1950).		

NOTE	 This	is	equivalent	to	the	Zip	data	format	produced	by	the	ZLIB	data	compression	library.		

The	 length	of	 the	compressed	data	stream	can	be	determined	by	subtracting	8	 from	the	element	size	
portion	of	the	tag	itself.	

The	 data	 that	 is	 compressed	 is	 a	 UTF‐8	 string.	 For	 the	 specification	 of	 Unicode,	 see	 The	 Unicode	
Standard	published	by	The	Unicode	Consortium	or	visit	their	website	at	http://www.unicode.org.	

The	format	of	the	utf8ZipType	structure	can	be	found	in	Table	81.	

Table	81	–	utf8ZipType	encoding	

ICC.2:2017	

126	 ©	ICC	2017	–	All	rights	reserved	

Byte	Position	 Field	Length	
(bytes)	

Content Encoded	as…	

0..3	 4	 ‘zut8’	(7a757438h)	type signature

4..7	 4	 Reserved,	shall	be	0

8..end	 	 Compressed	data	stream

	

 XYZType	

The	XYZType	 contains	 an	array	of	 three	encoded	values	 for	PCSXYZ,	CIEXYZ,	 or	nCIEXYZ	values.	The	
number	of	 sets	of	values	 is	determined	 from	the	 size	of	 the	 tag.	When	used	 the	byte	assignment	and	
encoding	shall	be	as	given	in	Table	82.	Tristimulus	values	shall	be	non‐negative.	The	signed	encoding	
allows	for	implementation	optimizations	by	minimizing	the	number	of	fixed	formats.	

Table	82	—	XYZType	encoding	

Byte	
position	

Field	
length	
(bytes)	

Content	 Encoded	as	

0	to	3	 4	 ‘XYZ	’	(58595A20h)	type	signature	 	

4	to	7	 4	 Reserved,	shall	be	0	 	

8	to	end	 Variable	 An	array	of	PCSXYZ,	CIEXYZ,	or	nCIEXYZ	values	 XYZNumber	

	

 zipXmlType	

This	tag	structure	is	a	container	for	XML	formatted	data	that	has	been	compressed	using	the	DEFLATE	
compression	method	specified	by	RFC	1951	(http://tools.ietf.org/html/rfc1951)	 into	 the	compressed	
data	format	specified	by	RFC	1950	(http://tools.ietf.org/html/rfc1950).		

NOTE	 This	is	equivalent	to	the	Zip	data	format	produced	by	the	ZLIB	data	compression	library.		

The	 length	of	 the	compressed	data	stream	can	be	determined	by	subtracting	8	 from	the	element	size	
portion	of	the	tag	itself.	

The	data	that	is	compressed	shall	be	encoded	using	XML.	For	the	specification	of	XML,	see	the	“XML	1.0	
specification”	 published	 by	 the	 World	 Wide	 Web	 Consortium	 or	 visit	 their	 website	 at	
http://www.w3.org/TR/REC‐xml.	

The	format	of	the	zipXmlType	structure	can	be	found	in	Table	83.	

Table	83	–	zipXmlType	encoding	

Byte	Position	 Field	Length	
(bytes)	

Content Encoded	as…	

0..3	 4	 ‘zxml’	(7a786d6ch)	type signature

4..7	 4	 Reserved,	shall	be	0

ICC.2:2017	

©	ICC	2017–	All	rights	reserved	 127	

8..end	 	 Compressed	data	stream

	

11 	Multi	Processing	Element	definitions	

 General	

The	multiProcessElementsType	 and	 several	 of	 the	 processing	 elements	 presented	 in	 this	 section	 are	
defined	 by	 ISO	 15076‐1:2010.	 The	 use	 of	multiProcessElementsType	 based	 tags	 is	more	 extensively	
utilized	by	this	extended	version	of	ICC	colour	management	with	both	modifications/extensions	to	the	
processing	elements	defined	by	ISO	15076‐1	as	well	as	the	inclusion	of	additional	processing	elements.	

Processing	elements	in	the	multiProcessElementsType	are	processed	in	the	order	that	they	are	defined	
in	the	processing	elements	position	table.	The	results	of	a	processing	element	are	passed	on	to	the	next	
processing	 element.	 The	 last	 processing	 element	 provides	 the	 final	 result	 for	 the	 containing	
multiProcessElementsType	 tag.	 Therefore,	 the	 input/output	 channels	 specified	 by	 the	 processing	
elements	and	the	containing	multiProcessElementsType	tag	need	to	be	in	agreement.		

The	first	processing	element’s	input	channels	shall	be	the	same	as	the	input	channels	of	the	containing	
multiProcessElementsType	 tag.	 The	 input	 channels	 of	 a	 processing	 element	 shall	 be	 the	 same	 as	 the	
previous	processing	element’s	output	channels.	The	last	processing	element’s	output	channels	shall	be	
the	same	as	the	output	channels	of	the	containing	multiProcessElementsType	tag.		

Clipping	of	the	results	of	a	processing	element	shall	not	be	performed.	Some	processing	elements	may	
perform	clipping	as	needed	on	input.		

The	specification	for	each	processing	element	shall	indicate	whether	that	element	performs	clipping	on	
input.		

The	general	element	encoding	for	multiProcessElementsType	tag	elements	is	shown	in	Table	84.	

Table	84	–	generalElement	encoding	

Byte	Position	 Field	
Length	
(bytes)	

Content Encoded	as…	

0…3	 4	 Element	type	signature

4…7	 4	 Reserved,	shall	be	0

8…9	 2	 Number	of Input	Channels	(P) uInt16Number	

10…11	 2	 Number	of	Output	Channels	(Q) uInt16Number	

12..end	 4	 Element	Data

	

	

ICC.2:2017	

128	 ©	ICC	2017	–	All	rights	reserved	

 Specific	processing	element	listing	

 Calculator	Element		

A	Calculator	element	allows	for	the	encoding	of	arbitrary	functions	of	multiple	data	inputs.	

Calculator	elements	can	be	used	to	augment	the	other	multi‐processing	elements.	Calculator	elements	
can	also	contain	sub‐elements	that	can	be	conditionally	evaluated	within	the	context	of	the	calculator	
elements	main	function.		

In	addition	to	defining	input	and	output	channels,	a	Channel	Calculator	element	can	also	define	and	use	
Temporary	 Channel	 storage,	 which	 provides	 additional	 channels	 of	 data	 outside	 the	 channel	 data	
persisted	between	processing	elements	within	a	single	Multi	Processing	Element	Tag.	Input	and	output	
channel	data	is	maintained	separately.	

Temporary	Channel	data	is	maintained	and	stored	only	within	the	context	of	a	single	Multi	Processing	
Element	Tag.	Temporary	Channel	data	shall	not	be	persisted	from	one	Multi	Processing	Element	tag	to	
another	when	Multi	Processing	Element	tags	are	connected	or	referenced	as	sub‐calculator	elements.	At	
each	 invocation	 of	 a	 calculator	 (or	 sub‐calculator)	 element	 it	 shall	 be	 assumed	 that	 all	 Temporary	
channel	data	is	initialized	to	zero.	

NOTE	 For	 performance	 purposes	 it	 is	 recommended	 that	 temporary	 channel	 data	 be	 initialized	 before	 being	
referenced.	

The	maximum	number	of	input,	output	and	temporary	channels	shall	be	65	535.	

The	encoding	of	a	Calculator	element	is	shown	in	Table	85.	

Table	85	–	Calculator	Element	encoding	

Byte	Position	 Field	
Length	
(bytes)	

Content Encoded	as…	

0…3	 4	 ‘calc’	(63616C63h)	type	signature 	

4…7	 4	 Reserved,	shall	be	0 	

8…9	 2	 Number	of	Input	Channels	(P) uInt16Number

10…11	 2	 Number	of	Output	Channels	(Q) uInt16Number

12…15	 4	 Number	of	Sub	Elements	(E) uInt32Number

16…23	 8	 Main	Function	Position positionNumber

24…24+8*E‐1	 8*E	 Sub	Element	Positions Array	of	
positionNumber	

24+8*E	…	end		 	 Data	for	Calculator	Element 	

	

ICC.2:2017	

©	ICC	2017–	All	rights	reserved	 129	

The	main	function	defines	a	sequence	of	operations	using	RPN	(reverse	polish	notation).	A	data	stack	of	
numeric	results	is	kept	as	operations	are	evaluated.	The	data	stack	is	assumed	to	be	empty	at	the	start	
of	 each	 main	 function	 evaluation.	 Each	 operation	 in	 a	 function	 can	 use	 a	 constant	 parameter,	 input	
channel	data,	or	temporary	channel	data	to	place	results	onto	the	data	stack	or	otherwise	manipulate	
the	data	stack.	

During	the	course	of	interpretation,	the	main	calculator	function	can	place	data	results	into	the	output	
channels	or	into	temporary	channel	storage.	Output	channels	shall	be	assumed	to	be	zero	until	set	by	
the	main	calculator	function.	

Main	function	validity	checking	shall	be	performed	by	checking	for	valid	operations,	valid	channel	index	
addressing,	 and	 valid	 stack	 access	 (with	 no	 stack	 underflow	 or	 overflow)	 before	 main	 function	
evaluation	is	performed	to	ensure	system	data	integrity.	The	reserved	storage	for	the	data	stack	shall	be	
for	at	least	65	535	values.	

Mathematical	error	handling	is	the	responsibility	of	the	Calc	element	script	implementer.	Calc	element	
operations	 generally	 take	 data	 from	 the	 stack	 and	 place	 results	 on	 the	 stack.	 In	 some	 cases	 the	
operation	has	no	defined	result	(like	dividing	by	zero)	and	non‐real	numbers	(+INF,	‐INF,	or	NAN)	may	
be	placed	on	the	stack	as	the	result.	Operations	that	use	such	non‐real	values	as	input	may	also	result	in	
non‐real	values	as	output.	Regardless,	the	number	of	values	consumed	and	produced	by	each	operation	
shall	be	as	specified	 for	 the	operation.	The	 ‘rnum’	 (726e756dh)	operator	can	be	used	 to	determine	 if	
values	on	the	stack	are	real	numbers,	or	stack	values	can	be	compared	to	the	results	of	the	‘+INF’,	‘‐INF’,	
and	 ‘NAN	 ‘	 operators.	 The	 behaviour	 of	 a	 CMM	 for	 non‐real	 values	 placed	 in	 the	 output	 channels	 or	
passed	to	Calc	sub‐elements	is	implementation	dependent.	

The	encoding	of	a	Calculator	function	is	shown	in	Table	86.	

Table	86	–	Calculator	Function	encoding	

Byte	Position	 Field	
Length	
(bytes)	

Content Encoded	as…	

0…3	 4	 ‘func’	(66756e63h)	type	signature 	

4…7	 4	 Reserved,	shall	be	0 	

8…11	 4	 Number	of	operations	(N) uInt32Number

12…12	+	N*8	‐	1		 8	 Function	operations 	

Individual	 operations	 shall	 be	 encoded	as	 a	 signature	 followed	by	4	data	bytes.	There	 are	8	 types	of	
operation	 encodings	 (Push	 floating	 point	 constant,	 channel	 vector,	 sub‐element	 invocation,	 stack	
operation,	matrix,	sequence	functional,	function	vector,	and	conditional).	

11.2.1.1 Floating	point	constant	operations	

The	Floating	point	data	operation	is	used	to	push	a	single	float32Number	onto	the	evaluation	stack.	The	
Floating	point	data	operation	encoding	is	shown	in	Table	87.	

ICC.2:2017	

130	 ©	ICC	2017	–	All	rights	reserved	

Table	87	–	Push	Floating	point	constant	operation	encoding	

Byte	Position		 Field	
Length	
(bytes)		

Content	 Encoded	as…		

0…3		 4		 'data'	(64617461h) 	

4…7		 4		 float32Number	to	put	on	stack Float32Number

11.2.1.2 Channel	vector	operations	

A	 channel	 vector	 operation	 is	 used	 to	 operate	 on	 input,	 output	 or	 temporary	 channel	 data	 either	 by	
pushing	it	onto	the	evaluation	stack	or	storing	evaluation	stack	data	into	channel	storage.	The	encoding	
of	a	channel	vector	operation	 is	shown	in	Table	88	with	descriptions	of	 the	channel	vector	operation	
signatures	shown	in	Table	89.	

The	in	channel	operation	is	limited	to	retrieving	pixel	data	from	input	channels	defined	in	the	calculator	
element	header.	The	out	channel	operator	is	limited	to	storing	pixel	data	to	output	channels	defined	in	
the	calculator	element.	Input	channels	are	read	only	and	therefore	the	use	of	the	out	channel	operator	
shall	not	affect	 input	channel	values.	Temporary	channels	are	assumed	to	be	zero	at	 the	start	of	each	
calculator	element’s	main	function	evaluation.		

Table	88	–	Channel	vector	operation	encoding	

Byte	Position		 Field	
Length	
(bytes)		

Content	 Encoded	as…		

0…3		 4		 Operation	signature 	

4…5	 2		 Starting	index	(S) uInt16Number

6…7	 2		 Additional	count	from	start	(T)	 uInt16Number

	

The	index	is	the	starting	index	of	the	input,	output,	or	temporary	data	channel	to	use		

Table	89	–	Channel	vector	operations	by	signature	

Operation	signature	 Stack	
arguments	

Operator	definition	 Stack	results	

'in	'	(696e2020h)		 None	 Load	from	input	pixel	channel	
number	S	through	S+T	

in[S]	…	in[S+T]

'out	'	(6f757420h)	 A0	…	AT	 Store	to	output	pixel	channel	
number	S	through	S+T.	Thus:	

out[S]=A0,	….,	out[S+T]=AT	

None	

'tget'	(74676574h)	 None	 Get	temporary	channels	S	through	
S+T	

temp[S]…	
temp[S+T]	

‘tput‘	(74707574h)	 A0	…	AT	 Put	temporary	channels	S+T	
through	S.	Thus:	

temp[S]=A0,	….,	temp[S+T]=AT	

None	

ICC.2:2017	

©	ICC	2017–	All	rights	reserved	 131	

‘tsav‘	(74736176h)	 A0	…	AT	 Saves	arguments	on	stack as	
temporary	channels	S+T	through	S	
without	affecting	arguments	on	the	
stack.	Thus:	

temp[S]=A0,	….,	temp[S+T]=AT	

A0	…	AT	

NOTE	 	For	 the	out,	 tput,	 and	 tsav	 operators	 the	 top	most	 element	 on	 the	 stack	 is	 stored	 at	 the	 S+T	 channel	
position.	

11.2.1.3 	CMM	environment	variable	operation	

The	CMM	environment	variable	operation	is	used	to	provide	environmental	data	information	that	can	
optionally	 be	 provided	 to	 the	 CMM	 as	 input	 onto	 the	 evaluation	 stack,	 thus	 allowing	 control	 or	
operations	within	the	calculator	element	to	be	guided	by	external	configuration.	 	The	encoding	of	 the	
CMM	 environment	 variable	 operation	 is	 shown	 in	 Table	 90	 with	 the	 description	 of	 the	 CMM	
environment	variable	operation	signature	shown	in	Table	91.	

Table	90	–	Environment	variable	operation	encoding	

Byte	Position		 Field	
Length	
(bytes)		

Content	 Encoded	as…		

0…3		 4		 Operation	signature 	

4…7	 4		 Environment	variable	signature	(X) uInt32Number

	

Signature	values	for	the	environment	variable	signature	(X)	are	open	ended	and	workflow	dependent.		
Interoperable	usage	of	CMM	environment	variables	shall	use	environment	variable	signatures	that	are	
specified	 in	 separate	 interoperability	conformance	parts	of	 this	 ISO	20677	specification	or	 registered	
separately	with	the	International	Color	Consortium.	

Table	91	–	Environment	variable	operation	by	signature	

Operation	signature	 Stack	
arguments	

Operator	definition	 Stack	results	

'env	'	(656e7620h)	 None	 Places	32‐bit	floating	point	
CMM	environment	variable	
value	on	stack	(denoted	by	
env(X))	if	variable	with	
signature	X	is	available	and	
supported.		Additional	value	
placed	to	indicate	whether	
variable	is	supported	

env(X)	1,0		

if	X	is	available	and	
supported		

0,0	0,0	

otherwise	

	

The	env	operation	shall	consume	no	values	from	the	evaluation	stack	and	shall	always	place	two	values	
onto	 the	 evaluation	 stack.	 The	 first	 value	 placed	 on	 the	 stack	 shall	 be	 the	 32‐bit	 floating	 point	 CMM	
environment	variable	value	associated	with	the	32‐bit	environment	variable	signature	(represented	by	
the	function	env(X)	in	Table	86)	if	the	CMM	environment	variable	(X)	is	available	to	and	supported	by	

ICC.2:2017	

132	 ©	ICC	2017	–	All	rights	reserved	

the	CMM,	or	0.0	otherwise.		The	second	value	placed	on	the	stack	shall	be	1.0	if	the	CMM	environment	
variable	X	is	available	to	and	supported	by	the	CMM,	or	0.0	otherwise.			

NOTE	1	 	It	 is	 the	 responsibility	 of	 the	 Calc	 element	 script	 implementer	 to	 provide	 appropriate	 handling	 of	
operations	when	a	desired	CMM	environment	variable	is	not	available	or	supported.	

Two	CMM	environment	variables	shall	always	be	handled	with	the	resulting	stack	values	as	shown	in	
Table	92.	

Table	92	–	Required	CMM	environment	variable	support	by	signature	

Environment	variable	
signature	

Stack	results

'true'	(74727565h) 1,0	1,0

‘ndef’	(6e646566h) 0,0	0,0

NOTE	2		 Support	 for	 and	 methods	 of	 supplying	 additional	 CMM	 environment	 values	 to	 the	 CMM	 are	
implementation	dependent.	

11.2.1.4 Sub‐Element	invocation	operations	

A	 sub‐element	 invocation	 operation	 allows	 for	 processing	 elements	 associated	 with	 the	 calculator	
element	 to	 be	 selectively	 applied.	 When	 a	 sub‐processing	 element	 is	 invoked	 the	 input	 channels	
associated	with	the	processing	element	are	first	taken	from	the	evaluation	stack.	These	values	are	then	
used	by	the	sub‐element	to	perform	its	processing	to	get	output	channel	values	which	are	then	placed	
onto	 the	 evaluation	 stack.	 (Note:	 Sub‐elements	 are	 separate	 processing	 elements	 and	 therefore	 use	
their	own	 temporary	variables	and	evaluation	stacks.	 In	other	words,	 if	 a	Sub‐element	 is	a	 calculator	
element	 it	 shall	have	 independent	scope	 from	the	calling	calculator	element).	The	curv,	mtx,	and	clut	
operators	require	that	the	indexed	sub‐element	has	the	appropriate	type.	The	elem	operator	performs	
no	type	check	on	the	type	of	the	element.	

The	 Index	 parameter	 specifies	 the	 index	 of	 the	 element	 type	 to	 use.	 The	 encoding	 of	 a	 sub‐element	
operation	 encoding	 is	 shown	 in	 Table	 93	with	 descriptions	 of	 the	 sub‐element	 operation	 signatures	
shown	in	Table	94.	

Table	93	–	Sub‐element	operation	encoding	

Byte	Position		 Field	
Length	
(bytes)		

Content	 Encoded	as…		

0…3		 4		 Operation	signature 	

4…7	 4		 Element	Index	(S) uInt32Number

Table	94	–	Sub‐element	operations	by	signature	

Operation	signature	 Stack	arguments Operator	definition	 Stack	results

‘curv'	(63757276h)	 X1	…	XInput		 Applies	sub‐element	(S)	as	a	curve	 Y1	…	YOutput	

ICC.2:2017	

©	ICC	2017–	All	rights	reserved	 133	

set	

‘mtx	'	(6d747820h)	 X1	…	XInput	 Applies	sub‐element	(S)	as	a matrix	 Y1	…	YOutput	

'clut'	(636c7574h)	 X1	…	XInput	 Applies	sub‐element	(S)	as	a	CLUT Y1	…	YOutput	

'calc'	(63616c63h)	 X1	…	XInput	 Applies	sub‐element	(S)	as	a	
calculator	

Y1	…	YOutput	

'tint'	(74696e74h)	 X1	…	XInput	 Applies	sub‐element	(S)	as	a	tint Y1	…	YOutput	

'elem'	(656c656dh)	 X1	…	XInput	 Applies	sub‐element	(S) Y1	…	YOutput	

11.2.1.5 Stack	operations	

A	stack	operation	is	used	to	manipulate	multiple	elements	of	the	evaluation	stack	directly.	The	encoding	
of	a	stack	operation	is	shown	in	Table	95	with	descriptions	of	the	stack	operation	signatures	shown	in	
Table	96.	

Table	95	–	Stack	operation	encoding	

Byte	Position		 Field	
Length	
(bytes)		

Content	 Encoded	as…		

0…3		 4		 Operation	signature 	

4…5	 2		 Number	of	extra	elements	selector	S uInt16Number

6…7	 2		 Number	of	extra	times	selector	T uInt16Number

Table	96	–	Stack	operations	by	signature	

Operation	signature	 Stack	
arguments	

Operator	definition	 Stack	results	

'copy'	(636f7079h)	 A0	…	AS	 Duplicate	top	S+1	elements	T+1	
times	(stack	results	shown	for	T=0)	

A0	…	AS	A0	…	AS

'rotl'	(726f746ch)	 A0	…	AS	 Rotate	left	top	S+1	elements	T+1	
positions	on	stack	(stack	results	
shown	for	T=0)	

A1	…	AS	A0	

'rotr'	(726f7472h)	 A0	…	AS	 Rotate	right	top	S+1	elements	T+1	
positions	on	stack	(stack	results	
shown	for	T=0)	

AS	A0	…	AS‐1	

'posd'	(706f7364h)	 AS	…	A0	 Duplicate	the	element	at	the	Sth	
position	from	top	of	stack	T+1	times	
(stack	results	shown	for	T=0)	

AS	…	A0	AS	

‘flip’	(666c6970h)	 A0	…	AS+1	 Reverse	the	top	S+1	elements	on	the	
stack	(T	shall	be	zero)	

As+1	…	A0	

‘pop	‘	(706f7020h)	 A0	…	AS	 Remove	top	S+1	elements	on	the	
stack	(T	shall	be	zero)	

	

NOTE	 	In	the	above	table	the	last	element	listed	is	the	first	item	in	the	evaluation	stack.	

ICC.2:2017	

134	 ©	ICC	2017	–	All	rights	reserved	

11.2.1.6 Matrix	operations	

A	matrix	operation	performs	operations	to	matrix	data	or	matrix	data	plus	column	vector	data	placed	
on	 the	 evaluation	 stack	 directly.	 The	 encoding	 of	 a	 matrix	 operation	 is	 shown	 in	 Table 97	 with	
descriptions	of	the	matrix	operation	signatures	shown	in	Table 98.	

Table	97	–	Stack	operation	encoding	

Byte	Position		 Field	
Length	
(bytes)		

Content	 Encoded	as…		

0…3		 4		 Operation	signature 	

4…5	 2		 Index	of	last	matrix	row	S uInt16Number

6…7	 2		 Index	of	last	matrix	column	T uInt16Number

Table	98	–	Stack	operations	by	signature	

Operation	signature	 Stack	
arguments	

Operator	definition	 Stack	results	

‘solv’	(736f6c76h)	 A0,0	…	A0,T		

…	

AS,0	…	AS,T	

Y0	…	YS	

Solve	for	x	in	matrix	vector	equation	
y=Ax	where	x	and	y	are	column	
vectors	and	A	is	a	matrix	containing	
S+1	rows	and	T+1	columns.		

Z=1	indicates	operation	was	
successful	and	supported	by	
implementation.	Z=0	results	in	
contents	of	x	set	to	zero	and	
indicates	failure	to	invert	A	or	lack	
of	support	by	implementation.		

X0	…	XT	Z		

	

‘tran’	(7472616eh)	 A0,0	…	A0,T		

…	

AS,0	…	AS,T	

Transpose	matrix	elements	on	stack	
with	S+1	rows	and	T+1	columns	

A0,0	…	AS,0		

…	

A0,T…	AS,T	

11.2.1.7 Sequence	functional	operations	

The	sequence	functional	operations	take	two	or	more	arguments	off	of	the	evaluation	stack	and	places	
onto	 the	evaluation	 stack	a	 single	value	 that	 represents	 the	 result.	The	Size	parameter	 specifies	how	
many	more	than	two	arguments	to	use.	The	encoding	of	a	sequence	function	vector	operation	encoding	
is	shown	in	Table 99	with	descriptions	of	the	function	operation	signatures	shown	in	Table 100.	

Table	99	–	Sequence	Functional	operation	encoding	

Byte	Position		 Field	
Length	
(bytes)		

Content	 Encoded	as…		

0…3		 4		 Operation	signature 	

4…5	 2		 Additional	Size	(S) uInt16Number

6…7	 2		 Reserved,	shall	be	0 	

ICC.2:2017	

©	ICC	2017–	All	rights	reserved	 135	

Table	100	–	Variable	Length	Functional	operations	by	signature	

Operation	signature	 Stack	arguments Operator	definition	 Stack	results

'sum	'	(73756d20h)	 X0	…XS+1	 Z	=	X0 +	…	+	XS+1 Z	

‘prod'	(70726f64h)	 X0	…	XS+1	 Z	=	X0 *	…	*	XS+1 Z	

'min	'	(6d696e20h)	 X0	…XS+1	 Z	is	minimum	of	X0 through	XS+1 Z	

'max	'	(6d617820h)	 X0	…XS+1	 Z	is	maximum	of	X0 through	XS+1 Z	

'and	‘	(616e6420h)	 X0	…XS+1	 Z=1	if	ALL	X0 through	XS+1	are	
greater	than	or	equal	to	0.5.	Else	
Z=0	

Z	

'or	‘	(6f722020h)	 X0	…XS+1	 Z=1	if	ANY	X0 through	XS+1 is	
greater	than	or	equal	to	0.5.	Else	
Z=0	

Z	

11.2.1.8 Functional	vector	operations	

A	functional	vector	operation	(optionally)	takes	one	or	two	vector	arguments	off	of	the	evaluation	stack	
and	places	onto	the	evaluation	stack	a	single	vector	result.	The	Size	parameter	specifies	the	last	index	of	
a	vector	to	use	with	zero	based	indexing.	The	encoding	of	a	function	vector	operation	encoding	is	shown	
in	Table	101	with	descriptions	of	the	function	operation	signatures	shown	in	Table	102.	

Table	101	–	Functional	Vector	operation	encoding	

Byte	Position		 Field	
Length	
(bytes)		

Content	 Encoded	as…		

0…3		 4		 Operation	signature 	

4…5	 2		 Vector	index	selector	(S) uInt16Number

6…7	 2		 Reserved,	shall	be	0 	

Table	102	–	Functional	Vector	operations	by	signature	

Operation	signature	 Stack	arguments Operator	definition	 Stack	results

'pi	'	(70692020h)	 None	 Mathematical	value	Π	(S	shall	be	
zero)	

Π	

‘+INF’	(2b494e46h)	 None	 Floating	point	value	for	positive	
infinity	(S	shall	be	zero)	

+INF	

‘‐INF’	(2d494e46h)	 None	 Floating	point	value	for	negative	
infinity	(S	shall	be	zero)	

‐INF	

‘NaN	‘(4e614e20h)	 None	 Floating	point	value	for	“Not	a	
Number”	(S	shall	be	zero)	

NaN	

'add'	(61646420h)	 X0	…	XS	Y0…YS	 Zi =	Xi +	Yi (for	i=0…S) Z0	…	ZS	

ICC.2:2017	

136	 ©	ICC	2017	–	All	rights	reserved	

'sub'	(73756220h)	 X0…	XS	Y0…YS	 Zi =	Xi ‐ Yi (for	i=0…S) Z0…	ZS	

'mul'	(6d756c20h)	 X0…	XS	Y0…YS	 Zi =	Xi *	Yi (for	i=0…S) Z0…	ZS	

'div’	(64697620h)	 X0…	XS	Y0…YS	 Zi =	Xi /	Yi (for	i=0….S) Z0…	ZS	

'mod’	(6d6f6420h)	 X0…	XS	Y0…YS	 Zi =	Xi ‐ trunc(Xi /	Yi)*	Yi

	(for	i=0….S)	

Z0…	ZS	

'pow	'	(706f7720h)	 X0…	XS	Y0…YS	 iY
ii XZ  	(for	i=0…S)	 Z0…	ZS	

‘gama’	(67616d61h)	 X0…	XS	Y	 Y
ii XZ  	(for	i=0…S)	 Z0…	ZS	

‘sadd’	(73616464h)	 X0…	XS	Y	 YXZ ii  	(for	i=0…S)	 Z0…	ZS	

'ssub'	(73737562h)	 X0…	XS	Y	 Zi =	Xi ‐ Y	(for	i=0…S) Z0…	ZS	

‘smul’	(736d756ch)	 X0…	XS	Y	 YXZ ii * 	(for	i=0…S)	 Z0…	ZS	

'sdiv’	(73646976h)	 X0…	XS	Y	 Zi =	Xi /	Y	(for	i=0….S) Z0…	ZS	

‘sq	‘	(73712020h)	 X0…	XS	 Zi =	Xi *	Xi (for	i=0…S) Z0…	ZS	

'sqrt'	(73717274h)	 X0…	XS	
ii XZ  	(for	i=0…S)	 Z0…	ZS	

‘cb	‘	(63622020h)	 X0…	XS	 Zi =	Xi *	Xi *	Xi (for	i=0…S) Z0…	ZS	

'cbrt'	(63627274h)	 X0…	XS	 3
ii XZ  	(for	i=0…S)	 Z0…	ZS	

'abs	'	(61627320h)	 X0…	XS	 If	(Xi <0.0)

	Zi	=	‐	Xi	

Else	

Zi	=	Xi	

(for	i=0…S)	

Z0…	ZS	

‘neg	‘	(6e656720h)	 X0…	XS	 Zi =	‐ Xi (for	i=0…S) Z0…	ZS	

‘rond‘	(726f6e64h)	 X0…	XS	 If	(Xi <0.0)

	Zi	=	trunc(Xi	–	0.5)	

Else	

Zi	=	trunc(Xi	+	0.5)	

	(for	i=0…S)	

Z0…	ZS	

‘flor‘	(666c6f72h)	 X0…	XS	 Zi =	floor(Xi)	(for	i=0…S) Z0…	ZS	

‘ceil‘	(6365696ch)	 X0…	XS	 Zi =	ceil(Xi)	(for	i=0…S) Z0…	ZS	

‘trnc‘	(74726e63h)	 X0…	XS	 Zi =	trunc(Xi)	(for	i=0…S) Z0…	ZS	

‘sign‘	(7369676eh)	 X0…	XS	 If	(Xi <0.0)

	Zi	=	‐	1	

Else	If	(Xi	>0.0)	

	Zi	=	‐1	

Else	

Zi	=	0	

(for	i=0…S)	

Z0…	ZS	

ICC.2:2017	

©	ICC	2017–	All	rights	reserved	 137	

'exp	'	(65787020h)	 X0…	XS	 iX
i eZ  	(for	i=0…S)	 Z0…	ZS	

'log	'	(6c6f6720h)	 X0…	XS	 Zi =	log(Xi)	(for	i=0…S) Z0…	ZS	

'ln	'	(6c6e2020h)	 X0…	XS	 Zi =	ln(Xi)	(for	i=0…S) Z0…	ZS	

'sin	'	(73696e20h)	 X0…	XS	 Zi =	sin(Xi)	(for	i=0…S)

Note:	X	is	in	radians	

Z0…	ZS	

'cos	'	(636f7320h)	 X0…	XS	 Zi =	cos(Xi)	(for	i=0…S)

Note:	X	is	in	radians	

Z0…	ZS	

'tan	'	(74616e20h)	 X0…	XS	 Zi =	tan(Xi)	(for	i=0…S)

Note:	X	is	in	radians	

Z0…	ZS	

'asin'	(6173696eh)	 X0…	XS	  ii XZ 1sin  	(for	i=0…S)	

Note:	result	is	in	radians	

Z0…	ZS	

'acos'	(61636f73h)	 X0…	XS	  ii XZ 1cos  	(for	i=0…S)	

Note:	result	is	in	radians	

Z0…	ZS	

'atan'	(6174616eh)	 X0…	XS	  ii XZ 1tan  	(for	i=0…S)	

Note:	result	is	in	radians	

Z0…	ZS	

'atn2'	(61746e32h)	 X0…	XS	Y0…YS	









 

i

i
i X

Y
Z 1tan 	(for	i=0…S)	

Note:	result	is	in	radians	

Z0…	ZS	

'ctop'	(63746f70h)	 X0…	XS	Y0…YS	


180

tan 1

22















i

i
i

iii

X

Y
A

YXR

		

(for	i=0…S)	

Note:	resulting	Ai	in	degrees	ranging	
from	0	to	360	

R0…	RS	A0…AS

'ptoc'	(70746f63h)	 R0…	RS	A0…AS	

















180
sin

180
cos





iis

iii

ARY

ARX

		

(for	i=0…S)	

Note:	Ai	in	degrees	ranging	from	0	to	
360	

X0…	XS	Y0…YS

	

‘rnum’	(726e756dh)	 X0	…	Xs	 Checks	for	real	numbers

If	(Xi=+INF	or		

			Xi=‐INF	or		

			Xi=NaN)	

Zi	=	0.0	

Else	

Z0…	ZS	

ICC.2:2017	

138	 ©	ICC	2017	–	All	rights	reserved	

Zi	=	1.0

'lt	'	(6c742020h)	 X0…	XS	Y0…YS	 If	(Xi <	Yi)

	Zi	=	1.0	

Else	

Zi	=	0.0	

(for	i=0…S)	

Z0…	ZS	

'le	'	(6c652020h)	 X0…	XS	Y0…YS	 If	(Xi ≤	Yi)

	Zi	=	1.0	

Else	

Zi	=	0.0	

(for	i=0…S)	

Z0…	ZS	

'eq	'	(65712020h)	 X0…	XS	Y0…YS	 If	(Xi =	Yi)

	Zi	=	1.0	

Else	

Zi	=	0.0	

(for	i=0…S)	

Note:	Differences	in	encoding	may	
result	Z=0.0.	Use	‘near’	to	account	for	
such	differences		

Z0…	ZS	

'near'	(6e656172h)	 X0…	XS	Y0…YS	 If	(Yi	‐	≤	Xi	and	Xi	≤	Yi	+)	

	Zi	=	1.0	

Else	

Zi	=	0.0	

(for	i=0…S)	

Note:		=	1x10‐8	to	allow	for	small	
differences	in	floating	point	encoding.	

Z0…	ZS	

'ge	'	(67652020h)	 X0…	XS	Y0…YS	 If	(Xi ≥	Yi)

	Zi	=	1.0	

Else	

Zi	=	0.0	

(for	i=0…S)	

Z0…	ZS	

'gt	'	(67742020h)	 X0…	XS	Y0…YS	 If	(Xi >	Yi)

	Zi	=	1.0	

Else	

Zi	=	0.0	

(for	i=0…S)	

Z0…	ZS	

'vmin'	(766d696eh)	 X0	…	XS	Y0…YS	 Zi =	min(Xi ,	Yi)	(for	i=0…S) Z0	…	ZS	

'vmax'	(766d6178h)	 X0	…	XS	Y0…YS	 Zi =	max(Xi ,	Yi)	(for	i=0…S) Z0	…	ZS	

'vand'	(76616e64h)	 X0	…	XS	Y0…YS	 if	(Xi	≥0.5	and	Yi ≥0.5)

	Zi	=1.0	

Z0	…	ZS	

ICC.2:2017	

©	ICC	2017–	All	rights	reserved	 139	

	

NOTE		 In	the	above	table	the	last	element	listed	in	the	argument	stack	is	the	first	item	in	the	evaluation	stack.	

11.2.1.9 Conditional	Operations	

The	conditional	operations	allow	the	encoding	and	conditional	evaluation	of	operation	streams	based	
upon	 comparing	 the	 top	most	 evaluation	 stack	 entry	 to	 0.5.	 An	 'if	 	 '	 (69662020h)	 operation	with	 its	
associated	stream	of	operations	can	optionally	be	immediately	followed	by	an	‘else’	operation	with	its	
stream	of	associated	operations.	

Else	

	Zi	=0		

(for	i=0…S)	

'vor'	(766f7220h)	 X0	…	XS	Y0…YS	 if	(Xi	≥0.5	or	Yi ≥0.5)

	Zi	=1.0	

Else		

	Zi	=0		

(for	i=0…S)	

Z0	…	ZS	

‘tLab’	(744c6162h)	 X0…XS	Y0	…	YS	Z0
…	ZS	

 
    
    iii

iii

ii

ZfYfb

YfXfa

YfL






200

500

16

	

	(for	i=0…S)	

Where:	












































 3

3

3
1

29

6
 when

29

4

108

841

29

6
hen w

)(

tt

tt
tf

	

Note:	Xi,	Yi,	Zi	represent	normalized	
values.	

L0…LS	a0	…	aS
b0…bS	

‘tXYZ’	(7458595ah)	 L0…LS	a0	…	aS	
b0…bS	







 










 










 









200116

16

500116

16

116

16

1

1

1

ii
i

ii
i

i
i

bL
fZ

aL
fX

L
fY

	

(for	i=0…S)	

Where:	

 
























 




29

6
 when

29

4

841

108
29

6
hen w 3

1

tt

tt
tf

	

Note:	Xi,	Yi,	Zi	represent	normalized	
values.	

X0…XS	Y0	…	YS
Z0	…	ZS	

ICC.2:2017	

140	 ©	ICC	2017	–	All	rights	reserved	

Only	one	associated	 stream	of	operations	 shall	 be	 evaluated	depending	upon	 the	 value	on	 top	of	 the	
evaluation	stack.	

If	the	top	most	value	is	greater	than	or	equal	to	0.5	or	‘NAN	‘	then	the	stream	associated	with	the	‘if	 	 ‘	
operation	shall	be	evaluated.	

If	 the	 top	most	value	 is	 less	 than	0.5	and	an	 ‘else’	operation	 immediately	 succeeds	an	 ‘if	 	 ‘	operation,	
then	the	stream	of	operations	associated	with	the	succeeding	‘else’	operation	shall	be	evaluated.	

If	 the	 top	most	 value	 is	 less	 than	 0.5	 and	 an	 ‘else’	 operation	 does	 not	 immediately	 succeed	 an	 ‘if	 	 ‘	
operation,	the	stream	of	operations	associated	with	the	‘if		‘	operation	shall	be	skipped.	

An	‘else’	operation	shall	always	be	preceded	by	an	‘if		‘	operation.		

Before	evaluating	either	the	associated	‘if		‘	or	‘else’	operation	streams	(or	skipping	the	associated	‘if		‘	
stream	of	operations)	the	top	most	value	shall	be	removed	from	the	stack	and	no	further	arguments	are	
placed	on	the	stack	before	evaluating	the	selected	operation	stream.	

The	number	of	operations	in	an	‘if		‘	or	‘else’	associated	operation	stream	shall	be	zero	or	more.	

The	encoding	of	the	‘if		‘	conditional	operation	is	shown	in	Table	103,	and	the	encoding	of	an	‘if		‘	with	
accompanying	‘else’	conditional	operation	is	shown	in	Table	104.	

Table	103–	Conditional	if	operation	encoding	

Byte	Position		 Field	
Length	
(bytes)		

Content	 Encoded	as…		

0…3		 4	 'if		'	(69662020h) 	

4…7	 4	 Number	of	operations	(T)	to	evaluate	if	
stack	argument	is	greater	than	or	equal	to	
0.5	or	NAN	

uInt32Number

8…7	+	8T	 8T		 Operations	to	evaluate	if	stack	argument	
was	greater	than	or	equal	to	0.5	

	

Table	104	–	Conditional	if	with	else	operation	encoding	

Byte	Position		 Field	
Length	
(bytes)		

Content	 Encoded	as…		

0…3		 4	 'if		'	(69662020h) 	

4…7	 4	 Number	of	operations	(T)	to	evaluate	if	
stack	argument	is	greater	than	or	equal	to	
0.5	or	NAN	

uInt32Number

8…11		 4	 'else'	(656c7365h) 	

12…15	 4	 Number	of	operations	(U)	to	evaluate	if	
either	the	previous	‘if		‘	conditional	
operation	found	a	stack	argument	less	than	
0.5	

uInt32Number

ICC.2:2017	

©	ICC	2017–	All	rights	reserved	 141	

8…7	+	8T	 8T		 Operations	to	evaluate	if	stack	argument	
was	greater	than	or	equal	to	0.5	

	

8+8T…7	+	8T+8U	 8U	 Operations	to	evaluate	if	either	the	
previous	‘if		‘	conditional	operation	found	a	
stack	argument	less	than	0.5	

	

	

11.2.1.10 Selection	Operations	

The	 selection	 operations	 allow	 the	 encoding	 and	 conditional	 evaluation	 of	 operation	 streams	 based	
upon	 the	 rounded	 integer	 value	 of	 the	 top	 most	 evaluation	 stack	 entry	 to	 select	 a	 single	 stream	 of	
associated	operations	to	be	evaluated.	The	selection	‘sel	’	(73656c20h)	operation	shall	be	immediately	
followed	by	one	or	more	 ‘case’	 (63617365h)	operations	with	associated	 ‘case’	 streams	of	operations.	
Additionally,	 a	 ‘dflt’	 (64666c74h)	 operation	 with	 its	 stream	 of	 associated	 operations	 can	 follow	
immediately	after	the	last	‘case’	operation	which	has	an	associated	stream	of	operations.		

At	 most	 only	 one	 associated	 stream	 of	 operations	 shall	 be	 evaluated	 depending	 upon	 the	 rounded	
integer	value	of	the	top	most	evaluation	stack	entry.	

The	list	of	case	following	a	 ‘sel	 ’	operation	can	be	considered	as	a	zero	based	array	of	case	streams	of	
length	N+1.			

Evaluation	of	a	‘sel	’	operation	shall	be	performed	by	removing	the	top	value	from	the	evaluation	stack	
and	 rounding	 to	 its	 nearest	 integer	 value	 (in	 identical	manner	 as	 the	 ‘rond’	 operation)	 to	 define	 the	
selection	index	S.	

Then,	if	S	is	in	the	range	between	and	including	zero	and	N	then	S	shall	be	used	to	index	the	subsequent	
zero	based	array	of	‘case’	operations	to	select	which	associated	stream	of	operations	to	evaluate.	If	S	is	
less	 than	 zero	 or	 greater	 than	 or	 equal	 to	 N	 and	 a	 ‘dflt’	 operation	 with	 its	 associated	 stream	 of	
operations	 follows	 the	 list	 of	 case	 streams	 then	 the	 stream	 of	 operations	 associated	 with	 the	 ‘dflt’	
operation	shall	be	evaluated.	Otherwise	if	S	is	less	than	zero	or	greater	than	or	equal	to	N	and	no	‘dflt’	
operation	 follows	 the	 last	 ‘case’	 stream	then	no	stream	of	operations	shall	be	evaluated	and	 the	next	
operation	to	be	evaluated	shall	be	the	operation	immediately	after	last	‘case’	stream.	

A	‘sel	‘	operation	shall	always	be	followed	by	one	or	more	‘case’	operations.	

A	‘case’	operation	shall	always	be	preceded	by	a	‘sel	’	or	‘case’	operation.	

A	‘dflt’	operation	shall	always	be	preceded	by	a	‘case’	operation.		

The	 top	most	value	 shall	be	 removed	 from	 the	 stack	before	evaluating	either	 the	associated	 ‘case’	 or	
‘dflt’	operation	streams	(if	one	of	these	streams	is	selected),	and	no	further	arguments	shall	be	placed	
on	the	stack	before	evaluating	the	selected	operation	stream.	

The	number	of	associated	operations	for	either	a	‘case‘	or	‘dflt’	operation	stream	shall	be	zero	or	more.	

The	encoding	of	the	 ‘sel	 ’	conditional	operation	with	 ‘case’	operations	and	 ‘dflt’	operation	is	shown	in	
Table	105;	the	encoding	of	the	‘sel	’	conditional	operation	with	‘case	operations	and	no	‘dflt’	operation	
is	shown	in	Table	106.	

	

ICC.2:2017	

142	 ©	ICC	2017	–	All	rights	reserved	

Table	105–	Selection	‘sel	’	operation	with	‘dflt’	encoding	

Byte	Position		 Field	
Length	
(bytes)		

Content	 Encoded	as…		

0…3		 4	 'sel	'	(73656c20h) 	

4…7	 4	 Reserved:	shall	be	zero 	

8..11	 4 'case'	(63617365h) 	

12…15	 4	 Number	of	operations	(U0)	to	evaluate	if	the	
rounded	stack	argument	evaluated	by	the	
‘sel	‘	operation	selected	case	0	to	be	
evaluated.	

uInt32Number

16..19	 4 'case'	(63617365h) 	

20…23	 4	 Number	of	operations	(U1)	to	evaluate	if	the	
rounded	stack	argument	evaluated	by	the	
‘sel	‘	operation	selected	case	1	to	be	
evaluated.	

uInt32Number

…	 	 	

12+8N...	

15+8N	

4 'case'	(63617365h) 	

16+8N…	

19+8N	

4	 Number	of	operations	(UN)	to	evaluate	if	
the	rounded	stack	argument	evaluated	by	
the	‘sel	‘	operation	selected	case	N	to	be	
evaluated.	

uInt32Number

20+8N..	

23+8N	

4 'dflt'	(64666c74h) 	

24+8N…	

27+8N	

4	 Number	of	operations	(T)	to	evaluate	if	the	
rounded	stack	argument	is	less	than	zero	or	
greater	than	or	equal	to	N.	

uInt32Number

28+8N…	

27+8N	+	8U0	

8U0	 Operations	to	evaluate	if	the	rounded	stack	
argument	evaluated	by	a	‘sel	‘	operation	
selected	case	0	to	be	evaluated	

	

28+8N+8U0…	

27+8N+8U0+8U1	

8U1	 Operations	to	evaluate	if	the	rounded	stack	
argument	evaluated	by	the	‘sel	‘	operation	
selected	case	1	to	be	evaluated	

	

…	 	 	

28+8N+



N

0

U8
i

i

…	

27+8N+



N

0

U8
i

i

	

8UN	 Operations	to	evaluate	if	the	rounded	stack	
argument	evaluated	by	the	‘sel	‘	operation	
selected	case	N	to	be	evaluated	

	

32+8N+



N

0

U8
i

i

…	

31+8N+



N

0

U8
i

i

+8T	

8T	 Operations	to	evaluate	if	the	rounded	
argument	is	less	than	zero	or	greater	than	
N.	

	

ICC.2:2017	

©	ICC	2017–	All	rights	reserved	 143	

Table	106–	Selection	‘sel	’	operation	without	‘dflt’	encoding	

Byte	Position		 Field	
Length	
(bytes)		

Content	 Encoded	as…		

0…3		 4	 'sel	'	(73656c20h) 	

4…7	 4	 Reserved:	shall	be	zero 	

8..11	 4 'case'	(63617365h) 	

12…15	 4	 Number	of	operations	(U0)	to	evaluate	if	the	
rounded	stack	argument	evaluated	by	the	
‘sel	‘	operation	selected	case	0	to	be	
evaluated.	

uInt32Number

16..19	 4 'case'	(63617365h) 	

20…23	 4	 Number	of	operations	(U1)	to	evaluate	if	the	
rounded	stack	argument	evaluated	by	the	
‘sel	‘	operation	selected	case	1	to	be	
evaluated.	

uInt32Number

…	 	 	

12+8N..	

15+8N	

4 'case'	(63617365h) 	

16+8N…	

19+8N	

4	 Number	of	operations	(UN)	to	evaluate	if	
the	rounded	stack	argument	evaluated	by	
the	‘sel	‘	operation	selected	case	N	to	be	
evaluated.	

uInt32Number

16+8N…	

19+8N	+	8U0	

8U0	 Operations	to	evaluate	if	the	rounded	stack	
argument	evaluated	by	a	‘sel	‘	operation	
selected	case	0	to	be	evaluated	

	

16+8N+8U0…	

19+8N+8U0+8U1	

8U1	 Operations	to	evaluate	if	the	rounded	stack	
argument	evaluated	by	the	‘sel	‘	operation	
selected	case	1	to	be	evaluated	

	

…	 	 	

16+8N+



N

0

U8
i

i

…	

19+8N+



N

0

U8
i

i

	

8UN	 Operations	to	evaluate	if	the	rounded	stack	
argument	evaluated	by	the	‘sel	‘	operation	
selected	case	N	to	be	evaluated	

	

 curveSetElement	

The	Curve	 Set	 element	 encodes	multiple	 one	 dimensional	 curves.	 The	 encoding	 is	 shown	 in	Table	

107.	

Table	107	–	curveSetElement	encoding	

Byte	Position	 Field	
Length	

Content Encoded	as…	

ICC.2:2017	

144	 ©	ICC	2017	–	All	rights	reserved	

(bytes)	

0…3	 4	 ‘cvst’	(63767374h)	type	signature

4…7	 4	 Reserved,	shall	be	0

8…9	 2	 Number	of	Input	Channels	(P) uInt16Number	

10…11	 2	 Number	of	Output	Channels	(Q) uInt16Number	

12..11+8P	 8P	 Curve	positions	(offset	and	size)

	

positionNumber[…]	

12+8P	to	end	 	 Data

	

Encoding	values	for	both	input	and	output	channels	is	for	consistency	with	other	processing	elements.	
Since	each	one	dimensional	curve	maps	a	single	input	to	a	single	output,	the	number	of	outputs	shall	be	
the	same	as	the	number	of	inputs.	Thus,	the	number	of	output	channels	(Q)	shall	be	the	same	value	as	
the	number	of	input	channels	(P).		

The	output	value	 for	an	 input	shall	be	specified	by	the	 first	segment	 in	 the	segment	 list	 that	contains	
that	input.	Successive	break‐points	shall	not	be	decreasing.		

Each	 channel	 shall	 have	 a	 curve	 position	 element.	 Offset	 locations	 are	 relative	 to	 the	 start	 of	 the	
containing	curveSetElement.	Thus	the	offset	of	first	stored	curve	in	the	curve	set	shall	be	12+8P.		

The	one‐dimensional	 curves	 are	 stored	 sequentially.	Each	 curve	 shall	 start	on	 a	4‐byte	boundary.	To	
achieve	this,	each	curve	shall	be	followed	by	up	to	three	00h	pad	bytes	as	needed.		

It	 is	 permitted	 to	 share	 data	 between	 one	 dimensional	 curves.	 For	 example,	 the	 offsets	 for	 some	 1‐
dimensional	curves	can	be	identical.		

Each	curve	can	be	defined	by	a	singleSampledCurve	or	a	segmentedCurve.	

11.2.2.1 singleSampledCurve	

The singleSampledCurve curve type allows for efficiently defining a single sampled curve segment with simple
endpoint extension parameters. The encoding of an extended CLUT Element is defined in Table 108.

Table	108–		singleSampledCurve	segment	encoding	

Byte	Position	 Field	
Length	
(bytes)	

Content Encoded	as…	

0…3	 4	 'sngf'	(736e6766h)	type	signature

4…7	 4	 Reserved,	shall	be	0

8…11	 4	 Number	of	Data	entries(N) uInt32Number	

12..15	 4	 Input	value	of	first	entry(F) float32Number	

ICC.2:2017	

©	ICC	2017–	All	rights	reserved	 145	

16..19	 4	 Input	value	of	last	entry(L) float32Number	

20..21	 2	 Lookup	extension	type(E) uInt16Number	

22..23	 2	 Data	encoding	type uInt16Number	as	a	
valueEncodingType	

24…end	 	 Data Defined	by	data	encoding	
type	

The	number	of	Data	entries	shall	be	greater	than	or	equal	to	2.	The	first	Data	entry	shall	correspond	to	
the	input	value	of	the	first	entry.	The	last	Data	entry	shall	correspond	to	the	input	value	of	the	last	entry.	
The	value	stored	for	(F)	shall	be	less	than	the	value	stored	for	(L).	If	more	than	2	Data	entries	exist	then	
each	 intermediate	 entry	 shall	 correspond	 to	 equidistant	 sampling	 between	 (F)	 and	 (L).	 Linear	
interpolation	shall	be	used	to	determine	the	output	value	for	intermediate	input	values.	

The	Lookup	extension	type	defines	how	to	determine	output	values	for	input	values	that	are	less	than	
(F)	or	greater	than	(L).		

If	the	lookup	extension	type	(E)	is	zero	(0)	then	clipping	shall	be	performed	by	using	the	value	of	the	
first	 entry	 if	 the	 input	 value	 is	 less	 than	 (F)	 or	 using	 the	 value	 of	 the	 last	 entry	 if	 the	 input	 value	 is	
greater	than	(L).	

IF	the	lookup	extension	type	(E)	is	one	(1)	then	linear	extrapolation	shall	be	used.	If	the	input	value	is	
less	than	(F)	then	the	output	shall	be	determined	by	the	corresponding	output	value	of	a	line	defined	by	
the	 first	 and	second	data	entries	 (and	 their	 corresponding	 input	values).	 If	 the	 input	value	 is	 greater	
than	(L)	then	the	output	value	shall	be	determined	by	the	corresponding	output	value	of	a	line	defined	
by	the	last	two	data	entries	(and	their	corresponding	input	values).	

NOTE	 	ISO	15076‐1	does	not	include	a	definition	for	the	use	of	a	singleSampledCurve.		

11.2.2.2 segmentedCurve	

A	segmentedCurve	 is	 stored	using	one	or	more	 curve	 segments,	with	break‐points	 specified	between	
curve	segments.	The	first	curve	segment	always	starts	at	−∞,	and	the	last	curve	segment	always	ends	at	
+∞.	 The	 ϐirst	 and	 last	 curve	 segments	 shall	 be	 speciϐied	 in	 terms	 of	 a	 formula,	 whereas	 the	 other	
segments	shall	be	specified	either	in	terms	of	a	formula,	or	by	a	sampled	curve.		

If	a	curve	has	a	single	curve	segment,	no	break‐points	shall	be	specified,	and	the	curve	shall	be	specified	
in	terms	of	a	formula.		

If	a	curve	has	more	than	one	curve	segment,	break‐points	shall	be	specified	between	curve	segments.	If	
there	are	n segments,	n−1	break‐points	are	specified.	The	encoding	for	such	a	curve	is	shown	in	Table	
109.	

Table	109	–	segmentedCurve	encoding	

Byte	
Position	

Field	 Length	
(bytes)	

Content Encoded	as…

0..3	 4	 ‘curf’	(63757266h)	type	signature 	

ICC.2:2017	

146	 ©	ICC	2017	–	All	rights	reserved	

4..7	 4	 Reserved,	shall	be	0 	

8..9	 2	 Number	of	segment(s)	(N) uInt16Number

10..11	 2	 Reserved,	shall	be	0 	

12..4N+7	 4	x	(N‐1) N‐1	Break‐Points float32Number[…]

4N+8..end	 	 Segments	1	to	N 	

	

Break‐points	separate	two	curve	segments.	The	first	curve	segment	is	defined	between	−∞	and	break‐
point	1	(included).	The	kth	curve	segment	(k in	the	range	2	to	N−1)	is	defined	between	the	break‐point	
k−1	(not	included)	and	the	break‐point	k (included).	The	Nth	curve‐segment	is	defined	between	break‐
point	 N−1	 (not	 included)	 and	 +∞.	 Curve	 segments	 that	 are	 speciϐied	 in	 terms	 of	 a	 formula	 shall	 be	
encoded	as	shown	in	Table	110.	

Table	110	–	curve	segments	encoding	

Byte	
Position	

Field	 Length	
(bytes)	

Content Encoded	as…

0..3	 4	 ‘parf’	(70617266h)	type	signature 	

4..7	 4	 Reserved,	shall	be	0 	

8..9	 2	 Encoded	value	of	the	function	type uInt16Number

10..11	 2	 Reserved,	shall	be	0 	

12..end	 See	Table	105	 Parameters	(see	table	105) float32Number[…]

	

The	encoding	for	the	function	type	field	and	the	parameters	is	shown	in	Table	111.	

Table	111	–	Formula	curve	segments	function	encoding	

Field	
Length	
(bytes)	

Function	type	 Encoded	value	 Parameters

16	 Y	=	(a	*	X	+	b)		+	c	 	 0000h ,	a,	b,	c	

20	 Y	=	a	*	log	(b	*	X	+	c)	+	d	 0001h ,	a,	b,	c,	d	

20	 Y	=	a	*	bc*X+d	+	e	 0002h a,	b,	c,	d,	e	

20	 Y	=	a	*	(b	*	X	+	c)		+	d	 0003h ,	a,	b,	c,	d	

	 	

ICC.2:2017	

©	ICC	2017–	All	rights	reserved	 147	

NOTE	 ISO	15076‐1	does	not	include	a	definition	for	a	curve	segment	function	encoding	of	0003h.	

The	 functional	 inputs	 and	 outputs	 are	 defined	 over	 the	 values	 that	 can	 be	 represented	 as	
float32Number.	 The	 curve‐segment	 shall	 be	 defined	 to	 result	 in	 float32Number	 values	 for	 the	 entire	
curve‐segment.		

Curve	segments	that	are	specified	as	sampled	curves	shall	be	encoded	as	shown	in	Table	112.	

Table	112	–	Sampled	curve	segment	encoding	

Byte	
Position	

Field	Length	
(bytes)	

Content Encoded	as…

0..3	 4	 ‘samf’	(73616D66h)	type	signature 	

4..7	 4	 Reserved,	shall	be	0 	

8..11	 4	 Count	(N)	specifying	the	number	of	entries	that	follow	 uInt32Number

12..end	 4	x	N	 Curve	entries float32Number[…]

	

The	count	(N)	shall	be	greater	than	or	equal	to	1.		

The	 curve	 samples	 shall	 be	 equally‐spaced	within	 the	 segment,	 and	 shall	 include	one	break‐point,	 as	
previously	described.	 If	 the	sampled	curve	represents	 the	curve‐segment	between	break‐point	k (BPk)	
and	break‐point	k+1	(BP, k+1),	the	jth	sample	(j ∈ [1,	N)	shall	correspond	to	the	input	value	BP, k + j (BP, k+1	−	
BP, k)	/	N.	Thus	BP, k is	excluded.		

NOTE		 The	first	point	used	for	interpolation	of	a	sampled	curve	segment	is	not	directly	stored	in	a	sampled	curve	
segment.	

 CLUTElement	

The	 CLUT	 appears	 as	 an	 N‐dimensional	 array,	 with	 each	 dimension	 having	 a	 number	 of	 entries	
corresponding	to	the	number	of	grid	points.		

The	CLUT	values	are	arrays	of	float32Number.		

The	 CLUT	 is	 organized	 as	 a	 P‐dimensional	 array	 with	 a	 variable	 number	 of	 grid	 points	 in	 each	
dimension,	where	p is	the	number	of	input	channels	in	the	transform.	The	dimension	corresponding	to	
the	first	channel	varies	least	rapidly	and	the	dimension	corresponding	to	the	last	input	channel	varies	
most	 rapidly.	 Each	 grid	 point	 value	 is	 a	Q‐float32Number	 array,	 where	Q is	 the	 number	 of	 output	
channels.	The	first	sequential	float32Number	of	the	entry	contains	the	function	value	for	the	first	output	
function,	the	second	sequential	float32Number	of	the	entry	contains	the	function	value	for	the	second	
output	function	and	so	on	until	all	of	the	output	functions	have	been	supplied.	Equation	(22)	gives	the	
computation	for	the	byte	size	of	the	CLUT.		

NGrid1	×	NGrid2	×...	×	NGridP	×	number	of	output	channels	(Q)	×	4			 	 	 	 (22)	

When	used,	the	byte	assignment	and	encoding	for	the	CLUT	shall	be	as	given	in	Table	113.	

ICC.2:2017	

148	 ©	ICC	2017	–	All	rights	reserved	

Table	113	–	CLUT	Element	encoding	

Byte	
Position	

Field	 Length	
(bytes)	

Content Encoded	as…

0..3	 4	 ‘clut’	(636C7574h)	type	signature 	

4..7	 4	 Reserved,	shall	be	0 	

8..9	 2	 Number	of	Input	Channels	(P) uInt16Number

10..11	 2	 Number	of	Output	Channels	(Q) uInt16Number

12..27	 16	 Number	 of	 grid	 points	 in	 each	 dimension.	 Only	 the	
first	P	entries	are	used,	where	P	is	the	number	of	input	
channels.	Unused	entries	shall	be	00h.	

uInt8Number

28..end	 See	 equation	
(22)	

CLUT	data	points	(arranged	as	described	in	the	text)	 float32Number[…]

	

The	input	range	for	the	CLUT	is	0,0	to	1,0.	For	any	input	value	outside	this	range,	the	nearest	range	limit	
value	 shall	 be	 the	 input	 value.	 The	 range	 of	 the	 Output	 Channels	 is	 the	 range	 of	 values	 that	 can	 be	
represented	as	float32Number.		

If	the	number	of	grid	points	in	a	particular	dimension	of	the	CLUT	is	two,	the	data	for	those	points	shall	
be	 set	 so	 that	 the	 correct	 results	 are	 obtained	 when	 linear	 interpolation	 is	 used	 to	 generate	
intermediate	values.	CLUT	elements	require	a	minimum	of	two	grid	points	for	each	dimension.	

 emissionCLUTElement	

The	 emissionCLUTElement	 encodes	 spectral	 emission	 information	 as	 entries	 of	 a	 color	 lookup	 table	
(CLUT)	 that	 are	 first	 converted	 to	 colorimetric	 information	 before	 applying	 interpolation	 to	 perform	
color	transformations.		

The	emissionCLUTElement	allows	for	the	encoding	of	a	colour	 lookup	table	(CLUT)	using	flexible	and	
more	 efficient	 encoding	 of	 values.	 Values	 in	 the	 CLUT	 can	 be	 encoded	 using	 uInt8Number,	
uInt16Number,	float16Number,	and	float32Number	types.	The	encoding	of	an	emission	CLUT	Element	
is	defined	in	Table	114.	

Table	114	–	emissionCLUTElement	encoding	

Byte	Position	 Field	
Length	
(bytes)	

Content Encoded	as…	

0…3	 4	 'eclt'	(65636c74h)	type	signature

4…7	 4	 Reserved,	shall	be	0

8…9	 2	 Number	of	Input	Channels	(P) uInt16Number	

ICC.2:2017	

©	ICC	2017–	All	rights	reserved	 149	

10…11	 2	 Number	of	Output	Channels	(Q) uInt16Number	

12…17	
6	

Spectral	data	wavelength	range:	
start	(F),	end(E),	steps(S)	

spectralRange	

	

18..19	 2	 CLUT	Encoding	Type

	

uInt16Number	as	a	
valueEncodingType	

20..35	 16	 Array	containing	number	of	grid	
points	for	each	input	channel	(G)	

uInt8Number[16]	

36…36+M‐1	 M	 Data	for	CLUT Defined	by	CLUT	Encoding	
Type	

36+M..36+M+S‐1	 S	 Spectral	emission	of	White Defined	by	CLUT	Encoding	
Type	

The	number	of	Input	Channels	(P)	shall	be	greater	than	or	equal	to	1	and	less	than	or	equal	to	16.		

The	number	of	output	channels	(Q)	shall	be	3.	

The	 CLUT	 appears	 as	 a	 P‐dimensional	 array,	 with	 each	 dimension	 having	 a	 number	 of	 entries	
corresponding	to	the	number	of	grid	points.		

The	CLUT	values	are	arrays	of	numbers	defining	emission	vectors	determined	by	 the	CLUT	Encoding	
Type.	

	 matrix	array	=	[e1,	e2,	…,	eS]	 	 	 	 	 	 	 	 	 (9)	

The	 spectral	 data	 wavelength	 range	 field	 encoded	 as	 a	 spectralRange	 shall	 define	 the	 starting	
wavelength	 (F),	 ending	 wavelength	 (E),	 and	 number	 of	 steps	 (S)	 defined	 for	 the	 reference	 white	
emission	vector	and	spectral	CLUT	elements.		The	number	of	steps	shall	be	two	or	greater.	

The	 CLUT	 is	 organized	 as	 a	 P‐dimensional	 array	 with	 a	 variable	 number	 of	 grid	 points	 in	 each	
dimension,	where	P is	the	number	of	input	channels	in	the	transform.	The	dimension	corresponding	to	
the	first	channel	varies	least	rapidly	and	the	dimension	corresponding	to	the	last	input	channel	varies	
most	rapidly.	Each	grid	point	value	is	an	S‐number	array,	where	S is	the	number	of	steps	in	the	spectral		
range.	 The	 first	 sequential	 entry	 contains	 the	 function	 value	 for	 the	 first	 emission	 array,	 the	 second	
sequential	 entry	 contains	 the	 function	value	 for	 the	 second	emission	array,	 and	 so	on	until	 all	 of	 the	
emission	arrays	have	been	supplied.	Equation	(10)	gives	the	computation	for	the	byte	size	of	the	CLUT.		

G[0]	×	G[1]	×...	×	G[P‐1]	×	number	of	spectral	steps	(S)	×	number	of	encoding	type	bytes		 (10)	

The	reference	white	emission	vector	shall	be	organized	as	an	array	of	s elements	with	the	first	element	
corresponding	 to	 the	 start	 wavelength	 (F),	 and	 the	 last	 element	 corresponding	 to	 the	 ending	
wavelength	 (E)	 with	 the	 intervening	 S‐2	 elements	 corresponding	 to	 evenly	 spaced	 wavelengths	
between	the	starting	and	ending	wavelengths.	The	array	is	organized	as	follows:	

	 white	array	=	[w1,	w2,	…,	wS]	 	 	 	 	 	 	 	 	 (11)	

The	colorimetric	 conversion	of	 the	emissive	CLUT	shall	be	determined	by	applying	white	normalized	
observer	color	matching	functions	associated	with	the	profile	connection	conditions	to	each	CLUT	value	
array,	resulting	in	a	CLUT	containing	value	arrays	of	tristimulus	values.	This	CLUT	shall	then	be	used	for	

ICC.2:2017	

150	 ©	ICC	2017	–	All	rights	reserved	

transforming	 input	 channels	 to	 output	 channels	 with	 the	 output	 channels	 being	 defined	 by	 the	
converted	colorimetric	arrays	in	the	CLUT.		




































Se

e

e

k

O

O

O


2

1

3

2

1

C ,	 (12)	


















Szzz

Syyy

Sxxx

ccc

ccc

ccc

,2,1,

,2,1,

,2,1,







C ,	 	 	 	 	 	 	 	 	 	 (13)	




 S

i
iiy wc

k

1
,

1
	 	 	 	 	 	 	 	 	 	 	 	 (14)	

If	the	observer	color	matching	functions	have	a	different	sampling	range	they	shall	first	be	resampled	to	
the	 spectral	 range	 defined	 by	 the	 processing	 element.	 	 For	 CIE	 relative	 colorimetric	 processing,	
normalization	shall	be	performed	by	dividing	by	the	scalar	product	of	 the	reference	white	vector	and	
the	second	color	matching	function	(cy).	

 emissionMatrixElement	

The	emissionMatrixElement	encodes	spectral	emission	information	for	chromatic	primaries	and	offset	
that	 shall	 be	 first	 converted	 to	 colorimetric	 information	which	 forms	 a	matrix	 that	 is	 used	 for	 pixel	
information.			

The	emission	matrix	element	encoding	is	shown	in	Table	115.	

Table	115	–Emission	Matrix	Element	encoding	

Byte	
Position	

Field	
Length	
(bytes)	

Content	 Encoded	as…	

0..3	 4	 ‘emtx’	(656d7478h)	type	signature

4..7	 4	 Reserved,	shall	be	0

8..9	 2	 Number	of	Input	Channels	(P) uInt16Number	

10..11	 2	 Number	of	Output	Channels	(Q) uInt16Number	

12..17	 6	
Spectral	 data	wavelength	 range:	 start	 (F),	 end	
(E),	steps(S)	

spectralRange	

	

18..19	 2	 Absolute	flag uInt16Number	

ICC.2:2017	

©	ICC	2017–	All	rights	reserved	 151	

20..20+	
4xS‐1	

4xS	 Spectral	emission	of	White float32Number[…]	

20+4xS..
end	

4x(Q+1)xS	 Spectral	Matrix	Elements float32Number[…]	

	

The	number	of	input	channels	(P)	shall	match	the	number	of	input	channels	to	the	processing	element.	

The	number	of	output	channels	(Q)	shall	be	3.	

The	 spectral	 data	 wavelength	 range	 field	 encoded	 as	 a	 spectralRange	 shall	 define	 the	 starting	
wavelength	 (F),	 ending	 wavelength	 (E),	 and	 number	 of	 steps	 (S)	 defined	 for	 the	 reference	 white	
emission	vector	and	spectral	matrix	elements.		The	number	of	steps	shall	be	two	or	greater.	

The	reference	white	emission	vector	shall	be	organized	as	an	array	of	S elements	with	the	first	element	
corresponding	 to	 the	 start	 wavelength	 (F),	 and	 the	 last	 element	 corresponding	 to	 the	 ending	
wavelength	 (E)	 with	 the	 intervening	 S‐2	 elements	 corresponding	 to	 evenly	 spaced	 wavelengths	
between	the	starting	and	ending	wavelengths.	The	array	is	organized	as	follows:	

	 white	array	=	[w1,	w2,	…,	wS]	 	 	 	 	 	 	 	 	 (15)	

The	spectral	matrix	encoding	shall	be	organized	as	an	array	of	S × Q element,	and	Q is	the	number	of	
output	channels	to	the	matrix.	Wavelengths	shall	be	assigned	to	the	elements	of	each	row	with	the	first	
element	corresponding	to	 the	start	wavelength	(F),	and	the	 last	element	corresponding	to	 the	ending	
wavelength	 (E)	 with	 the	 intervening	 S‐2	 elements	 corresponding	 to	 evenly	 spaced	 wavelengths	
between	 the	 starting	 and	 ending	 wavelengths.	 	 Each	matrix	 array	 element	 is	 a	 float32Number.	 The	
matrix	array	is	organized	as	follows:	

matrix	array	=	[e11,	e12,	…,	e1S,	e21,	e22,	…,	e2S,	e31,	e32,	…,	e3S,	e1,	e2,	…,	eS]	 	 	 	 (16)	

The	elements	of	 this	array	shall	 first	be	converted	to	colorimetric	vectors	that	 form	a	matrix	(M)	and	
offset	vector,	and	then	the	matrix	M	and	offset	vector	shall	be	used	to	perform	color	transformations	by	
the	processing	element	as	follows:	



















































3

2

1

3

2

1

3

2

1

O

O

O

X

X

X

Y

Y

Y

M 	 	 	 	 	 	 	 	 	 	 	 (17)	

The	range	of	the	input	values	X1, X2, …, XP	and	output	values	Y1, Y2, …, YQ	is	the	range	of	values	that	can	
be	represented	as	float32Number.	

The	colorimetric	matrix	M	and	offset	vector	shall	be	determined	by	applying	white	normalized	observer	
color	matching	functions	associated	the	profile	connection	conditions.	 	 If	 the	observer	color	matching	
functions	have	a	different	sampling	range	they	shall	first	be	resampled	to	the	spectral	range	defined	by	
the	processing	element	

ICC.2:2017	

152	 ©	ICC	2017	–	All	rights	reserved	





















PSSS

P

P

eee

eee

eee

k









21

21212

12111

CM ,		 	 	 	 	 	 	 	 	 	 (18)	




































Se

e

e

k

O

O

O


2

1

3

2

1

C ,	 	 	 	 	 	 	 	 	 	 	 (19)	


















Szzz

Syyy

Sxxx

ccc

ccc

ccc

,2,1,

,2,1,

,2,1,







C 	 	 	 	 	 	 	 	 	 	 (20)	

If	the	Absolute	flag	is	zero	(for	CIE	relative	colorimetric	processing)	then	normalization	scalar	k	shall	be	
performed	 by	 dividing	 by	 the	 scalar	 product	 of	 the	 reference	 white	 vector	 and	 the	 second	 color	
matching	function	(cy)	as	follows:	




 S

i
iiy wc

k

1
,

1
	 	 	 	 	 	 	 	 	 	 	 	 (21)	

Otherwise,	if	the	Absolute	flag	is	set	to	1	then	the	normalization	scalar	k	shall	be	1.	

 emissionObserverElement	

The	emissionObserverElement	transforms	input	channel	data	into	output	channel	data	as	colorimetric	
representation	of	the	incoming	spectral	emission.			

The	emission	observer	element	encoding	is	shown	in	Table	116.	

Table	116	–	Emission	Observer	Element	encoding	

Byte	
Position	

Field	
Length	
(bytes)	

Content	 Encoded	as…	

0..3	 4	 ‘eobs’	(656f6273h)	type	signature

4..7	 4	 Reserved,	shall	be	0

8..9	 2	 Number	of	Input	Channels	(P) uInt16Number	

10..11	 2	 Number	of	Output	Channels	(Q) uInt16Number	

12..17	 6	
Spectral	 data	 wavelength	 range:	 start	 (F),	
end(E),	steps(S)	

spectralRange	

	

ICC.2:2017	

©	ICC	2017–	All	rights	reserved	 153	

18..19	 2	 Absolute	flag uInt16Number	

20..20+	
4xS	‐	1	

4xS	 Spectral	emission	of	White float32Number[…]

	

The	number	of	input	channels	(P)	shall	match	the	number	of	input	channels	to	the	processing	element.	

The	number	of	output	channels	(Q)	shall	be	3.	

The	 spectral	 data	 wavelength	 range	 field	 encoded	 as	 a	 spectralRange	 shall	 define	 the	 starting	
wavelength	 (F),	 ending	 wavelength	 (E),	 and	 number	 of	 steps	 (S)	 defined	 for	 the	 reference	 white	
emission	vector	and	spectral	matrix	elements.		The	number	of	steps	shall	be	two	or	greater.	

The	reference	white	emission	vector	shall	be	organized	as	an	array	of	S elements	with	the	first	element	
corresponding	 to	 the	 start	 wavelength	 (F),	 and	 the	 last	 element	 corresponding	 to	 the	 ending	
wavelength	 (E)	 with	 the	 intervening	 S‐2	 elements	 corresponding	 to	 evenly	 spaced	 wavelengths	
between	the	starting	and	ending	wavelengths.	The	array	is	organized	as	follows:	

	 white	array	=	[w1,	w2,	…,	wS]	 	 	 	 	 	 	 	 	 (22)	

The	 colorimetric	 output	 channels	 shall	 be	 determined	 by	 applying	 white	 normalized	 observer	 color	
matching	 functions	 associated	 the	 profile	 connection	 conditions.	 	 If	 the	 observer	 color	 matching	
functions	have	a	different	sampling	range	they	shall	first	be	resampled	to	the	spectral	range	defined	by	
the	processing	element.		For	CIE	relative	colorimetric	processing,	normalization	shall	be	performed	by	
dividing	by	the	scalar	product	of	the	reference	white	vector	and	the	second	color	matching	function	(cy).	

The	 conversion	 of	 input	 emission	 spectral	 channel	 data	 to	 colorimetric	 output	 channel	 data	 shall	 be	
calculated	as	follows:	




































SX

X

X

k

Y

Y

Y


2

1

3

2

1

C ,	 	 	 	 	 	 	 	 	 	 	 (23)	


















Szzz

Syyy

Sxxx

ccc

ccc

ccc

,2,1,

,2,1,

,2,1,







C ,	 	 	 	 	 	 	 	 	 	 (24)	




 S

i
iiy wc

k

1
,

1
	 	 	 	 	 	 	 	 	 	 	 	 (25)	

 extendedCLUTElement	

The	extendedCLUTElement	allows	for	the	encoding	of	a	colour	lookup	table	(CLUT)	using	a	flexible	and	
more	 efficient	 encoding	 of	 values.	 Values	 in	 the	 CLUT	 can	 be	 encoded	 using	 uInt8Number,	

ICC.2:2017	

154	 ©	ICC	2017	–	All	rights	reserved	

uInt16Number,	float16Number,	and	float32Number	types.	The	encoding	of	an	extended	CLUT	Element	
is	defined	in	Table	117.	

Table	117	–	extendedCLUTElement	encoding	

Byte	Position	 Field	
Length	
(bytes)	

Content Encoded	as…	

0…3	 4	 'xclt'	(78636c74h)	type	signature

4…7	 4	 Reserved,	shall	be	0

8…9	 2	 Number	of	Input	Channels	(P) uInt16Number	

10…11	 2	 Number	of	Output	Channels	(Q) uInt16Number	

12..15	 4	 CLUT	Encoding	Type

	

uInt32Number	as	a	
valueEncodingType	

16..31	 16	 Number	of	grid	points	for	each	
input	channel	(G)	

uInt8Number[16]	

32…end	 	 Data	for	CLUT Defined	by	CLUT	Encoding	
Type	

	

The	number	of	Input	Channels	(P)	shall	be	greater	than	or	equal	to	1	and	less	than	or	equal	to	16.		

The	 CLUT	 appears	 as	 an	 N‐dimensional	 array,	 with	 each	 dimension	 having	 a	 number	 of	 entries	
corresponding	to	the	number	of	grid	points.		

The	CLUT	values	are	arrays	of	numbers	determined	by	the	CLUT	Encoding	Type.		

The	 CLUT	 is	 organized	 as	 a	 P‐dimensional	 array	 with	 a	 variable	 number	 of	 grid	 points	 in	 each	
dimension,	where	P is	the	number	of	input	channels	in	the	transform.	The	dimension	corresponding	to	
the	first	channel	varies	least	rapidly	and	the	dimension	corresponding	to	the	last	input	channel	varies	
most	rapidly.	Each	grid	point	value	is	a	Q‐number	array,	where	Q is	the	number	of	output	channels.	The	
first	 sequential	 entry	 contains	 the	 function	 value	 for	 the	 first	 output	 function,	 the	 second	 sequential	
entry	 contains	 the	 function	 value	 for	 the	 second	 output	 function	 and	 so	 on	 until	 all	 of	 the	 output	
functions	have	been	supplied.	Equation	26	gives	the	computation	for	the	byte	size	of	the	CLUT.		

NGrid1	×	NGrid2	×...	×	NGridP	×	number	of	output	channels	(Q)	×	number	of	encoding	type	bytes		
	 (26)	

 inverseEmissionMatrixElement	

The	 inverseEmissionMatrixElement	 encodes	 spectral	 emission	 row	 vector	 information	 for	 three	
trichromatic	 primaries	 and	 offset	 that	 shall	 be	 first	 converted	 to	 colorimetric	 column	 vector	
information	which	forms	a	matrix	that	is	inverted	before	applying	pixel	information.			

The	inverse	emission	matrix	element	shall	be	encoded	as	shown	in	Table	118.	

ICC.2:2017	

©	ICC	2017–	All	rights	reserved	 155	

Table	118	–Inverse	Emission	Matrix	Element	encoding	

Byte	
Position	

Field	
Length	
(bytes)	

Content	 Encoded	as…	

0..3	 4	 ‘iemx’	(69656d78h)	type	signature

4..7	 4	 Reserved,	shall	be	0

8..9	 2	 Number	of	Input	Channels	(P) uInt16Number	

10..11	 2	 Number	of	Output	Channels (Q) uInt16Number	

12..17	 6	
Spectral	 data	wavelength	 range:	 start	 (F),	 end	
(E),	steps(S)	

spectralRange	

	

18..19	 2	 Reserved,	shall	be	0

20..20+	
4xS	‐	1	

4xS	 Spectral	emission	of	White float32Number[…]

20+	4xS	..	
end	

4x(Q+1)xS	 Spectral	Matrix	Elements float32Number[…]

	

The	number	of	input	channels	(P)	shall	be	3.	

The	number	of	output	channels	(Q)	shall	be	3.	

The	 spectral	 data	 wavelength	 range	 field	 encoded	 as	 a	 spectralRange	 shall	 define	 the	 starting	
wavelength	 (F),	 ending	 wavelength	 (E),	 and	 number	 of	 steps	 (S),	 defined	 for	 the	 reference	 white	
emission	vector	and	spectral	matrix	elements.		The	number	of	steps	shall	be	two	or	greater.	

The	reference	white	emission	vector	shall	be	organized	as	an	array	of	S elements,	with	the	first	element	
corresponding	 to	 the	 start	 wavelength	 (F),	 and	 the	 last	 element	 corresponding	 to	 the	 ending	
wavelength	 (E),	 and	with	 the	 intervening	 S‐2	 elements	 corresponding	 to	 evenly	 spaced	wavelengths	
between	the	starting	and	ending	wavelengths.	The	array	is	organized	as	follows:	

	 white	array	=	[w1,	w2,	…,	wS]	 	 	 	 	 	 	 	 	 (27)	

The	spectral	matrix	encoding	shall	be	organized	as	an	array	of	S × Q element,	and	Q is	the	number	of	
output	channels	to	the	matrix.	Wavelengths	shall	be	assigned	to	the	elements	of	each	row	with	the	first	
element	corresponding	to	 the	start	wavelength	(F),	and	the	 last	element	corresponding	to	 the	ending	
wavelength	 (E)	 with	 the	 intervening	 S‐2	 elements	 corresponding	 to	 evenly	 spaced	 wavelengths	
between	 the	 starting	 and	 ending	 wavelengths.	 	 Each	matrix	 array	 element	 is	 a	 float32Number.	 The	
matrix	array	is	organized	as	follows:	

matrix	array	=	[e11,	e12,	…,	e1S,	e21,	e22,	…,	e2S,	e31,	e32,	…,	e3S,	e1,	e2,	…,	eS]	 	 	 	 (28)	

ICC.2:2017	

156	 ©	ICC	2017	–	All	rights	reserved	

The	elements	of	 this	array	shall	 first	be	converted	to	colorimetric	vectors	that	 form	a	matrix	(M)	and	
offset	 vector,	 and	 then	 the	 inverse	 of	 the	 colorimetric	matrix	M‐1	 and	 offset	 vector	 shall	 be	 used	 to	
perform	color	transformations	by	the	processing	element	as	follows:	

 



































































3

2

1

3

2

1
1

3

2

1

O

O

O

X

X

X

Y

Y

Y

M 	 	 	 	 	 	 	 	 	 	 (29)	

The	range	of	the	input	values	X1, X2, …, XP	and	output	values	Y1, Y2, …, YQ	is	the	range	of	values	that	can	
be	represented	as	float32Number.	

The	colorimetric	matrix	M	and	offset	vector	shall	be	determined	by	applying	white	normalized	observer	
color	matching	functions	associated	the	profile	connection	conditions.	 	 If	 the	observer	color	matching	
functions	have	a	different	sampling	range	they	shall	first	be	resampled	to	the	spectral	range	defined	by	
the	processing	element.		For	CIE	relative	colorimetric	processing,	normalization	shall	be	performed	by	
dividing	by	the	scalar	product	of	the	reference	white	vector	and	the	second	color	matching	function	(cy).	





















SSS eee

eee

eee

k

321

322212

312111


CM ,		 	 	 	 	 	 	 	 	 	 (30)	




































Se

e

e

k

O

O

O


2

1

3

2

1

C ,	 	 	 	 	 	 	 	 	 	 	 (31)	


















Szzz

Syyy

Sxxx

ccc

ccc

ccc

,2,1,

,2,1,

,2,1,







C 	 	 	 	 	 	 	 	 	 	 (32)	

If	the	Absolute	flag	is	zero	(for	CIE	relative	colorimetric	processing)	then	normalization	scalar	k	shall	be	
calculated	 by	 dividing	 by	 the	 scalar	 product	 of	 the	 reference	 white	 vector	 and	 the	 second	 color	
matching	function	(cy)	as	follows:	




 S

i
iiy wc

k

1
,

1
	 	 	 	 	 	 	 	 	 	 	 	 (33)	

Otherwise,	if	the	Absolute	flag	is	set	to	1	then	the	normalization	scalar	k	shall	be	1.	

 JabToXYZ	Element	

The	XYZToJab	element	allows	for	the	encoding	of	appearance	parameters	for	the	purpose	of	converting	
from	colorimetry	under	the	viewing	conditions	to	CIECAM02	Cartesian	appearance	correlates	Jab.	

ICC.2:2017	

©	ICC	2017–	All	rights	reserved	 157	

The	encoding	of	a	JabToXYZ	element	is	shown	in	Table	119.	

Table	119	–	JabToXYZ	element	encoding	

Byte	Position	 Field	
Length	
(bytes)	

Content Encoded	as…

0…3	 4	 ‘JtoX’	(4a746f58h)	type	signature 	

4…7	 4	 Reserved,	shall	be	0 	

8…9	 2	 Number	of	Input	Channels	(P) uInt16Number

10…11	 2	 Number	of	Output	Channels	(Q) uInt16Number

12…23	 12	 White	Point	XYZ floatXYZNumber

24…27	 4	 Luminance	in	cd/m2 float32Number

28…31	 4	 Background	Luminant	in	cd/m2 float32Number

32…35	 4	 Impact	of	Surround

(ranging	from	0.0	to	1.0)	

float32Number

36..39	 4	 Chromatic	Induction	Factor float32Number

40…43	 4	 Adaptation	Factor float32Number

Both	the	number	of	Input	Channels	(P)	and	number	of	Output	Channels	(Q)	shall	be	3.	

The	logic	to	convert	XYZToJab	is	given	in	Appendix	C.	

 matrixElement	

The	matrix	is	organized	as	an	array	of	P × Q elements,	where	p is	the	number	of	input	channels	to	the	
matrix,	and	Q is	the	number	of	output	channels.	Each	matrix	elements	is	a	float32Number.	The	array	is	
organized	as	follows:	

array	=	[e11,	e12,	…,	e1P,	e21,	e22,	…,	e2P,	…,	eQ1,	eQ2,	…,	eQP,	e1,	e2,	…,	eQ]	 	 	 	 	 (34)	

The	matrix	element	encoding	is	shown	in	Table	120.	

Table	120	–Matrix	Element	encoding	

Byte	
Position	

Field	 Length	
(bytes)	

Content	 Encoded	as…

0..3	 4	 ‘matf’	(6D617466h)	type	signature 	

4..7	 4	 Reserved,	shall	be	0 	

8..9	 2	 Number	of	Input	Channels	(P) uInt16Number

ICC.2:2017	

158	 ©	ICC	2017	–	All	rights	reserved	

10..11	 2	 Number	of	Output	Channels	(Q) uInt16Number

12..end	 4x(P+1)xQ	 Matrix	Elements float32Number[…]

	

The	matrix	is	used	to	convert	data	to	a	different	colour	space,	according	to	Equation	(21):	





















































































QPQPQQ

P

P

Q e

e

e

X

X

X

eee

eee

eee

Y

Y

Y

..................

...

...

...
2

1

2

1

21

22221

11211

2

1

	 	 	 	 	 	 	 	

	 	 	 	 	 (35)	

The	range	of	the	input	values	X1, X2, …, XP	and	output	values	Y1, Y2, …, YQ	is	the	range	of	values	that	can	
be	represented	as	float32Number.	

 sparseMatrixElement	

The	sparseMatrixElement	is	organized	as	a	P‐dimensional	LUT	with	a	variable	number	of	grid	points	in	
each	 dimension,	 where	 P	 is	 the	 number	 of	 input	 channels	 in	 the	 transform.	 The	 dimension	
corresponding	 to	 the	 first	 channel	 varies	 least	 rapidly	 and	 the	 dimension	 corresponding	 to	 the	 last	
input	channel	varies	most	rapidly.	Each	grid	point	value	is	a	sparse	matrix	of	B	bytes.		

When	used,	the	byte	assignment	and	encoding	for	the	sparseMatrixElement	shall	be	as	given	in	Table	
121.	

Table	121	–	sparseMatrixElement	encoding	

Byte	Position	 Field	
Length	
(bytes)	

Content Encoded	as…	

0…3	 4	 'smet'	 (736d6574h)	 type	
signature	

4…7	 4	 Reserved,	shall	be	0

8…9	 2	 Number	of	Input	Channels	(P) uInt16Number	

10…11	 2	 Number	 of	 Equivalent	 Output	
Channels	 reserved	 for	 internal	
sparse	matrix	encoding	(Q)	

uInt16Number	

12..13	 2	 Sparse	Matrix	LUT	Encoding	
Type	

	

sparseMatrixEncodingType

14..15	 2	 Reserved,	shall	be	0

16..31	 16	 Number	of	grid	points	for	each	
input	channel	(G)	

uInt8Number[16]	

ICC.2:2017	

©	ICC	2017–	All	rights	reserved	 159	

32…end	 	 LUT	of	Sparse	Matrices sparseMatrixUInt8[]	or	

sparseMatrixUInt16[]	or	

sparseMatrixFloat16[]	or	

sparseMatrixFloat32[]	

	

The	equation	for	computing	the	number	of	sparse	matrices	in	the	LUT	of	sparse	matrices	is	as	follows	

numMatrices	=	NGrid1	*	NGrid2	*...	*	NGridP	 	 	 	 	 	 	 	 (36)	

The	sparse	matrices	encoded	in	the	LUT	of	sparse	matrices	shall	use	compact	padding	resulting	in	the	
Matrix	Entry	Data	Values	and	end	of	each	sparse	matrix	being	aligned	on	a	4	byte	boundary.	

All	sparse	matrices	in	the	sparseMatrixElement	shall	have	the	same	number	of	Rows	and	Columns.	

 reflectanceCLUTElement	

The	reflectanceCLUTElement	encodes	spectral	reflectance	information	as	entries	of	a	color	lookup	table	
(CLUT)	 that	 are	 first	 converted	 to	 colorimetric	 information	 before	 applying	 interpolation	 to	 perform	
color	transformations.		

The	reflectanceCLUTElement	allows	for	the	encoding	of	a	colour	lookup	table	(CLUT)	using	flexible	and	
more	 efficient	 encoding	 of	 values.	 Values	 in	 the	 CLUT	 can	 be	 encoded	 using	 uInt8Number,	
uInt16Number,	 float16Number,	and	float32Number	types.	The	encoding	of	a	reflectanceCLUTElement	
is	defined	in	Table	122.	

Table	122	–	reflectanceCLUTElement	encoding	

Byte	Position	 Field	
Length	
(bytes)	

Content	 Encoded	as…

0…3	 4	 'rclt'	(72636c74h)	type	signature

4…7	 4	 Reserved,	shall	be 0

8…9	 2	 Number	of	Input	Channels	(P) uInt16Number

10…11	 2	 Number	of	Output	Channels	(Q) uInt16Number

12..15	 4	 Flags	 uInt16Number	

16..21	
6	 Spectral	data	wavelength	range:	

start	(F),	end	(E),	steps	(S)	
spectralRange	

	

22..23	 2	 CLUT	Encoding	Type	(T)

	

uInt16Number	as	a	
valueEncodingType	

24..39	 16	 Number	of	grid	points	for	each	
input	channel	(G)	

uInt8Number[16]	

40…40+M‐1	 M	 Data	for	CLUT Defined	by	CLUT	Encoding	Type	
(T)	

ICC.2:2017	

160	 ©	ICC	2017	–	All	rights	reserved	

40+M..40+M+N‐1	 N	 Spectral	reflectance	of	White Defined	by	CLUT	Encoding	Type	
(T)	

The	number	of	Input	Channels	(P)	shall	be	greater	than	or	equal	to	1	and	less	than	or	equal	to	16.		

The	number	of	output	channels	(Q)	shall	be	3.	

The	 CLUT	 appears	 as	 an	 N‐dimensional	 array,	 with	 each	 dimension	 having	 a	 number	 of	 entries	
corresponding	to	the	number	of	grid	points.		

	The	CLUT	values	are	arrays	of	numbers	defining	reflectance	vectors	determined	by	the	CLUT	Encoding	
Type	(T).	

	 matrix	array	=	[r1,	r2,	…,	rS]	 	 	 	 	 	 	 	 	 (37)	

The	 spectral	 data	 wavelength	 range	 field	 encoded	 as	 a	 spectralRange	 shall	 define	 the	 starting	
wavelength	(F),	ending	wavelength	(E),	and	number	of	steps	(S)	defined	for	the	reference	white	media	
vector	and	spectral	CLUT	elements.		The	number	of	steps	shall	be	two	or	greater.	

The	 CLUT	 is	 organized	 as	 a	 P‐dimensional	 array	 with	 a	 variable	 number	 of	 grid	 points	 in	 each	
dimension,	where	P is	the	number	of	input	channels	in	the	transform.	The	dimension	corresponding	to	
the	first	channel	varies	least	rapidly	and	the	dimension	corresponding	to	the	last	input	channel	varies	
most	rapidly.	Each	grid	point	value	is	an	S‐number	array,	where	S is	the	number	of	steps	in	the	spectral		
range.	The	first	sequential	entry	contains	the	function	value	for	the	first	reflectance	array,	the	second	
sequential	entry	contains	the	function	value	for	the	second	reflectance	array	and	so	on	until	all	of	the	
reflectance	 arrays	 have	 been	 supplied.	 Equation	 (22)	 gives	 the	 computation	 for	 the	 byte	 size	 of	 the	
CLUT.		

NGrid1	×	NGrid2	×...	×	NGridP	×	number	of	spectral	steps	(S)	×	number	of	encoding	type	bytes		 (38)	

The	 reference	 white	 reflectance	 vector	 shall	 be	 organized	 as	 an	 array	 of	 s elements	 with	 the	 first	
element	corresponding	to	 the	start	wavelength	(F),	and	the	 last	element	corresponding	to	 the	ending	
wavelength	 (E)	 with	 the	 intervening	 S‐2	 elements	 corresponding	 to	 evenly	 spaced	 wavelengths	
between	the	starting	and	ending	wavelengths.	The	array	is	organized	as	follows:	

	 white	array	=	[w1,	w2,	…,	wS]	 	 	 	 	 	 	 	 	 (39)	

The	 colorimetric	 conversion	 of	 the	 reflectance	 CLUT	 shall	 be	 determined	 by	 applying	 normalized	
observer	 color	 matching	 functions	 associated	 the	 profile	 connection	 conditions	 to	 each	 CLUT	 value	
array	resulting	in	a	CLUT	containing	value	arrays	of	tristimulus	values.	This	CLUT	shall	then	be	used	for	
transforming	 input	 channels	 to	 output	 channels	 with	 the	 output	 channels	 being	 defined	 by	 the	
converted	colorimetric	arrays	in	the	CLUT.		




































Sr

r

r

k

O

O

O


2

1

3

2

1

C ,	 	 	 	 	 	 	 	 	 	 	 (40)	

ICC.2:2017	

©	ICC	2017–	All	rights	reserved	 161	


















SSzzz

SSyyy

SSxxx

lclclc

lclclc

lclclc

,22,11,

,22,11,

,22,11,







C ,	and	 	 	 	 	 	 	 	 	 (41)	




 S

i
iiy wc

k

1
,

1

	

The	spectral	reflectances	and	observer	color	matching	functions	shall	be	resampled	if	they	differ	from	
the	sampling	range	of	the	illuminant.			

For	relative	colorimetric	processing	(when	the	Absolute	flag	is	zero)	the	illuminant	white	point	from	the	
profile	connection	conditions	and	media	white	point	(calculated	based	on	the	white	array,	observer	and	
illuminant	 from	 the	 profile	 connection	 conditions	 used	 to	 determine	 the	 initial	 reflectance	 CLUT	
colorimetry)	shall	be	used	to	additionally	to	normalize	each	of	the	entries	in	the	CLUT	as	follows.	


































3

2

1

3

2

1

'

'

'

O

O

O

O

O

O

M ,	 	 	 	 	 	 	 	 	 	 	 (42)	

























zw

zw

yw

yw

xw

xw

m
l

m
l

m
l

,

,

,

,

,

,

00

00

00

M ,		 	 	 	 	 	 	 	 (43)	





S

i
iixxw lcl

1
,,

,	




S

i
iiyyw lcl

1
,,

,	




S

i
iizzw lcl

1
,,

,	and	 	 	 	 	 	 	 (44)	




































S
zw

yw

xw

w

w

w

k

m

m

m


2

1

,

,

,

C 	 	 	 	 	 	 	 	 	 	 	 (45)	

 reflectanceObserverElement	

The	 reflectanceObserverElement	 transforms	 input	 channel	 data	 into	 output	 channel	 data	 as	
colorimetric	representation	of	the	incoming	spectral	reflectance.			

The	emission	observer	element	encoding	is	shown	in	Table	123.	

Table	123	–Emission	Observer	Element	encoding	

Byte	 Field	
Length	

Content	 Encoded	as…	

ICC.2:2017	

162	 ©	ICC	2017	–	All	rights	reserved	

Position	 (bytes)	

0..3	 4	 ‘robs’	(726f6273h)	type	signature

4..7	 4	 Reserved,	shall	be	0

8..9	 2	 Number	of	Input	Channels	(P) uInt16Number	

10..11	 2	 Number	of	Output	Channels	(Q) uInt16Number	

12..17	 6	
Spectral	 data	 wavelength	 range:	 start	 (F),	
end(E),	steps(S)	

spectralRange	

	

18..19	 2	 Absolute	flag uInt16Number	

20..20+	
4xS	‐	1	

4xS	 Spectral	reflectance	of	White float32Number[…]	

	

The	number	of	input	channels	(P)	shall	match	the	number	of	input	channels	to	the	processing	element.	

The	number	of	output	channels	(Q)	shall	be	3.	

The	 spectral	 data	 wavelength	 range	 field	 encoded	 as	 a	 spectralRange	 shall	 define	 the	 starting	
wavelength	 (F),	 ending	 wavelength	 (E),	 and	 number	 of	 steps	 (S)	 defined	 for	 the	 reference	 white	
emission	vector	and	spectral	matrix	elements.		The	number	of	steps	shall	be	two	or	greater.	

The	 reference	 white	 reflectance	 vector	 shall	 be	 organized	 as	 an	 array	 of	 S elements	 with	 the	 first	
element	corresponding	to	 the	start	wavelength	(F),	and	the	 last	element	corresponding	to	 the	ending	
wavelength	 (E)	 with	 the	 intervening	 S‐2	 elements	 corresponding	 to	 evenly	 spaced	 wavelengths	
between	the	starting	and	ending	wavelengths.	The	array	is	organized	as	follows:	

	 white	array	=	[w1,	w2,	…,	wS]	 	 	 	 	 	 	 	 	 (46)	

The	 colorimetric	 conversion	 of	 incoming	 reflectance	 vectors	 shall	 be	 determined	 by	 applying	
normalized	 observer	 color	 matching	 functions	 associated	 the	 profile	 connection	 conditions	 to	 each	
CLUT	value	array	resulting	in	a	CLUT	containing	value	arrays	of	tristimulus	values.	This	CLUT	shall	then	
be	used	for	transforming	input	channels	to	output	channels	with	the	output	channels	being	defined	by	
the	converted	colorimetric	arrays	in	the	CLUT.		




































Sr

r

r

k

O

O

O


2

1

3

2

1

C ,	 	 	 	 	 	 	 	 	 	 	 (47)	


















SSzzz

SSyyy

SSxxx

lclclc

lclclc

lclclc

,22,11,

,22,11,

,22,11,







C ,	and	 	 	 	 	 	 	 	 	 (48)	

ICC.2:2017	

©	ICC	2017–	All	rights	reserved	 163	




 S

i
iiy wc

k

1
,

1
	 	 	 	 	 	 	 	 	 	 	 	 (49)	

The	spectral	reflectances	and	observer	color	matching	functions	shall	be	resampled	if	they	differ	from	
the	sampling	range	of	the	illuminant.			

For	relative	colorimetric	processing	(when	the	Absolute	flag	is	zero)	the	illuminant	white	point	from	the	
profile	connection	conditions	and	media	white	point	(calculated	based	on	the	white	array,	observer	and	
illuminant	from	the	profile	connection	conditions	used	to	determine	the	initial	reflectance	colorimetry)	
shall	be	used	to	additionally	normalize	the	output	colorimetry	as	follows.	


































3

2

1

3

2

1

'

'

'

O

O

O

O

O

O

M ,	 	 	 	 	 	 	 	 	 	 	 (50)	

























zw

zw

yw

yw

xw

xw

m
l

m
l

m
l

,

,

,

,

,

,

00

00

00

M ,		 	 	 	 	 	 	 	

	 	 	 	 (51)	





S

i
iixxw lcl

1
,,

,	




S

i
iiyyw lcl

1
,,

,	




S

i
iizzw lcl

1
,,

,	and	 	 	 	 	 	 	 (52)	




































S
zw

yw

xw

w

w

w

k

m

m

m


2

1

,

,

,

C 	 	 	 	 	 	 	 	 	 	 	 (53)	

 tintArrayElement	

The	 tint	 tintArrayElement	 allows	 for	 the	 encoding	 of	 a	 1‐dimensional	 input	 to	N‐dimensional	 output	
colour	lookup	transform	using	flexible	encoding	of	values.		

NOTE	 	This	 processing	 element	 differs	 from	 the	 segmentedCurveElement,	 which	 defines	 independent	 1‐
dimension	transformations	for	N‐dimensional	input	thus	resulting	in	an	N‐dimension	to	N‐dimension	transform.	

Values	 in	 the	 Tint	 array	 can	 be	 encoded	 using	 uInt8Number,	 uInt16Number,	 float16Number,	 and	
float32Number	types.	The	range	of	uInt8Number	and	uInt16Number	values	shall	correspond	to	output	
channel	values	ranging	from	0,0	to	1,0.	The	encoding	of	a	tintArrayElement	is	defined	in	Table	124.	

Table	124	–	tintArrayElement	encoding	

ICC.2:2017	

164	 ©	ICC	2017	–	All	rights	reserved	

Byte	Position	 Field	
Length	
(bytes)	

Content	 Encoded	as…

0…3	 4	 'tint'	(74696e74h)	type	signature

4…7	 4	 Reserved,	shall	be	0

8…9	 2	 Number	of	Input	Channels	(P) uInt16Number

10…11	 2	 Number	of	Output	Channels	(Q) uInt16Number

12..15	 4	 Tint	Encoding	Type

	

uInt32Number	as	a	
valueEncodingType	

16..19	 4	 Reserved,	shall	be	0

20…end	 	 Tint	array	 Defined	by	Tint	Encoding	Type	

	

The	number	of	Input	Channels	(P)	shall	be	1.		

The	number	of	entries	in	the	Tint	array	shall	be	evenly	divisible	by	the	number	of	Output	Channels	(Q)	
and	there	shall	be	at	least	2Q	entries	in	the	TintArray.		

The	first	Q	values	in	the	Tint	array	shall	define	the	output	channel	values	for	an	input	tint	of	0,0.	The	last	
Q	values	in	the	Tint	array	shall	define	the	output	channel	values	for	an	input	tint	of	1,0.	 Intermediate	
entries	in	the	Tint	array	shall	define	output	values	for	a	uniform	sampling	of	the	input	tint	value.		

Output	values	for	intermediate	tint	values	shall	be	defined	using	linear	interpolation	of	corresponding	
channel	entries.	

If	an	input	tint	is	less	than	0,0	then	the	output	shall	be	for	an	input	tint	of	0,0.	If	an	input	tint	is	greater	
than	1,0	then	the	output	shall	be	for	an	input	tint	of	1,0.	

 XYZToJab	Element	

The	XYZToJab	element	allows	for	the	encoding	of	appearance	parameters	for	the	purpose	of	converting	
from	colorimetry	under	the	viewing	conditions	to	CIECAM02	Cartesian	appearance	correlates	Jab.	

The	encoding	of	an	XYZToJab	element	is	shown	in	Table	125.	

Table	125	–	XYZToJab	element	encoding	

Byte	Position	 Field	
Length	
(bytes)	

Content Encoded	as…	

0…3	 4 ‘XtoJ’	(58746f4ah)	type	signature

4…7	 4 Reserved,	shall	be	0

ICC.2:2017	

©	ICC	2017–	All	rights	reserved	 165	

8…9	 2 Number	of	Input	Channels	(P) uInt16Number	

10…11	 2 Number	of	Output	Channels	(Q) uInt16Number	

12…23	 12	 White	Point	XYZ floatXYZNumber	

24…27	 4 Luminance	in	cd/m2 float32Number	

28…31	 4 Background	Luminance	in	cd/m2 float32Number	

32…35	 4 Impact	of	Surround	

(ranging	from	0.0	to	1.0)	

float32Number	

36..39	 4 Chromatic	Induction	Factor float32Number	

40…43	 4 Adaptation	Factor float32Number	

Both	the	number	of	Input	Channels	(P)	and	number	of	Output	Channels	(Q)	shall	be	3.	

The	logic	to	convert	XYZToJab	is	given	in	Annex	C.	

 “Future”	Expansion	Elements	

The	‘bACS’	and	‘eACS’	element	types	were	provided	in	version	4.3	as	placeholders	for	future	expansion.	
The	intent	of	these	elements	has	been	superseded	by	the	full	specification	of	a	spectrally‐based	PCS	in	
this	part	of	 ISO	20677.	 If	used,	 these	elements	shall	be	considered	as	pass	 through	elements	with	no	
modification	of	channel	data.	Their	encoding	shall	be	as	shown	in	Table	126	and	Table	127.	

Table	126	–	bACS	element	encoding	

Byte	Position	 Field	
Length	
(bytes)	

Content Encoded	as…	

0…3	 4 ‘bACS’	(62414353h)	type	signature

4…7	 4 Reserved,	shall	be	0

8…9	 2 Number	of	Input	Channels	(P) uInt16Number	

10…11	 2 Number	of	Output	Channels	(Q) uInt16Number	

12…15	 4 Signature

Table	127	–	eACS	element	encoding	

Byte	Position	 Field	
Length	
(bytes)	

Content Encoded	as…	

0…3	 4 ‘eACS’	(65414353h)	type	signature

4…7	 4 Reserved,	shall	be	0

ICC.2:2017	

166	 ©	ICC	2017	–	All	rights	reserved	

8…9	 2 Number	of	Input	Channels	(P) uInt16Number	

10…11	 2 Number	of	Output	Channels	(Q) uInt16Number	

12…15	 4 Signature

For	both	the	‘bACS’	and	‘eACS’	element	types	the	number	of	input	channels	(P)	shall	be	the	same	as	the	
number	of	output	channels	(Q).	

12 Struct	Tag	Type	definitions	

 General	

The	tagStructType	tag	type	provides	the	means	of	associating	multiple	tag	elements	into	a	single	data	
structure	with	 each	 contained	 sub‐tag	 element	 having	 a	 unique	 signature.	 Each	 tagStructType	 has	 a	
Structure	Type	Identifier	that	shall	be	used	to	identify	the	possible	sub‐tag	element	s	and	the	purposes	
for	each	sub‐tag	element	in	the	structure.		

The	public	tagStructType	tag	structure	types	defined	by	the	ICC	are	listed	in	12.2	in	alphabetical	order.		

 Struct	Tag	Type	listing	

 brdfTransformStructure	

12.2.1.1 General	

Structure	Type	Identifier:	'brdf'	(62726466h)	

The	brdfTransformStructure	defines	information	used	to	transform	device	values	to	BRDF	parameters	
that	can	be	used	to	simulate	colour	appearance	under	various	viewing/illumination	geometries.	Table	
128	shows	publically	defined	element	sub‐tag	members	of	a	brdfStructure.	Descriptions	for	each	sub‐
tag	member	can	be	found	in	12.2.1.2.	

Table	128	–	brdfTransformStructure	element	tags	

Id	 Signature	 Description	 Tag	Type Use	

Type	 'type'	
(74797065h)	

Type	of	BRDF	colour	– ‘mono’	or	
‘colr’	(see	12.2.1.2.1)	

signature Required	

function	 'func'	
(66756e63h)	

BRDF	 function	 signature	 (see	
12.2.1.2.2)	

signature Required

paramsPer
Channel	

'nump'	
(6e756d70h)	

Number	 of	 BRDF	 parameters	
stored	 per	 output	 channel	 in	
xform	(see	12.2.1.2.3)	

uInt16Number

	

Required	

transform	 'xfrm'	
(7866726dh)	

The	transform	(see	12.2.1.2.4) multiProcessElement	 Required

	

ICC.2:2017	

©	ICC	2017–	All	rights	reserved	 167	

12.2.1.2 brdfTransformStructure	Tag	Member	Elements	

12.2.1.2.1 brdfTransformStructure	type	Sub‐tag	

Tag	element	signature:	'type'	(74797065h)	

Permitted	tag	element	types:	signature	

Element	usage:	required	

The	brdfTransformStructure	type	element	defines	the	type	of	BRDF	transform.		

If	the	type	sub‐tag	contains	the	signature	‘mono’	(6d6f6e6fh)	then	the	brdfTransform	sub‐tag	shall	be	
assumed	 to	define	output	BRDF	parameters	using	only	 a	 single	 channel	 of	data.	The	 total	number	of	
parameters	shall	be	defined	by	the	value	stored	in	the	paramsPerChannel	sub‐tag	element.	

If	 the	 type	 sub‐tag	 contains	 the	 signature	 ‘colr’	 (636f6c72h)	 then	 the	brdfTransform	sub‐tag	 shall	 be	
assumed	to	define	output	BRDF	parameters	for	each	channel	defined	by	the	associated	PCS	elements	in	
the	header.	The	total	number	of	parameters	for	each	output	entry	shall	be	defined	as	the	number	of	PCS	
channels	multiplied	by	the	value	stored	in	the	paramsPerChannel	sub‐tag	element.	

12.2.1.2.2 brdfTransformStructure	function	Sub‐tag	

Tag	element	signature:	'func'	(66756e63h)	

Permitted	tag	element	types:	signature	

Element	usage:	required	

The	brdfTransformStructure	function	element	shall	contain	a	signature	representing	the	BRDF	function	
to	 be	 used.	 Table	 129	 shows	 the	 signatures	 and	 function	 types	 that	 are	 defined.	 Additional	 BRDF	
function	signatures	may	be	registered	at	the	ICC	signature	registry	at	www.color.org	(see	Clause	5).	

Table	129	–	brdfTransformStructure	function	signatures	

Signature	 Description	 Implied	 Number	
of	Parameters	

‘BPh0‘	(42506830h)	 Blinn‐Phong	with	monochrome	parameters 4	

‘BPh1’	(42506831h)	 Blinn‐Phong	with	full	colour	parameters 3	

‘CT10’	(43543130h)	 Cook‐Torrance	with	1	lobe	and	monochrome	parameters 6	

‘CT20’	(43543230h)	 Cook‐Torrance	with	2	lobes	and	monochrome	parameters 9	

‘CT30’	(43543330h)	 Cook‐Torrance	with	3	lobe	and	monochrome	parameters 11	

‘CT11’	(43543131h)	 Cook‐Torrance	with	1	lobe	and	full	colour	parameters 5	

‘CT21’	(43543231h)	 Cook‐Torrance	with	2	lobes	and	full	colour	parameters 8	

‘CT31’	(43543331h)	 Cook‐Torrance	with	3	lobes	and	full	colour	parameters 10	

ICC.2:2017	

168	 ©	ICC	2017	–	All	rights	reserved	

‘War0’	(57617230h)	 Ward	with	monochrome	parameters 5	

‘War1’	(57617231h)	 Ward	with	full	colour	parameters 4	

‘La10’	(4c613130h)	 Lafortune	with	1	lobe	and	monochrome	parameters? 9	

‘La20’	(4c613230h)	 Lafortune	with	2	lobes	and	monochrome	parameters? 16	

‘La30’	(4c613330h)	 Lafortune	with	3	lobes	and	monochrome	parameters? 23	

‘La11’	(4c613131h)	 Lafortune	with	1	lobe	and	chromatic	parameters? 5	

‘La21’	(4c613231h)	 Lafortune	with	2	lobes	and	chromatic	parameters? 9	

‘La31’	(4c613331h)	 Lafortune	with	3	lobes	and	chromatic	parameters? 13	

	

The	lighting	equation	used	by	the	Blinn‐Phong	reflectance	model	is	as	follows:	






















 






 

lightsm
sm

n

msdmmdP iHNkiNLkI ,, 	 	 	 	 	 	 	 (54)	

Where:		

im,d	is	the	intensity	of	the	diffuse	component	of	light	m.	

im,s	is	the	intensity	of	the	specular	component	of	light	m.	

is	the	direction	vector	from	the	light	to	the	location	on	the	surface.	

	is	the	normal	for	the	location	on	the	surface.	

	is	the	direction	vector	midway	between	L	and	the	viewpoint	vector	V.	

IP	is	the	total	light	reflected	from	the	surface	of	the	object	towards	the	viewer.		

The	following	are	the	Blinn‐Phong	parameters	that	specify	the	material:	

	 kd,	is	the	diffuse	reflection	constant	for	the	material.	

ks,	is	the	specular	reflection	constant	for	the	material.	

n,	is	the	shininess	constant	for	the	material.	

For	 the	 full	 colour	Blinn‐Phong	 function	 the	 three	parameters	 shall	 be	kd,	ks,	 and	n.	The	order	of	 the	
parameters	in	the	transform	shall	be:	

kd,	ks,	n.	 	 	 	 	 	 	 	 	 	 	 	 (55)	

Lm

^

N
^

Hm

^

ICC.2:2017	

©	ICC	2017–	All	rights	reserved	 169	

The	monochrome	 function	 combines	 the	 output	 of	 the	 absolute	 transform	with	 three	 parameters	 to	
compute	the	Blinn‐Phong	parameters	kd	and	ks.		

	 	 	 	 	 	 	 	 	 	 	 	 (56)	

	 	 	 	 	 	 	 	 	 	 	 	 (57)	

Where	B	is	the	output	of	the	absolute	transform,	ld	is	the	diffuse	scaling	factor,	ls	is	the	specular	scaling	
factor,	and	 lgs	 is	a	global	specular	component.	The	order	of	the	four	parameters	in	the	transform	shall	
be:	

ld,	ls,	lgs,	n.		 	 	 	 	 	 	 	 	 	 	 	 (58)	

The	documentation	for	the	Blinn‐Phong	reflectance	model	is	in	(James	F.	Blinn	(1977).	"Models	of	light	
reflection	 for	computer	synthesized	pictures".	Proc.	4th	annual	conference	on	computer	graphics	and	
interactive	techniques:	192–198).	

The	lighting	equation	used	by	the	Cook‐Torrance	reflectance	model	is	as	follows:	

,	 	 	 	 	 	 	 	 (59)	

where	 	is:	

	

,	 	 	 	 	 	 	 	 	 (60)	

and:	

,	 	 	 	 	 	 (61)	

.	 	 	 	 	 	 	 	 	 (62)	

Where:	

im,s	is	the	intensity	of	the	specular	component	of	light	m.	

	is	the	direction	vector	from	the	light	to	the	location	on	the	surface.	

	is	the	normal	for	the	location	on	the	surface.	

is	the	direction	vector	midway	between	L	and	the	viewpoint	vector	V.	

kd  ld B

ks  lsB lgs

I p im (kd (Lm

^

N
^

) kss,m)
mlights



s,m

s,m 
Fm


DmGm

(N Lm)(N V)

Gm  min 1,
2(N Hm)(N V)

(V Hm)
,
2(N Hm)(N Lm)

(V Hm)









Dm 
1

m2 cos4m

e
 tanm

m









2

Lm

N

Hm

ICC.2:2017	

170	 ©	ICC	2017	–	All	rights	reserved	

V	is	the	viewpoint	vector.	

α	is	the	angle	between	N	and	H.	

F	 is	 the	 Fresnel	 term.	 It	 describes	 how	 light	 is	 reflected	 from	 each	 smooth	 microfacet,	 and	 can	 be	
obtained	from	the	Fresnel	equations.	The	parameters	to	the	Fresnel	Equations	are	index	of	refraction	
(n),	extinction	coefficient	(k),	and	angle	of	illumination.	

The	parameters	for	the	Cook‐Torrance	model	are	summarized	as:	

	 kd	is	the	diffuse	reflection	constant	for	the	material.	

ks	is	the	specular	reflection	constant	for	the	material.	

	 m	is	the	rms	slope.	

	 n	is	the	index	of	refraction.	

	 k	is	the	extinction	coefficient.	

The	order	of	the	parameters	in	the	transform	for	the	full	colour	function	shall	be:	

kd,	ks,	m,	n,	k.	

The	monochrome	 function	 combines	 the	 output	 of	 the	 absolute	 transform	with	 three	 parameters	 to	
compute	the	Cook‐Torrance	parameters	kd	and	ks.		

	 	 	 	 	 	 	 	 	 	 	 (63)	

	 	 	 	 	 	 	 	 	 	 	 (64)	

The	order	of	the	parameters	for	the	monochrome	single	lobe	Cook‐Torrance	function	shall	be:	

	 ld,	ls,	lgs,	m,	n,	k.	

For	multi‐lobe	versions	of	the	function	D	is	defined	as:	

	 ,	 	 	 	 	 	 	 	 	 	 (65)	

where	mj	is	the	rms	slope	for	the	jth	lobe	and	wj	is	the	weighting	for	the	lobe.	

The	parameters	for	the	full	colour	two	lobed	Cook‐Torrance	function	shall	be	present	in	the	following	
order:	

	 kd,	ks,	m1,	w1,	m2,	w2,	n,	k.	

The	 parameters	 for	 the	 monochrome	 two	 lobed	 Cook‐Torrance	 function	 shall	 be	 present	 in	 the	
following	order:	

	 ld,	ls,	lgs,	m1,	w1,	m2,	w2,	n,	k.	

kd  ld B

ks  lsB lgs

D  wjD(mj)
j



ICC.2:2017	

©	ICC	2017–	All	rights	reserved	 171	

The	parameters	for	the	full	colour	three	lobed	Cook‐Torrance	function	shall	be	present	in	the	following	
order:	

	 kd,	ks,	m1,	w1,	m2,	w2,	m3,	w3,	n,	k.	

The	 parameters	 for	 the	 monochrome	 three	 lobed	 Cook‐Torrance	 function	 shall	 be	 present	 in	 the	
following	order:	

	 ld,	ls,	lgs,	m1,	w1,	m2,	w2,	m3,	w3,	n,	k.	

Documentation	for	the	Cook‐Torrance	model	can	be	found	in	(R.	Cook	and	K.	Torrance.	"A	reflectance	
model	 for	 computer	 graphics".	 Computer	 Graphics	 (SIGGRAPH	 '81	 Proceedings),	 Vol.	 15,	 No.	 3,	 July	
1981,	pp.	301–316.).	

The	lighting	equation	used	by	the	isotropic	Ward	reflectance	model	is	as	follows:	

,	 	 	 	 	 	 	 	 (66)	

where	 	is:	

	 ,	 	 	 	 (67)	

and	Rm	 is	 the	vector	of	 light	 reflection	 for	 light	m,	 and	X	and	Y	 are	orthogonal	 vectors	 in	 the	normal	
plane	 which	 specify	 anisotropic	 directions.	 The	 parameters	 	 and	 control	 the	 shininess	 in	 two	

dimensions.	When	 these	parameters	are	not	equal	 the	Ward	model	 is	 anisotropic	and	when	 they	are	
equal	the	model	is	isotropic.	

The	parameters	for	the	full	colour	Ward	function	shall	be	present	in	the	following	order:	

	 kd,	ks,	 ,	 .	

The	monochrome	 function	 combines	 the	 output	 of	 the	 absolute	 transform	with	 three	 parameters	 to	
compute	the	Ward	parameters	kd	and	ks.		

	 	 	 	 	 	 	 	 	 	 	 (68)	

	 	 	 	 	 	 	 	 	 	 	 (69)	

The	order	of	the	parameters	for	the	monochrome	Ward	function	shall	be:	

ld,	ls,	lgs,	m,	n,	k.	

I p im (kd (Lm

^

N
^

) kss,m)
mlights



s,m

s,m 
1

(N Lm)(N Rm)

N L
4 xy

exp 2

Hm  X
x











2

 Hm Y
x











2

1 (Hm N)





















x y

 x  y

kd  ld B

ks  lsB lgs

ICC.2:2017	

172	 ©	ICC	2017	–	All	rights	reserved	

Documentation	 for	 the	Ward	model	 can	be	 found	 at	 (G.	Ward.	 “Measuring	 and	Modeling	Anisotropic	
Reflection.”	Computer	Graphics,	Vol.	26,	No.	2,	July	1992,	pp.	265‐272.).	

The	lighting	equation	used	by	the	Lafortune	BRDF	model	is	as	follows:	

I p im (kd (Lm

^

N
^

) s,m)
mlights

 		 	 	 	 	 	 	 	 (70)	

where	 	is:	

s,m  Cx,ix,m x Cy,iy,m y Cz,iz,m z
 

ni

ilobes

 	 	 	 	 	 	 (71)	

where	the	vector	Lm	=	[μx,m,	μy,m,	μz,m]	and	V	=	[νx,	νy,	νz].	 	 	 	 	 	 (72)	

The	monochrome	 function	 combines	 the	 output	 of	 the	 absolute	 transform	with	 three	 parameters	 to	
compute	the	Lafortune	parameters	kd	and	Cx,Cy,	and	Cz.		

	 	 	 	 	 	 	 	 	 	 	 (73)	

Cx,i  ls,x,iB lgs,x,i 	 	 	 	 	 	 	 	 	 	 (74)	

Cy,i  ls,y,iB lgs,y,i 	 	 	 	 	 	 	 	 	 	 (75)	

Cz,i  ls,z,iB lgs,z,i 	 	 	 	 	 	 	 	 	 	 (76)	

The	parameters	for	the	full	colour	single	lobe	Lafortune	function	shall	be	present	in	the	following	order:	

Kd,	Cx,	Cy,	Cz,	n.	

The	parameters	for	the	full	colour	single	lobe	Lafortune	function	shall	be	present	in	the	following	order:	

Kd,	ld,	ls,x,	ls,y,	ls,z,	lgs,x,	lgs,y,	lgs,z,	n.	

The	parameters	for	the	full	colour	two	lobe	Lafortune	function	shall	be	present	in	the	following	order:	

Kd,	Cx,1,	Cy,1,	Cz,1,	n,1,	Cx,2,	Cy,2,	Cz,2,	n,2.	

The	parameters	for	the	full	colour	two	lobe	Lafortune	function	shall	be	present	in	the	following	order:	

Kd	,ld,	ls,x,1,	ls,y,1,	ls,z,1,	lgs,x,1,	lgs,y,1,	lgs,z,1,	n1,	ls,x,2,	ls,y,2,	ls,z,2,	lgs,x,2,	lgs,y,2,	lgs,z,2,	n2.	

The	parameters	for	the	full	colour	three	lobe	Lafortune	function	shall	be	present	in	the	following	order:	

Kd,	Cx,1,	Cy,1,	Cz,1,	n,1,	Cx,2,	Cy,2,	Cz,2,	n,2,	Cx,3,	Cy,3,	Cz,3,	n,3.	

The	parameters	for	the	full	colour	three	lobe	Lafortune	function	shall	be	present	in	the	following	order:	

s,m

kd  ld B

ICC.2:2017	

©	ICC	2017–	All	rights	reserved	 173	

Kd,	 ld,	 ls,x,1,	 ls,y,1,	 ls,z,1,	 lgs,x,1,	 lgs,y,1,	 lgs,z,1,	n1,	 ls,x,2,	 ls,y,2,	 ls,z,2,	 lgs,x,2,	 lgs,y,2,	 lgs,z,2,	n2,	 ls,x,3,	 ls,y,2,	 ls,z,3,	 lgs,x,3,	 lgs,y,3,	
lgs,z,3,	n3.	

Documentation	for	the	Lafortune	model	can	be	found	at	(Eric	P.	F.	Lafortune,	Sing‐Choong	Foo,	Kenneth	
E.	Torrance,	and	Donald	P.	Greenberg.	“Non‐linear	approximation	of	reflectance	functions.”	SIGGRAPH	
97	Conference	Proceedings,	Annual	Conference	Series,	pages	117‐‐126.).	

The	 value	 in	 the	 brdfParamsPerChannel	 sub‐tag	 shall	 be	 greater	 than	 or	 equal	 to	 the	 number	 of	
parameters	needed	by	the	BRDF.	

12.2.1.2.3 brdfTransformStructure	paramsPerChannel	Sub‐tag	

Tag	element	signature:	'nprm'	(6e70726dh)	

Permitted	tag	element	types:	uInt16Number	

Element	usage:	required	

The	brdfTransformStructure	paramsPerChannel	element	shall	contain	an	integer	specifying	the	number	
of	parameters	that	are	stored	for	each	output	channel.	This	integer	shall	match	the	implied	number	of	
parameters	indicated	in	Table	129.	

12.2.1.2.4 brdfTransformStructure	transform	Sub‐tag	

Tag	element	signature:	'xfrm'	(7866726dh)	

Permitted	tag	element	type:	multiProcessElementType	

Element	usage:	required	

The	brdfTransformStructure	 transform	 element	 shall	 contain	 a	multiProcessElementType	 subtag	 that	
provides	 a	 transform	 from	 device	 values	 to	 BRDF	 parameters	 for	 each	 output	 channel.	 If	 the	
brdfTransformStructure	 type	 element	 contains	 the	 ‘mono’	 signature	 then	 the	 transform	element	shall	
provide	only	a	single	set	of	BRDF	parameters	representing	 the	reflectance	properties	of	 the	material.	
Otherwise	 the	 transform	 element	 shall	 provide	 a	 set	 of	 BRDF	 parameters	 for	 each	 channel	 in	 the	
associated	PCS	with	the	brdfTransformStructure	tag.	

 colorantInfoStructure	

12.2.2.1 General	

Structure	Type	signature	identifier:	‘cinf’	(63696e66h)	

A	 colorInfoStructure	 is	 used	 by	 the	 colorantTableTag	 and	 colorantOutTableTag	 to	 define	 relevant	
information	about	the	colorants	used	by	the	profile.	Table	130	shows	publically	defined	element	sub‐
tag	members	of	a	colorantInfoStructure.	Descriptions	for	each	sub‐tag	member	can	be	found	in	Clause	
12.2.2.2.	

Table	130	–	colorantInfoStructure	element	tags	

Id	 Signature	 Description Tag	Type Use	

name	 'name'	 Name	of	Named	 utf8Type Shall	be	present

ICC.2:2017	

174	 ©	ICC	2017	–	All	rights	reserved	

(6e616d65h)	 colour	(see	
12.2.2.2.1)	

localizedNames	 'lcnm'	
(6c636e6dh)	

Localized	Names	of	
Named	colour	(see	
12.2.2.2.2)	

multiLocalizedUnicodeType	 May	be	present

pcsData	 'pcs	'	
(70637320h)	

PCS	values	
associated	with	
colour	(see	
12.2.2.2.3)	

uInt8Number

uInt16Number	

float16Number	

float32Number	

May	be	present

spectralData	 'spec'	
(73706563h)	

Spectral	values	
associated	with	
colour	(see	
12.2.2.2.4)	

uInt8Number

uInt16Number	

float16Number	

float32Number	

sparseMatrixArrayType	

May	be	present	
when	
spectralColorSpace	
defined	in	profile	
header	

	

12.2.2.2 colorantInfoStructure	Tag	Member	Elements	

12.2.2.2.1 colorantInfoStructure	name	Sub‐tag	

Tag	element	signature:	'name'	(6e616d65h)	

Permitted	tag	element	types:	utf8Type	

Element	usage:	required	

The	colorantInfoStructure	name	element	contains	the	unique	name	of	the	colour	to	associate	with	the	
structure	data.		

12.2.2.2.2 colorantInfoStructure	localizedName	Sub‐tag	

Tag	element	signature:	'lcnm'	(6c636e6dh)	

Permitted	tag	element	types:	multiLocalizedUnicodeType	

Element	usage:	optional	

The	 colorantInfoStructure	 localizedName	 element	 contains	 the	 localized	 versions	 of	 the	 name	 of	 the	
colour	to	associate	with	the	structure	data	that	can	be	used	to	display	the	name	for	various	locales.		

12.2.2.2.3 colorantInfoStructure	pcsData	Sub‐tag	

Tag	element	signature:	'pcs	'	(70637320h)	

Permitted	tag	element	types:	uInt8Number,	uInt16Number,		float16Number,	or	float32Number	

Element	usage:	required	if	PCS	values	defined	in	profile	header	

ICC.2:2017	

©	ICC	2017–	All	rights	reserved	 175	

The	colorantInfoStructure	pcsData	 element	shall	 contain	a	 set	of	 colorimetric	PCS	values	 to	associate	
with	 the	 colorantInfoStructure.	 The	 number	 of	 entries	 and	 encoding	 of	 the	 values	 in	 the	 pcsData	
element	tag	shall	agree	with	the	number	of	entries	and	encoding	implied	by	the	pcsColorSpace	entry	in	
the	 profile	 header.	 If	 either	 the	 pcsColorSpace	 is	 zero	 or	 the	 profile	 is	 a	 DeviceLink	 profile	 then	 the	
number	of	entries	shall	be	three	and	the	encoding	shall	be	assumed	to	be	PCSLAB	for	the	1931	standard	
observer	under	D50	illumination.		

12.2.2.2.4 colorantInfoStructure	spectralData	Sub‐tag	

Tag	element	signature:	'spec'	(73706563h)	

Permitted	 tag	 element	 types:	 uInt8Number	 ,	 uInt16Number,	 float16Number,	 float32Number	 or	
sparseMatrixArrayType	

Element	usage:	required	if	spectralPCS	value	is	defined	in	profile	header	

The	colorantInfoStructure	spectralData	element	shall	contain	a	set	of	spectral	values	to	associate	with	
the	 colorantInfoStructure.	 If	 the	 spectralColorSpace	 entry	 in	 the	 profile	 header	 is	 a	
sparseMatrixReflectanceData	 colour	 space	 then	 the	 element	 type	 shall	 be	 a	 sparseMatrix.	 Otherwise,	
the	 number	 of	 entries	 in	 the	 spectralData	 element	 tag	 shall	 be	 the	 same	 as	 the	 number	 of	 entries	
implied	by	the	spectralColorSpace	entry	in	the	profile.		

 colorEncodingParamsStructure	

12.2.3.1 General	

Structure	Type	signature	identifier:	‘cept’	(63657074h)	

A	 colorEncodingParametersStructure	 is	 used	 by	 the	 colorEncodingParametersTag	 to	 define	 encoding	
parameters	for	the	three	component	colour	space.	Table	131	shows	publically	defined	element	sub‐tag	
members	of	a	colorEncodingParametersStructure.	Descriptions	for	each	sub‐tag	member	can	be	found	
in	Clause	12.2.3.2.	

Table	131	–	colorEncodingParamsStructure	element	tags	

Id	 Signature Description Sub‐Tag	Type

bluePrimaryXYZData	 'bXYZ'	
(6258595ah)	

nCIEXYZ	values	of	blue	colour	
space	encoding	primary	

float32Number	array

greenPrimaryXYZData	 'gXYZ'	
(6758595ah)	

nCIEXYZ	values	of	green	colour	
space	encoding	primary	

float32Number	array

redPrimaryXYZData	 'rXYZ'	
(7258595ah)	

nCIEXYZ	values	of	red	colour	
space	encoding	primary	

float32Number	array

transferFunctionData	 ‘func’	
(66756e63h)	

colour	component	transfer	
function	

segmentedCurveType

lumaChromaMatrixData	 'lmat'	
(6c6d6174h)	

matrix	that	converts	RGB	
values	to	luma‐chroma	values	

float32Number	array

ICC.2:2017	

176	 ©	ICC	2017	–	All	rights	reserved	

whitePointLuminanceData	 'wlum'	
(776c756dh)	

colour	space	white	point	
luminance	in	cd/m2	

float32Number

whitePointChromaticityData 'wXYZ'	
(7758595ah)	

colour	space	white	point	
chromaticity	

float32Number	array

encodingRangeData	 'eRng'	
(65526e67h)	

Describes	the	range	of	the	
encoding	data	

float32Number	array

bitDepthData	 'bits'	
(62697473h)	

bit	depths	for	encoding uInt8Number	array

imageStateData	 'imst'	
(696d7374h)

image	state	associated	with	the	
encoding	

signature	

imageBackgroundData	 'ibkg'	
(69626b67h)	

reference	viewing	
environment	image	
background	(proximal	field)	in	
cd/m2	

float32Number

viewingSurroundData	 'srnd'	
(73726e64h)	

reference	viewing	
environment	viewing	
surround	in	cd/m2	

float32Number

ambientIlluminanceData	 'ailm'	
(61696c6dh)	

reference	viewing	
environment	ambient	
illuminance	in	lux	

float32Number

ambientWhitePointLuminanceData	 'awlm'	
(61776c6dh)	

reference	viewing	
environment	adapted	white	
point	luminance	in	cd/m2	

float32Number

ambientWhitePointChromaticityData	 'awpc'	
(61777063h)	

reference	medium	white	point	
chromaticity	

float32Number	array

viewingFlareData	 ‘flar’	
(666c6172h)	

Viewing	Flare	as	percent	of	
white	point	luminance	
(excluding	viewing	flare	and	
veiling	flare		

float32Number

validRelativeLuminanceRangeData	 ‘lrng’
(6c726e67h)	

Describes	the	valid	relative	
luminance	range	

float32Number	array

mediumWhitePointLuminanceData	 'mwpl'	
(6d77706ch)	

reference	medium	white	point	
luminance	in	cd/m2	

float32Number

mediumWhitePointChromaticityData	 'mwpc'	
(6d777063h)

reference	medium	adapted	
white	point	chromaticity	

float32Number	array

mediumBlackPointLuminanceData	 'mbpl'	
(6d62706ch)	

reference	medium	black	point	
luminance	in	cd/m2	

float32Number

mediumBlackPointChromaticityData	 'mbpc'	 reference	medium	black	point	 float32Number	array

ICC.2:2017	

©	ICC	2017–	All	rights	reserved	 177	

(6d627063h) chromaticity

	

12.2.3.2 colorEncodingParamsStructure	Sub‐Tag	Member	Elements	

12.2.3.2.1 bluePrimaryXYZData	

Tag	Element	Signature:	'bXYZ'	(6258595ah)	

Permitted	tag	type:	float32Number	array	

Element	usage:	optional	

This	represents	the	nCIEXYZ	values	of	blue	colour	space	encoding	primary	encoded	using	either	2	or	3	
numbers.	The	first	value	represents	the	x	chromaticity.	The	second	value	represents	the	y	chromaticity.	
The	 third	 value	 (if	 present)	 represents	 the	 z	 chromaticity.	 If	 only	 two	 numbers	 are	 present	 the	 z	
chromaticity	is	assumed	to	be	the	value	of	one	minus	the	sum	of	the	two	numbers.	If	three	values	are	
present	the	sum	of	the	three	values	shall	be	1.0.	

12.2.3.2.2 greenPrimaryXYZData	

Tag	Element	Signature:	'gXYZ'	(6758595ah)	

Permitted	tag	type:	float32Number	array	

This	represents	the	nCIEXYZ	values	of	green	colour	space	encoding	primary	encoded	using	either	2	or	3	
numbers.	The	first	value	represents	the	x	chromaticity.	The	second	value	represents	the	y	chromaticity.	
The	 third	 value	 (if	 present)	 represents	 the	 z	 chromaticity.	 If	 only	 two	 numbers	 are	 present	 the	 z	
chromaticity	is	assumed	to	be	the	value	of	one	minus	the	sum	of	the	two	numbers.	If	three	values	are	
present	the	sum	of	the	three	values	shall	be	1.0.	

12.2.3.2.3 redPrimaryXYZData	

Tag	Element	Signature:	'rXYZ'	(7258595ah)	

Permitted	tag	types:	float32Number	array	

This	represents	the	nCIEXYZ	values	of	blue	colour	space	encoding	primary	encoded	using	either	2	or	3	
numbers.	The	first	value	represents	the	x	chromaticity.	The	second	value	represents	the	y	chromaticity.	
The	 third	 value	 (if	 present)	 represents	 the	 z	 chromaticity.	 If	 only	 two	 numbers	 are	 present	 the	 z	
chromaticity	is	assumed	to	be	the	value	of	one	minus	the	sum	of	the	two	numbers.	If	three	values	are	
present	the	sum	of	the	three	values	shall	be	1.0.

12.2.3.2.4 transferFunctionData	

Tag	Element	Signature:	‘func’	(66756e63h)	

Permitted	tag	type:	segmentedCurveType	

This	describes	the	colour	component	transfer	function.	

12.2.3.2.5 lumaChromaMatrixData	

Tag	Element	Signature:	'lmat'	(6c6d6174h)	

ICC.2:2017	

178	 ©	ICC	2017	–	All	rights	reserved	

Permitted	tag	type:	float32Number	array	

This	 contains	 nine	 float32Number	 values	 that	 define	 a	 matrix	 that	 converts	 RGB	 values	 to	 lumina‐
chroma	values.	

12.2.3.2.6 whitePointLuminanceData	

Tag	Element	Signature:	'wlum'	(776c756dh)	

Permitted	tag	type:	float32Number	

The	value	describes	the	white	point	luminance	in	cd/m2.	

12.2.3.2.7 whitePointChromaticityData	

Tag	Element	Signature:	'wXYZ'	(7758595ah)	

Permitted	tag	type:	float32Number	array	

The	value	describes	the	white	point	chromaticity	encoded	using	either	2	or	3	numbers.	The	first	value	
represents	 the	 x	 chromaticity.	 The	 second	 value	 represents	 the	 y	 chromaticity.	 The	 third	 value	 (if	
present)	represents	the	z	chromaticity.	If	only	two	numbers	are	present	the	z	chromaticity	is	assumed	
to	be	 the	value	of	one	minus	 the	sum	of	 the	 two	numbers.	 If	 three	values	are	present	 the	sum	of	 the	
three	values	shall	be	1.0.	

12.2.3.2.8 encodingRangeData	

Tag	Element	Signature:	'eRng'	(65526e67h)	

Permitted	tag	types:	float32Number	array	

Contains	two	floating	point	numbers	describing	the	range	of	the	encoding	data	where	the	first	number	
defines	the	minimum	range	value	and	the	second	number	defines	the	maximum	range	value.	

12.2.3.2.9 bitDepthData	

Tag	Element	Signature:	'bits'	(62697473h)	

Permitted	tag	types:	uInt8Number	array	

Contains	one	or	more	bit	depths	for	encoding,	A	value	of	zero	indicates	floating	point	support.	

12.2.3.2.10 imageStateData	

Tag	Element	Signature:	'imst'	(696d7374h)	

Permitted	tag	types:	signatureType	

Describes	the	image	state	associated	with	the	encoding.	The	signature	values	shall	be	any	of	the	valid	
signatures	 defined	 for	 the	 colorimetricIntentImageStateTag	 defined	 in	 9.2.54	 with	 the	 addition	 of	
signatures	defined	in	Table	132.	

Table	132	—	imageStateData	element	signatures	

Image	State	 Signature Hex	Encoding	

ICC.2:2017	

©	ICC	2017–	All	rights	reserved	 179	

Display	Output	Referred	Colorimetry ‘dorc’ 646f7263h	

	

12.2.3.2.11 imageBackgroundData	

Tag	Element	Signature:	'ibkg'	(69626b67h)	

Permitted	tag	types:	float32Number	

The	 value	 describes	 the	 image	 background	 (proximal	 field)	 in	 cd/m2	 of	 the	 reference	 viewing	
environment.	

12.2.3.2.12 viewingSurroundData	

Tag	Element	Signature:	'srnd'	(73726e64h)	

Permitted	tag	types:	float32Number	

The	value	describes	the	viewing	surround	in	cd/m2	of	the	reference	viewing	environment.	

12.2.3.2.13 ambientIlluminanceData	

Tag	Element	Signature:	'ailm'	(61696c6dh)	

Permitted	tag	types:	float32Number	

The	value	describes	the	ambient	illuminance	in	lux	of	the	reference	viewing	environment.	

12.2.3.2.14 ambientWhitePointLuminanceData	

Tag	Element	Signature:	'awlm'	(61776c6dh)	

Permitted	tag	types:	float32Number	

The	value	describes	the	adapted	white	point	luminance	in	cd/m2	of	the	reference	viewing	environment		

12.2.3.2.15 ambientWhitePointChromaticityData	

Tag	Element	Signature:	'awpc'	(61777063h)	

Permitted	tag	types:	float32Number	array	

The	value	describes	the	white	point	chromaticity	of	the	reference	medium,	encoded	using	either	2	or	3	
numbers.	The	first	value	represents	the	x	chromaticity.	The	second	value	represents	the	y	chromaticity.	
The	 third	 value	 (if	 present)	 represents	 the	 z	 chromaticity.	 If	 only	 two	 numbers	 are	 present	 the	 z	
chromaticity	is	assumed	to	be	the	value	of	one	minus	the	sum	of	the	two	numbers.	If	three	values	are	
present	the	sum	of	the	three	values	shall	be	1.0.		

12.2.3.2.16 mediumWhitePointLuminanceData	

Tag	Element	Signature:	'mwpl'	(6d77706ch)	

Permitted	tag	types:	float32Number	

The	value	describes	the	white	point	luminance	in	cd/m2	of	the	reference	medium.	

ICC.2:2017	

180	 ©	ICC	2017	–	All	rights	reserved	

12.2.3.2.17 mediumWhitePointChromaticityData	

Tag	Element	Signature:	'mwpc'	(6d777063h)	

Permitted	tag	types:	float32Number	array	

The	 value	 describes	 the	 adapted	 white	 point	 chromaticity	 of	 the	 reference	 medium,	 encoded	 using	
either	2	or	3	numbers.	The	first	value	represents	the	x	chromaticity.	The	second	value	represents	the	y	
chromaticity.	The	third	value	(if	present)	represents	the	z	chromaticity.	If	only	two	numbers	are	present	
the	z	chromaticity	is	assumed	to	be	the	value	of	one	minus	the	sum	of	the	two	numbers.	If	three	values	
are	present	the	sum	of	the	three	values	shall	be	1.0.		

12.2.3.2.18 mediumBlackPointLuminanceData	

Tag	Element	Signature:	'mbpl'	(6d62706ch)	

Permitted	tag	types:	float32Number	

The	value	describes	the	reference	medium’s	black	point	luminance	in	cd/m2.	

12.2.3.2.19 mediumBlackPointChromaticityData	

Tag	Element	Signature:	'mbpc'	(6d627063h)	

Permitted	tag	types:	float32Number	array	

The	value	describes	the	black	point	chromaticity	of	the	reference	medium,	encoded	using	either	2	or	3	
numbers.	The	first	value	represents	the	x	chromaticity.	The	second	value	represents	the	y	chromaticity.	
The	 third	 value	 (if	 present)	 represents	 the	 z	 chromaticity.	 If	 only	 two	 numbers	 are	 present	 the	 z	
chromaticity	is	assumed	to	be	the	value	of	one	minus	the	sum	of	the	two	numbers.	If	three	values	are	
present	the	sum	of	the	three	values	shall	be	1.0.		

 measurementInfoStructure		

12.2.4.1 General	

Structure	Type	Identifier:	'meas'	(6d656173h)	

The	 measurementInfoStructure	 is	 used	 by	 the	 measurementInfoTag	 (see	 9.2.86)	 and	 the	
measurementInputInfoTag	(see	9.2.87)	which	defines	aspects	of	the	measurement	data	in	the	PCS	and	
input	 side	 of	 abstract	 profiles	 respectively.	 Table	 133	 shows	 publically	 defined	 element	 sub‐tag	
members	 of	 a	 measurementInfoStructure.	 Descriptions	 for	 each	 sub‐tag	 member	 can	 be	 found	 in	
12.2.4.2.	

Table	133	–	measurementInfoStructure	element	tags	

Id	 Signature	 Description Tag	Type Use

measureBacking	 ‘mbak’	
(6d62616bh)	

Measurement	Backing	(see	
12.2.4.2.1	

uInt32Number	 May	be	
present	

measureFlare	 ‘mflr’	
(6d666c72h)	

Measurement	Flare	(see	
12.2.4.2.2)	

	

float32Number	 May	be	
present	

ICC.2:2017	

©	ICC	2017–	All	rights	reserved	 181	

measureGeometry	 ‘mgeo’	
(6d67656fh)	

Measurement	Geometry

(see	12.2.4.2.3)	

	

uInt32Number	 May	be	
present	

measureIlluminant	 ‘mill’	
(6d696c6ch)	

Measurement	Illuminant	
Spectral	Power	
Distribution	(SPD)	(see	
12.2.4.2.4)	

array	of	float16Number,	

array	of	float32Number	

May	be	
present	

measureIlluminantR
ange	

‘miwr’	
(6d697772h)	

Spectral	range	of	
Measurement	Illuminant	
Spectral	Power	
Distribution	
(SPD)Functionally	based	
Spectral	BRDF	(see	
12.2.4.2.5)	

spectralRange	 May	be	
present	

measureMode	 ‘mmod’	
(6d6d6f64h)	

Measurement	Mode	(see	
12.2.4.2.6)	

uInt32Number	 May	be	
present	

12.2.4.2 measurementInfoStructure	Member	Elements	

12.2.4.2.1 measurementInfoStructure	measureBacking	Sub‐Tag	

Tag	signature:	‘mbak’	(6d62616bh)		

Permitted	tag	types:	uInt32Number

The	 measurementInfoStructure	 measureBacking	 element	 defines	 the	 backing	 used	 for	 reflectance	 based	
measurements.	If	the	element	is	not	present	the	backing	shall	be	assumed	to	be	white.	The	encoding	for	
the	measurement	backing	is	shown	in	Table	134.	

Table	134	–	measureBacking	Encoding	

Geometry	 Hex	encoding	

Undefined	 00000000h	

White	backing	 00000001h	

Black	backing	 00000002h	

Media	(self)	backing	 00000003h	

	

12.2.4.2.2 measurementInfoStructure	measureFlare	Sub‐Tag	

Tag	signature:	‘mflr’	(6d666c72h)	

Permitted	tag	types:	float32Number

The	 measurementInfoStructure	 measureFlare	 element	 defines	 the	 level	 of	 flare	 involved	 to	 make	 a	
measurement.	If	the	element	is	not	present,	the	flare	shall	be	assumed	to	be	zero.	The	encoded	value	for	
the	measureFlare	member	variable	shall	range	from	0,0	to	1,0	

12.2.4.2.3 measurementInfoStructure	measurementGeometry	Sub‐Tag	

ICC.2:2017	

182	 ©	ICC	2017	–	All	rights	reserved	

Tag	signature:	‘mgeo’	(6d67656fh)	

Permitted	tag	types:	uInt32Number		

The	measurementInfoStructure	measureGeometry	element	defines	the	geometry	used	to	make	a	measurement.	
If	 the	 element	 is	 not	 present	 the	 geometry	 shall	 be	 assumed	 to	 be	 0°:45°.	 The	 encoding	 for	 the	
measurement	geometry	is	shown	in	Table	135.	

Table	135	–	measureGeometry	Encoding	

Geometry	 Hex	encoding	

Unknown	 00000000h	

0°:45°	or	45°:0°	 00000001h	

0°:d	or	d:0°	 00000002h	

		

12.2.4.2.4 measurementInfoStructure	measureIlluminant	Sub‐Tag	

Tag	signature:	‘mill’	(6d696c6ch)	

Permitted	tag	types:	uInt32Number

The	 measurementInfoStructure	 measureIlluminant	 element	 defines	 the	 actual	 spectral	 power	 distribution	
(SPD)	 of	 the	 illuminant	 used	 to	make	measurements.	 It	 contains	 an	 array	 of	 values	 that	 defines	 the	
spectral	 output	 for	 each	 of	 the	 wavelengths	 defined	 by	 the	 measureIlluminantRange	 sub‐tag.	 The	
measureIlluminant	 element	 shall	 contain	 the	 same	 number	 of	 elements	 as	 are	 defined	 by	 the	 steps	
value	 of	 the	 measureIlluminantRange	 sub‐tag.	 If	 the	 element	 is	 not	 present	 the	 exact	 SPD	 of	 the	
measurementilluminant	shall	be	assumed	to	be	unknown.	

12.2.4.2.5 measurementInfoStructure	measureIlluminantRange	Sub‐Tag	

Tag	signature:	‘miwr’	(6d697772h)	

Permitted	tag	types:	spectralRange

The	 measurementInfoStructure	 measureIlluminantRange	 element	 defines	 the	 starting	 wavelength,	 ending	
wavelength	 and	 number	 of	 steps	 for	 the	 actual	 spectral	 power	 distribution	 (SPD)	 of	 the	 illuminant	
((defined	 in	 a	 measurementIlluminant	 sub‐tag	 element)	 used	 to	 make	 measurements.	 The	
measureIlluminantRange	tag	shall	be	present	when	a	measureIlluminant	sub‐tag	is	present.	The	value	
of	wavelength	steps	in	the	measureIlluminantRange	shall	be	the	same	as	the	number	of	elements	in	the	
measureIlluminant	sub‐tag	

12.2.4.2.6 measurementInfoStructure	measureMode	Sub‐Tag	

Tag	signature:	‘mmod’	(6d6d6f64h)	

Permitted	tag	types:	uInt32Number

The	 measurementInfoStructure	 measureMode	 element	 defines	 the	 measurement	 mode	 used	 to	 make	 a	
measurement	 (as	defined	by	 ISO	13655‐2009).	 If	 the	 element	 is	 not	present	 the	measurement	mode	
shall	be	assumed	to	be	M1.	The	encoding	for	the	measurement	geometry	is	shown	in	Table	136.	

ICC.2:2017	

©	ICC	2017–	All	rights	reserved	 183	

Table	136	‐	measureMode	Encoding	

Measurement	Mode	 Hex	encoding	

Undefined	 00000000h	

M0	–	Default	(tungsten)	 00000001h	

M1	–	D50	 00000002h	

M2	–	UV‐Cut	 00000003h	

M3	–	Polarizing	filter	 00000004h	

	

 namedColorStructure		

12.2.5.1 General	

Structure	Type	Identifier:	'nmcl'	(6e6d636ch)	

The	 namedColorStructure	 is	 used	 by	 the	 namedColorTag	 (see	 9.2.99),	 which	 contains	 a	
namedColorArray	 (see	 13.2.1)	 defined	 as	 a	 tagArrayType	with	 a	 single	 zeroTintStucture	 followed	 by	
additional	 namedColorStructure	 elements.	 Table	 137	 shows	 publically	 defined	 element	 sub‐tag	
members	of	a	namedColorStructure.	Descriptions	for	each	sub‐tag	member	can	be	found	in	12.2.5.2.	

Table	137	–	namedColorStructure	element	tags	

Id	 Signature	 Description Tag	Type Use	

brdfColorimetric	 ‘bcol’	
(62636f6ch)	

Functionally	based	
Colorimetric	BRDF	
(see	12.2.5.2.1)	

	

multiProcessElementType	 May	be	present

brdfColorimetric
Params	

‘bcpr’	
(62637072h)	

Colorimetric	
Parametric	BRDF	
specification	(see	
12.2.5.2.2)	

tagStructType	of	type	
brdfTransformStructure	

May	be	present

brdfSpectral	 ‘bspc’	
(62737063h)	

Functionally	based	
Spectral	BRDF	(see	
12.2.5.2.3)	

multiProcessElementType	 May	be	present

brdfSpectralPara
ms	

‘bspr’	
(62737072h)	

Spectral	
Parametric	BRDF	
specification	(see	
12.2.5.2.4)	

tagStructType of	type	
brdfTransformStructure	

May	be	present

name	 'name'	
(6e616d65h)	

Name	of	Named	
colour	(see	
12.2.5.2.5)	

utf8Type May	be	present

localizedNames	 'lcnm'	
(6c636e6dh)	

Localized	Names	of	
Named	colour	(see	
12.2.5.2.6)	

multiLocalizedUnicodeType	 May	be	present

deviceData	 'dev	'	 Device	values	used	 uInt8Number May	be	present

ICC.2:2017	

184	 ©	ICC	2017	–	All	rights	reserved	

(64657620h)	 to	reproduce	
colour	(see	
12.2.5.2.7)	

uInt16Number

float16Number	

float32Number	

normalMap	 ‘nmap’	
(6e6d6170h)	

Surface	Normal	
Map	(see	
12.2.5.2.8)	

embeddedNormalImageType	 May	be	present

pcsData	 'pcs	'	
(70637320h)	

PCS	values	
associated	with	
colour	(see	
12.2.5.2.9)	

uInt8Number

uInt16Number	

float16Number	

float32Number	

Shall	be	present if	
PCS	field	is	non‐
zero	in	profile	
header	

spectralData	 'spec'	
(73706563h)	

Spectral	values	
associated	with	
colour	(see	
12.2.5.2.10)	

uInt8Number

uInt16Number	

float16Number	

float32Number	

sparseMatrixArrayType	

Shall	be	present if	
spectralPCS	field	is	
non‐zero	in	profile	
header	

spectralOverBlac
kData	

'spcb'	
(73706362h)	

Spectral	values	
associated	with	
colour	overprinted	
on	black	medium	
(see	12.2.5.2.11)	

uInt8Number

uInt16Number	

float16Number	

float32Number	

sparseMatrixArrayType	

May	be	present– if	
present	
spectralPCS	field	
shall	be	non‐zero	
in	profile	header	

spectralOverGra
yData	

'spcg'	
(73706367h)	

Spectral	values	
associated	with	
colour	overprinted	
on	gray	medium	
(see	12.2.5.2.12)	

uInt8Number

uInt16Number	

float16Number	

float32Number	

sparseMatrixArrayType	

May	be	present– if	
present	
spectralPCS	field	
shall	be	non‐zero	
in	profile	header	

tintValues	 'tint'	
(74696e74h)	

Tint	values	of	
Named	colour	(see	
12.2.5.2.13)	

uInt8Number

uInt16Number	

float32Number	

May	be	present

	

12.2.5.2 namedColorStructure	Tag	Member	Elements	

12.2.5.2.1 namedColorStucture	brdfColorimetric	Sub‐Tag	

Tag	signature:	‘bcol’	(62636f6ch)		

Permitted	tag	types:	multiProcessElementType		

The	namedColorStructure	brdfColorimetric	element	defines	a	transform	in	relationship	to	viewing	and	
lighting	angles.	Specifically,	it	describes	the	colour	transform	from	viewing	angle,	lighting	angle	and	Tint	
to	the	colorimetric‐based	PCS	specified	by	the	PCS	field	in	the	profile	header.		

ICC.2:2017	

©	ICC	2017–	All	rights	reserved	 185	

The	number	of	 input	 channels	 to	 the	multiProcessElementsType	based	 tag	 shall	 be	5.	The	order	 and	
encoding	 of	 the	 BRDF	 and	 device	 channels	 provided	 to	 the	 multiProcessElementType	 are	 shown	 in	
Table	138.	

Table	138	‐	brdf	Device	Channel	Encoding	

Input	
Channel	
Index	

Channel	Identification	 Encoding	Type	

0	 Viewing	azimuth	angle	Φr	 azimuthNumber	

1	 Viewing	zenith	angle	θr	 zenithNumber	

2	 Lighting	azimuth	angle	Φi	 azimuthNumber	

3	 Lighting	zenith	angle	θi	 zenithNumber	

4	 Tint	 	

		

The	domain	of	Tint	values	input	to	this	multiProcessElementType	based	tag	shall	include	the	tint	value	
of	 zero.	 There	 shall	 therefore	 be	 no	 reference	 or	 use	 of	 a	 brdfColorimetric	 subtag	 in	 the	
zeroTintStructure.	

	The	output	channels	are	defined	by	the	encoding	implied	by	the	PCS	field	in	the	profile	header.		

12.2.5.2.2 namedColorStructure	brdfColorimetricParameters	Sub‐Tag	

Tag	signature:	‘bcpr’	(62637072h)	

Permitted	tag	types:	tagStructType	of	type	brdfTransformStructure

The	 namedColorStructure	 brdfColorimetricParams	 element	 defines	 colorimetric	 BRDF	 parameters.	
Specifically,	 it	 specifies	 a	 transform	 from	 tint	 to	 colorimetric	 BRDF	 parameters.	 See	 12.2.1	 for	 a	
description	 of	 the	 brdfTransformStructure.	 A	 monochrome	 brdfTransformStructure	 shall	 use	 the	
pcsData	 sub‐tag	 as	 the	 source	 of	 PCS	 colour.	 A	 monochrome	 brdfTransformStructure	 shall	 not	 be	
encoded	in	the	profile	if	the	pcsData	sub‐tag	is	not	present.	

12.2.5.2.3 namedColorStructure	brdfSpectral	Sub‐tag	

Tag	signature:	‘bspc’	(62737063h)		

Permitted	tag	types:	multiProcessElementType		

The	 namedColorStructure	 brdfSpectral	 element	 defines	 a	 transform	 in	 relationship	 to	 viewing	 and	
lighting	 angles.	 Specifically,	 it	 describes	 the	 colour	 transform	 from	viewing	 angle,	 lighting	 angle,	 and	
Tint	to	the	spectrally‐based	PCS	specified	by	the	spectralPCS	field	in	the	profile	header.		

The	number	of	 input	 channels	 to	 the	multiProcessElementsType	based	 tag	 shall	 be	5.	The	order	 and	
encoding	 of	 the	 BRDF	 and	 device	 channels	 provided	 to	 the	 multiProcessElementType	 are	 shown	 in	
Table	138.	

The	domain	of	Tint	values	input	to	this	multiProcessElementType	based	tag	shall	include	the	tint	value	
of	zero.	There	shall	therefore	be	no	reference	or	use	of	a	brdfSpectral	sub‐tag	in	the	zeroTintStructure.	

ICC.2:2017	

186	 ©	ICC	2017	–	All	rights	reserved	

The	output	channels	are	defined	by	the	encoding	implied	by	the	spectralPCS	field	in	the	profile	header.		

12.2.5.2.4 namedColorStructure	brdfSpectralParams	Sub‐Tag	

Tag	signature:	‘bspr’	(62737072h)	

Permitted	tag	types:	tagStructType	of	type	brdfTransformStructure

The	namedColorStructure	brdSpectralfParams	element	defines	spectral	BRDF	parameters.	Specifically,	
it	 specifies	 a	 transform	 from	 tint	 to	 spectral	 BRDF	 parameters.	 See	 12.2.1	 for	 a	 description	 of	 the	
brdfTransformStructure.	A	monochrome	brdfTransformStructure	shall	use	the	spectralData	sub‐tag	as	
the	source	of	PCS	colour.	A	monochrome	brdfTransformStructure	shall	not	be	encoded	in	the	profile	if	
the	spectralData	sub‐tag	is	not	present.	

12.2.5.2.5 namedColorStructure	name	Sub‐tag	

Tag	element	signature:	'name'	(6e616d65h)	

Permitted	tag	element	types:	utf8Type	

Element	usage:	required	

The	namedColorStructure	name	element	contains	the	unique	name	of	the	colour	to	associate	with	the	
structure	data.		

12.2.5.2.6 namedColorStructure	localizedName	Sub‐tag	

Tag	element	signature:	'lcnm'	(6c636e6dh)	

Permitted	tag	element	types:	multiLocalizedUnicodeType	

Element	usage:	optional	

The	 namedColorStructure	 localizedName	 element	 contains	 the	 localized	 versions	 of	 the	 name	 of	 the	
colour	to	associate	with	the	structure	data	that	can	be	used	to	display	the	name	for	various	locales.		

12.2.5.2.7 namedColorStructure	deviceData	Sub‐tag	

Tag	element	signature:	'dev	'	(64657620h)	

Permitted	tag	element	types:	uInt8Number	or	uInt16Number,	float16Numbmer,	or		float32Number	

Element	usage:	optional	

The	namedColorStructure	deviceData	element	shall	contain	a	tint	array	of	device	values	for	each	non‐
zero	tint	used	to	produce	the	named	colour.	The	number	of	entries	in	the	deviceData	element	tag	shall	
agree	with	the	number	of	entries	implied	by	the	dataColorSpace	entry	in	the	profile	header	multiplied	
by	the	number	of	tints	being	defined.	If	no	tintValues	namedColorStructure	element	member	is	present	
then	tints	are	assumed	to	be	equally	spaced.	Otherwise,	tint	spacing	values	for	each	deviceData	vector	
are	 provided	 in	 the	 tintValues	 namedColorStructure	 element.	 Intermediate	 device	 tint	 values	 can	 be	
determined	using	linear	interpolation.	The	value	for	the	deviceData	zero	tint	is	defined	in	the	associated	
zeroTintStructure	 of	 first	 element	 of	 the	 containing	 tagArrayType.	 Linear	 interpolation	 is	 assumed	
between	the	zero	tint	(defined	 in	the	zeroTintStructure	deviceData	sub‐tag	 in	12.2.7.2.1)	and	the	first	
tint	vector	in	the	namedColorStructure	deviceData	Sub‐tag.	

ICC.2:2017	

©	ICC	2017–	All	rights	reserved	 187	

12.2.5.2.8 namedColorStructure	normalMap	Sub‐tag	

Tag	element	signature:	'nmap	'	(6e6d6170h)	

Permitted	tag	element	type:	embeddedNormalImageType	

Element	usage:	optional	

The	 namedColorStructure	 normalMap	 element	 provides	 a	 normal	map	 image	 that	 can	 be	 associated	
with	the	named	colour.	

12.2.5.2.9 namedColorStructure	pcsData	Sub‐tag	

Tag	element	signature:	'pcs	'	(70637320h)	

Permitted	tag	element	types:	uInt8Number,		uInt16Number,	float16Number,	or	float32Number	

Element	usage:	required	if	PCS	values	defined	in	profile	header	

The	namedColorStructure	pcsData	element	shall	contain	a	tint	array	of	pcs	values	for	each	non‐zero	tint	
used	to	produce	the	named	colour.	The	number	of	entries	in	the	pcsData	element	tag	shall	agree	with	
the	 number	 of	 entries	 implied	 by	 the	 pcsColorSpace	 entry	 in	 the	 profile	 header	 multiplied	 by	 the	
number	of	 tints	being	defined.	 If	no	 tintValues	namedColorStructure	element	member	 is	present	 then	
tints	 are	 assumed	 to	 be	 equally	 spaced.	 Otherwise,	 tint	 spacing	 values	 for	 each	 pcsData	 vector	 are	
provided	in	the	tintValues	namedColorStructure	(See	12.2.5.2.13)	element.	Intermediate	PCS	tint	values	
can	 be	 determined	 using	 linear	 interpolation.	 The	 value	 for	 the	 pcsData	 zero	 tint	 is	 defined	 in	 the	
associated	zeroTintStructure	of	the	containing	tagArrayType.	Linear	interpolation	is	assumed	between	
the	zero	tint	(defined	in	the	zeroTintStructure	pcsData	sub‐tag	in	12.2.7.2.2)	and	the	first	tint	vector	in	
the	namedColorStructure	pcsData	Sub‐tag.	

12.2.5.2.10 namedColorStructure	spectralData	Sub‐tag	

Tag	element	signature:	'spec'	(73706563h)	

Permitted	 tag	 element	 types:	 uInt8Number,	 uInt16Number,	 float16Number,	 float32Number,	 or	
sparseMatrixArrayType	

Element	usage:	required	if	spectralPCS	value	is	defined	in	profile	header	

The	 namedColorStructure	 spectralData	 element	 shall	 contain	 a	 tint	 array	 of	 spectral	 values	 for	 each	
non‐zero	tint	used	to	produce	the	named	colour.	If	the	spectralColorSpace	entry	in	the	profile	header	is	
a	 sparseMatrixReflectanceData	 colour	 space	 then	 the	 element	 type	 shall	 be	 sparseMatrixArrayType	
array.	Otherwise,	the	number	of	entries	in	the	spectralData	element	tag	shall	be	the	same	as	the	number	
of	 entries	 implied	by	 the	 spectralColorSpace	 entry	 in	 the	profile	header	multiplied	by	 the	number	of	
tints	being	defined.	If	no	tintValues	namedColorStructure	element	member	is	present	then	tints	shall	be	
assumed	 to	 be	 equally	 spaced.	 Otherwise,	 tint	 spacing	 values	 for	 each	 spectralData	 vector	 shall	 be	
provided	 in	 the	 tintValues	 namedColorStructure	 (See	12.2.5.2.13)	 element.	 Intermediate	 spectralData	
tint	values	can	be	determined	using	linear	interpolation.	The	value	for	the	pcsData	zero	tint	is	defined	in	
the	 associated	 zeroTintStructure	 of	 the	 containing	 tagArrayType.	 Linear	 interpolation	 is	 assumed	
between	the	zero	tint	(defined	in	the	zeroTintStructure	spectralData	sub‐tag	in	12.2.7.2.3)	and	the	first	
tint	vector	in	the	namedColorStructure	spectralData	Sub‐tag.	

ICC.2:2017	

188	 ©	ICC	2017	–	All	rights	reserved	

12.2.5.2.11 namedColorStructure	spectralOverBlackData	Sub‐tag	

Tag	element	signature:	'spcb'	(73706362h)	

Permitted	 tag	 element	 types:	 uInt8Number,	 	 uInt16Number,	 float16Number,	 float32Number,	 or	
sparseMatrixArrayType	

Element	usage:	option	–	when	used,	spectralPCS	value	shall	be	defined	in	profile	header	

The	namedColorStructure	 spectralOverBlackData	 element	 shall	 contain	 a	 tint	 array	of	 spectral	 values	
for	each	non‐zero	tint	used	to	produce	the	named	colour	over	a	black	medium.	If	the	spectralColorSpace	
entry	in	the	profile	header	is	a	sparseMatrixReflectanceData	colour	space	then	the	element	type	shall	be	
sparseMatrixArrayType	array.	Otherwise,	the	number	of	entries	in	the	spectralData	element	tag	shall	be	
the	 same	 as	 the	 number	 of	 entries	 implied	 by	 the	 spectralColorSpace	 entry	 in	 the	 profile	 header	
multiplied	by	the	number	of	tints	being	defined.	If	no	tintValues	namedColorStructure	element	member	
is	 present,	 then	 tints	 are	 assumed	 to	 be	 equally	 spaced.	 Otherwise,	 tint	 spacing	 values	 for	 each	
spectralOverBlackData	 vector	 are	 provided	 in	 the	 tintValues	 namedColorStructure	 (See	 12.2.5.2.13)	
element.	Intermediate	spectralOverBlackData	tint	values	can	be	determined	using	linear	interpolation.	
The	value	for	the	spectralOverBlackData	zero	tint	is	defined	in	the	associated	zeroTintStructure	of	the	
containing	 tagArrayType.	 Linear	 interpolation	 is	 assumed	 between	 the	 zero	 tint	 (defined	 in	 the	
zeroTintStructure	 spectralOverBlackData	 sub‐tag	 in	 12.2.7.2.4)	 and	 the	 first	 tint	 vector	 in	 the	
namedColorStructure	spectralOverBlackData	Sub‐tag.	

12.2.5.2.12 namedColorStructure	spectralOverGrayData	Sub‐tag	

Tag	element	signature:	'spcg'	(73706367h)	

Permitted	 tag	 element	 types:	 uInt8Number,	 	 uInt16Number,	 float16Number,	 float32Number,	 or	
sparseMatrixArrayType	

Element	usage:	option	–	when	used,	spectralPCS	value	shall	be	defined	in	profile	header	

The	namedColorStructure	spectralOverGrayData	element	shall	contain	a	tint	array	of	spectral	values	for	
each	non‐zero	tint	used	 to	produce	 the	named	colour	over	a	black	medium.	 If	 the	spectralColorSpace	
entry	in	the	profile	header	is	a	sparseMatrixReflectanceData	colour	space	then	the	element	type	shall	be	
sparseMatrixArrayType	array.	Otherwise,	the	number	of	entries	in	the	spectralData	element	tag	shall	be	
the	 same	 as	 the	 number	 of	 entries	 implied	 by	 the	 spectralColorSpace	 entry	 in	 the	 profile	 header	
multiplied	by	the	number	of	tints	being	defined.	If	no	tintValues	namedColorStructure	element	member	
is	 present,	 then	 tints	 are	 assumed	 to	 be	 equally	 spaced.	 Otherwise,	 tint	 spacing	 values	 for	 each	
spectralOverBlackData	 vector	 are	 provided	 in	 the	 tintValues	 namedColorStructure	 (See	 12.2.5.2.13)	
element.	 Intermediate	 spectralOverGrayData	 tint	values	 can	be	determined	using	 linear	 interpolation.	
The	value	 for	 the	spectralOverGrayData	 zero	 tint	 is	defined	 in	 the	associated	zeroTintStructure	of	 the	
containing	 tagArrayType.	 Linear	 interpolation	 is	 assumed	 between	 the	 zero	 tint	 (defined	 in	 the	
zeroTintStructure	 spectralOverGrayData	 sub‐tag	 in	 12.2.7.2.5)	 and	 the	 first	 tint	 vector	 in	 the	
namedColorStructure	spectralOverGrayData	sub‐tag.	

12.2.5.2.13 namedColorStructure	tintValues	Sub‐tag	

Tag	element	signature:	'tint'	(74696e74h)	

Permitted	tag	element	types:	uInt8Number	or	uInt16Number	or	float32Number	

ICC.2:2017	

©	ICC	2017–	All	rights	reserved	 189	

Element	usage:	optional	

The	namedColorStructure	tintValues	element	can	contain	an	array	of	tint	values	for	each	tint	defined	for	
a	 named	 colour.	 Each	 element	 in	 the	 array	 defines	 the	 associated	 tint	 value	 for	 each	 position	 in	 the	
vector	arrays	of	sub‐tag	elements	in	a	namedColorStructure.	

The	 number	 of	 values	 this	 array	 shall	 correspond	 to	 the	 number	 of	 vector	 entries	 in	 the	 deviceData	
(12.2.5.2.7),	 pcsData	 (12.2.5.2.9),	 spectralData	 (12.2.5.2.10)	 spectralOverBlackData	 (12.2.5.2.11),	 or	
spectralOverGrayData	 (12.2.5.2.12)	 sub‐tags	 (if	 they	 exist).	 If	 the	 namedColorStructure	 tintValues	
element	 is	 not	 present	 for	 a	 named	 colour	 then	 equal	 spacing	 of	 tint	 values	 is	 assumed	 for	 the	
deviceData,	pcsData,	spectralData,	spectralOverBlackData,	and	spectralOverGrayData	sub‐tags.	

The	tintValues	array	shall	be	a	monotonically	 increasing	array	that	represents	tint	values	for	the	 first	
non‐zero	tint	through	a	maximum	amount	of	the	named	colour.	The	named	colour	tint	can	ranging	from	
1	to	255	for	uInt8Number	encoding,	1	to	65	535	for	uInt16Number	encoding	or	greater	than	0,0	to	1,0	
for	float16Number	and	float32Number	encoding.	The	zero	tint	value	shall	be	defined	in	the	associated	
zeroTintStruct	of	the	containing	tagArrayType.		

 profileInfoStructure		

12.2.6.1 General	

Structure	Type	Identifier:	'pinf'	(70696e66h)	

The	 profileInfoStructure	 is	 used	 by	 the	 profileSequenceInfoTag	 (see	 9.2.102)	 which	 contains	 a	
tagArrayType	 of	 profileInfoStructure	 elements	 as	 a	 profileInfoArray	 (see	 13.2.2).	 Each	 entry	 in	 the	
array	contains	information	about	a	profile	used	in	a	sequence	of	profiles.	This	provides	a	description	of	
the	 profile	 sequence	 from	 source	 to	 destination,	 typically	 used	 with	 the	 DeviceLink	 profile.	 Each	
element	is	optional	and	each	has	an	assumed	value	defined	for	each	sub‐tag	if	not	present.	Table	139	
shows	publically‐defined	element	sub‐tag	members	of	a	profileInfoStructure.	Descriptions	for	each	sub‐
tag	member	can	be	found	in	12.2.6.2.	

Table	139	–	profileInfoStructure	element	tags	

Id	 Signature	 Description Tag	Type Use	

attributes	 'attr'	
(61747472h)	

Device	Attributes
(see	12.2.6.2.1)	

uInt64Number May	be	
present	

profileDesc	 'pdsc'	
(70647363h)	

Profile	Description	
(see	12.2.6.2.2)	

multiLocalizedUnicodeType	 May	be	
present	

profileID	 'pid	'	
(70696420h)	

Profile	ID	(see	
12.2.6.2.3)	

uInt8Number	array May	be	
present	

manufacturerDesc	 'dmnd	'	
(646d6e64h)	

Device	
Manufacturer	
Description	(see	
12.2.6.2.4)	

multiLocalizedUnicodeType	 May	be	
present	

manufacturerSig	 'dmns	'	
(646d6e73h)	

Device	
Manufacturer	
Signature	(see	

signatureType May	be	
present	

ICC.2:2017	

190	 ©	ICC	2017	–	All	rights	reserved	

12.2.6.2.5)

modelDesc	 'dmdd	'	
(646d6464h)	

Device	Model	
Description	(see	
12.2.6.2.6)	

multiLocalizedUnicodeType	 May	be	
present	

modelSig	 'mod	'	
(6d6f6420h)	

Device	Model	
Signature	(see	
12.2.6.2.7)	

signatureType May	be	
present	

renderTransform	 ‘rtrn’	
(7274726eh)	

Rendering	Intent	
Transform	Id	(see	
12.2.6.2.8)	

uInt32Number May	be	
present	

technology	 'tech'	
(74656368h)	

Device	Technology	
(see	12.2.6.2.9)	

signatureType May	be	
present	

	

12.2.6.2 profileInfoStructure	Tag	Member	Elements	

12.2.6.2.1 profileInfoStructure	attributes	Sub‐tag	

Tag	element	signature:	'attr'	(61747472h)	

Permitted	tag	element	types:	uInt64Number	

Element	usage:	optional	

The	profileInfoStructure	attributes	 element	 contains	 information	 from	 the	device	 attributes	 from	 the	
header	of	the	corresponding	profile.	Assumed	to	be	zero	if	element	is	not	present.	

12.2.6.2.2 profileInfoStructure	profileDesc	Sub‐tag	

Tag	element	signature:	'pdsc'	(70647363h)	

Permitted	tag	element	types:	multiLocalizedUnicodeType	

Element	usage:	optional	

The	 profileInfoStructure	profileDesc	 element	 contains	 the	 contents	 of	 the	 profileDescriptionTag	 from	
the	corresponding	profile.	If	element	not	present	then	an	empty	description	is	assumed.	

12.2.6.2.3 profileInfoStructure	profileID	Sub‐tag	

Tag	element	signature:	'pid	'	(70696420h)	

Permitted	tag	element	types:	uInt8Number	array	of	16	bytes	

Element	usage:	optional	

The	profileInfoStructure	profileID	element	contains	the	Profile	ID	from	the	header	of	the	corresponding	
profile.	 If	 the	corresponding	profile	 contains	a	Profile	 ID	 in	 the	Profile	Header,	 it	 shall	be	used	 in	 the	
Profile	Identifier	structure.	If	the	profile	does	not	contain	a	Profile	ID	in	the	Profile	Header,	then	either	
this	 element	 can	 be	 excluded,	 or	 an	 all‐zero	 Profile	 ID	 or	 a	 computed	 Profile	 ID	 shall	 be	 used.	 The	
ProfileID	is	assumed	to	be	zero	filled	if	the	element	is	not	present.	

ICC.2:2017	

©	ICC	2017–	All	rights	reserved	 191	

12.2.6.2.4 profileInfoStructure	manufacturerDesc	Sub‐tag	

Tag	element	signature:	'dmnd	'	(646d6e64h)	

Permitted	tag	element	types:	multiLocalizedUnicodeType	

Element	usage:	optional	

The	 profileInfoStructure	manufacturerDesc	 element	 contains	 contents	 of	 the	 deviceMfgDescTag	 from	
the	corresponding	profile.	If	the	element	not	present	then	an	empty	description	is	assumed.	

12.2.6.2.5 profileInfoStructure	manufacturerSig	Sub‐tag	

Tag	element	signature:	'dmns	'	(646d6e73h)	

Permitted	tag	element	types:	signatureType	

Element	usage:	optional	

The	profileInfoStructure	manufacturerSig	element	contains	information	from	the	device	model	from	the	
header	of	the	corresponding	profile.	Assumed	to	be	zero	if	the	element	is	not	present.		

12.2.6.2.6 profileInfoStructure	modelDesc	Sub‐tag	

Tag	element	signature:	'dmdd	'	(646d6464h)	

Permitted	tag	element	types:	multiLocalizedUnicodeType	

Element	usage:	optional	

The	profileInfoStructure	modelDesc	element	contains	the	contents	of	the	deviceModelDescTag	from	the	
corresponding	profile.	If	the	element	not	present	then	an	empty	description	shall	be	assumed.		

12.2.6.2.7 profileInfoStructure	modelSig	Sub‐tag	

Tag	element	signature:	'mod	'	(6d6f6420h)	

Permitted	tag	element	types:	signatureType	

Element	usage:	optional	

The	profileInfoStructure	modelSig	element	contains	information	from	the	device	model	from	the	header	
of	the	corresponding	profile.	Assumed	to	be	zero	if	the	element	is	not	present.		

12.2.6.2.8 profileInfoStructure	renderingTransform	Sub‐tag	

Tag	element	signature:	‘rtrn’	(7274726eh)	

Permitted	tag	element	types:	uInt32Number	

Element	usage:	optional	

The	 profileInfoStructure	 renderingIntent	 element	 defines	 the	 rendering	 intent	 transform	 from	 the	
corresponding	 profile	 that	 was	 used	 to	 establish	 the	 combined	 transform.	 The	 value	 of	 the	
uInt32Number	shall	be	one	of	the	values	in	Table	20.	

ICC.2:2017	

192	 ©	ICC	2017	–	All	rights	reserved	

If	 this	 sub‐tag	 is	 not	 present	 then	 the	 rendering	 intent	 transform	 shall	 be	 defined	 by	 the	 rendering	
intent	field	in	the	profile	header	(see	7.2.17).		

12.2.6.2.9 profileInfoStructure	technology	Sub‐tag	

Tag	element	signature:	'tech'	(74656368h)	

Permitted	tag	element	types:	signatureType	

Element	usage:	optional	

The	 profileInfoStructure	 technology	 element	 contains	 contents	 of	 the	 technologyTag	 from	 the	
corresponding	profile.	If	not	present,	then	a	zero	technology	signature	shall	be	assumed.	

 zeroTintStructure	

12.2.7.1 General	

Structure	Type	Identifier:	'tnt0'	(746e7430h)	

The	zeroTintStructure	is	used	by	the	namedColorTag	(see	9.2.57),	which	contains	a	namedColorArray	
(see	 13.2.1)	 defined	 as	 a	 tagArrayType	 with	 a	 single	 zeroTintStucture	 followed	 by	 additional	
namedColorStructure	 elements.	Table	 140	 shows	 publically	 defined	 element	 sub‐tag	 members	 of	 a	
zeroTintStructure.	Descriptions	for	each	sub‐tag	member	can	be	found	in	12.2.7.2.	

Table	140	–	zeroTintStructure	element	tags	

Id	 Signature	 Description Tag	Type Use	

deviceData	 'dev	'	
(64657620h)	

Device	values	used	
to	reproduce	zero	
tint	(see	12.2.7.2.1)	

uInt8Number

uInt16Number	

float16Number	

float32Number	

May	be	present

pcsData	 'pcs	'	
(70637320h)	

PCS	values	
associated	with	zero	
tint	(see	12.2.7.2.2)	

uInt8Number

uInt16Number	

float16Number	

float32Number	

Shall	be	present if	
PCS	field	is	non‐
zero	in	profile	
header	

spectralData	 'spec'	
(73706563h)	

Spectral	values	
associated	with	zero	
tint	(see	12.2.7.2.3)	

uInt8Number

uInt16Number	

float16Number	

float32Number	

sparseMatrixArrayType	

Shall	be	present if	
spectralPCS	field	
is	non‐zero	in	
profile	header	

spectralOverBla
ckData	

'spcb'	
(73706362h)	

Spectral	values	
associated	with	
colour	overprinted	
on	black	medium	
(see	12.2.7.2.4)	

uInt8Number

uInt16Number	

float16Number	

float32Number	

May	be	present– if	
present,		
spectralPCS	field	
shall	be	non‐zero	
in	profile	header	

ICC.2:2017	

©	ICC	2017–	All	rights	reserved	 193	

sparseMatrixArrayType

spectralOverGra
yData	

'spcg'	
(73706367h)	

Spectral	values	
associated	with	
colour	overprinted	
on	gray	medium	
(see	12.2.7.2.5)	

uInt8Number

uInt16Number	

float16Number	

float32Number	

sparseMatrixArrayType	

May	be	present– if	
present,		
spectralPCS	field	
shall	be	non‐zero	
in	profile	header	

	

12.2.7.2 zeroTintStructure	Tag	Member	Elements	

12.2.7.2.1 zeroTintStructure	deviceData	Sub‐tag		

Tag	element	signature:	'dev	'	(64657620h)	

Permitted	tag	element	types:	uInt8Number	or	uInt16Number,	float16Number	or	float32Number	

Element	usage:	optional	

The	zeroTintStructure	deviceData	element	shall	contain	an	array	of	device	sample	values	used	to	define	
the	zero	tint	used	to	estimate	named	colour	tints.	The	number	of	entries	in	the	deviceData	element	tag	
shall	agree	with	the	number	of	entries	implied	by	the	dataColorSpace	entry	in	the	profile	header.	Device	
tint	 values	 are	 determined	 using	 the	 deviceData	 sub‐tag	 element	 in	 the	 zeroTintStructure	 in	
combination	with	the	deviceData	sub‐tag	element	in	namedColorStruct	sub‐elements	(See	12.2.5.2.7).		

12.2.7.2.2 zeroTintStructure	pcsData	Sub‐tag		

Tag	element	signature:	'pcs	'	(70637320h)	

Permitted	tag	element	types:	uInt8Number	or	uInt16Number,	float16Number,	or	float32Number	

Element	usage:	required	if	PCS	values	defined	in	profile	header	

The	zeroTintStructure	pcsData	element	shall	contain	an	array	of	PCS	sample	values	used	to	define	the	
zero	tint	used	to	estimate	named	colour	tints.	The	number	of	entries	 in	the	pcsData	element	tag	shall	
agree	with	 the	 number	 of	 entries	 implied	 by	 the	 pcsColorSpace	 entry	 in	 the	 profile	 header.	 PCS	 tint	
values	are	determined	using	the	pcsData	sub‐tag	element	in	the	zeroTintStructure	in	combination	with	
the	pcsData	sub‐tag	element	in	namedColorStruct	sub‐elements	(See	12.2.5.2.9).	

12.2.7.2.3 zeroTintStructure	spectralData	Sub‐tag		

Tag	element	signature:	'spec'	(73706563h)	

Permitted	 tag	element	 types:	uInt8Number	or	uInt16Number	or	 float16number	or	 float32Number	or	
sparseMatrixArrayType	

Element	usage:	required	if	spectralPCS	value	is	defined	in	profile	header	

The	zeroTintStructure	 spectralData	 element	shall	 contain	 the	array	of	 spectral	 sample	values	used	 to	
define	the	zero	tint	used	to	estimate	named	colour	tints.	 If	 the	spectralColorSpace	entry	in	the	profile	
header	 is	 a	 sparseMatrixReflectanceData	 colour	 space	 then	 the	 element	 type	 shall	 be	
sparseMatrixArrayType.	Otherwise,	the	number	of	entries	in	the	spectralData	element	tag	shall	be	the	

ICC.2:2017	

194	 ©	ICC	2017	–	All	rights	reserved	

same	 as	 the	 number	 of	 entries	 implied	 by	 the	 spectralColorSpace	 entry	 in	 the	 profile	 header.	
SpectralPCS	tint	values	are	determined	using	the	spectralData	sub‐tag	element	in	the	zeroTintStructure	
in	 combination	 with	 the	 spectralData	 sub‐tag	 element	 in	 namedColorStruct	 sub‐elements	 (See	
12.2.5.2.10).	

12.2.7.2.4 zeroTintStructure	spectralOverBlackData	Sub‐tag		

Tag	element	signature:	'spcb'	(73706362h)	

Permitted	 tag	element	 types:	uInt8Number	or	uInt16Number	or	 float16number	or	 float32Number	or	
sparseMatrixArrayType	

Element	 usage:	 Optional	 –	 required	 when	 spectralOverBlackData	 sub‐tags	 are	 used	 in	 other	
namedColorStructures	in	the	namedColorArray.		

The	zeroTintStructure	spectralOverBlackData	element	shall	contain	the	array	of	spectral	sample	values	
used	to	define	the	zero	tint	used	to	estimate	named	colour	tints	over	a	black	medium.	When	this	tag	is	
used	the	spectralPCS	value	shall	be	defined	in	the	profile	header.	If	the	spectralColorSpace	entry	in	the	
profile	 header	 is	 a	 sparseMatrixReflectanceData	 colour	 space	 then	 the	 element	 type	 shall	 be	
sparseMatrixArrayType.	 Otherwise,	 the	 number	 of	 entries	 in	 the	 spectralOverBlackData	 element	 tag	
shall	agree	with	 the	number	of	entries	 implied	by	 the	spectralColorSpace	entry	 in	 the	profile	header.	
SpectralPCS	 tint	 values	 are	 determined	 using	 the	 spectralOverBlackData	 sub‐tag	 element	 in	 the	
zeroTintStructure	in	combination	with	the	spectralOverBlackData	sub‐tag	element	in	namedColorStruct	
sub‐elements	(See	12.2.5.2.11).	

12.2.7.2.5 zeroTintStructure	spectralOverGrayData	Sub‐tag		

Tag	element	signature:	'spcg'	(73706367h)	

Permitted	 tag	element	 types:	uInt8Number	or	uInt16Number	or	 float16number	or	 float32Number	or	
sparseMatrixArrayType	

Element	 usage:	 Optional	 –	 required	 when	 spectralOverGrayData	 sub‐tags	 are	 used	 in	 other	
namedColorStructures	in	the	namedColorArray.		

The	zeroTintStructure	spectralOverGrayData	element	shall	contain	the	array	of	spectral	sample	values	
used	to	define	the	zero	tint	used	to	estimate	named	colour	tints	over	a	black	medium.	When	this	tag	is	
used	the	spectralPCS	value	shall	be	defined	in	the	profile	header.	If	the	spectralColorSpace	entry	in	the	
profile	 header	 is	 a	 sparseMatrixReflectanceData	 colour	 space	 then	 the	 element	 type	 shall	 be	
sparseMatrix	 array.	 Otherwise,	 the	 number	 of	 entries	 in	 the	 spectralOverGrayData	 element	 tag	 shall	
agree	 with	 the	 number	 of	 entries	 implied	 by	 the	 spectralColorSpace	 entry	 in	 the	 profile	 header.	
SpectralPCS	 tint	 values	 are	 determined	 using	 the	 spectralOverGrayData	 sub‐tag	 element	 in	 the	
zeroTintStructure	in	combination	with	the	spectralOverGrayData	sub‐tag	element	in	namedColorStruct	
sub‐elements	(See	12.2.5.2.12).	

ICC.2:2017	

©	ICC	2017–	All	rights	reserved	 195	

13 Tag	Array	Type	definitions	

 General	

The	tagArrayType	provides	the	means	of	encoding	multiple	tag	elements	into	a	single	indexed	array	of	
contained	 sub‐tag	 elements.	 Each	 tagArrayType	 has	 an	 Array	 Type	 Identifier	 that	 shall	 be	 used	 to	
identify	the	possible	sub‐tag	elements	and	the	purposes	for	each	sub‐tag	element	in	the	array.		

The	 public	 tagArrayType	 array	 identifier	 types	 defined	 by	 the	 ICC	 are	 listed	 in	 12.2	 in	 alphabetical	
order.		

 Tag	Array	Intentifier	Type	listing	

 namedColorArray	

Array	Type	Identifier:	'ncol'	(6e636f6ch)	

A	 namedColorArray	 shall	 contain	 an	 array	 of	 zeroTintStruct	 and	 namedColorStruct	 elements.	
Information	related	to	a	named	colour	can	include	PCS	and	as	optional	device	representation	for	a	list	of	
named	 colours.	 The	 first	 element	 in	 the	 array	 shall	 be	 a	 zeroTintStruct	which	 corresponds	 to	 colour	
values	when	a	zero	tint	of	any	named	colour	is	used.	See	12.2.7	for	complete	description	of	contents	and	
usage	of	a	zeroTintStruct.	Succeeding	elements	shall	be	defined	as	a	namedColorStruct.	See	12.2.5	 for	
complete	description	of	contents	and	usage	of	a	namedColorStruct.		The	namedColorArray	is	utilized	by	
the	namedColorTag	(see	9.2.99).	

 profileInfoArray	

Array	Type	Identifier:	'pinf'	(70696e66h)	

A	 profileInfoArray	 shall	 contain	 an	 array	 of	 profileInfoStructure	 structures	 that	 each	 contain	
information	 about	 a	 single	 profile.	 The	 successive	 elements	 of	 the	 array	 provide	 a	 description	 of	 the	
successive	 profiles	 in	 a	 sequence	 from	 source	 to	 destination.	 A	 profileInfoArray	 is	 utilized	 by	 the	
profileSequenceInformationTag	(see	9.2.102)	which	is	is	typically	used	with	the	DeviceLink	profile.		See	
12.2.6	for	a	complete	description	of	contents	and	usage	of	a	profileInfoStructure.	

	

	

	 	

ICC.2:2017	

196	 ©	ICC	2017	–	All	rights	reserved	

Annex	A	(informative)	Elemental	calculations	and	Inter‐PCS	operations	

A.1 Elemental	Calculations	

A.1.1 General	Overview	

The	inter‐PCS	operations	are	described	in	Clause	A.2.	These	operations	use	the	elemental	calculations	
defined	 in	 Clause	 A.1	 to	 convert	 between	 the	 various	 supported	 PCS	 encodings.	 Nearly	 all	 of	 the	
operations	can	be	represented	as	a	 linear	matrix	operation	resulting	 in	 the	ability	 to	concatenate	 the	
calculations	used	in	performing	inter‐PCS	operations.	

The	process	of	converting	spectral	reflectance/transmission	to	tristimulus	(colorimetric)	values	can	be	
sub‐divided	into	transform	steps	from	incident	light	to	reflected/transmitted	light	to	observer/sensor	
capture	of	reflected/transmitted	light.	This	sub‐division	allows	for	both	resampling	of	spectral	data	to	
match	 illuminant	 and	 observer	 spectralRange	 requirements	 as	well	 as	 providing	 building	 blocks	 for	
constructing	conversions	between	the	various	types	of	spectral	PCS	data.	

A.1.2 Spectral	Resampling	

A	 spectralRange	 defines	 the	 start	 wavelength,	 end	 wavelength,	 and	 total	 number	 of	 equally‐spaced	
steps.	 Spectral	 reflectance,	 transmission,	 emission,	 radiance,	 as	 well	 as	 illuminant,	 and	 observer	 are	
specified	 using	 a	 spectral	 Range.	 The	 spectral	 Range	 for	 a	 fluorescent	 PCS	 defines	 both	 a	
spectralInputRange	as	well	as	a	spectralOutputRange.	

Spectral	operations	on	spectral	vector	data	require	that	the	spectralRanges	of	the	data	being	operated	
on	 are	 the	 same.	 When	 they	 are	 not	 the	 same,	 resampling	 is	 performed.	 Spectral	 resampling	 is	
performed	 using	 linear	 interpolation	 of	 input	 wavelengths	 for	 each	 resulting	 wavelength.	 When	 a	
wavelength	is	extended	on	either	end	of	the	range,	the	value	for	the	extension	is	defined	by	the	value	for	
the	wavelength	closest	to	the	extended	wavelength.	

This	approach	of	spectral	resampling	results	allows	resampling	to	be	performed	as	a	matrix	operation.	

The	 following	 example	 (greatly	 reduced	 for	 example	 purposes	 only)	 shows	 resampling	 of	 400nm	 to	
700nm	with	4	intervals	to	350nm	to	750nm	with	9	intervals:	

























































































nm

nm

nm

nm

nm

nm

nm

nm

nm

nm

nm

nm

nm

R

R

R

R

R

R

R

R

R

R

R

R

R

700

600

500

400

750

700

650

600

550

500

450

400

350

1000

1000

5.05.000

0100

05.05.00

0010

005.05.0

0001

0001

	 	 	 	 	 	 	 	 (A.1)

Where:	

‐Rλ	represents	the	spectral	value	(reflectance)	at	wavelength	λ.	

ICC.2:2017	

©	ICC	2017–	All	rights	reserved	 197	

This	method	of	spectral	resampling	can	be	applied	to	reflectance,	transmission,	emission,	radiance,	or	
irradiance	vectors.	

A.1.3 Reflectance/Transmission	to	Radiance/Emission	

The	 conversion	 of	 reflectance/transmission	 to	 radiance/emission	 represents	 incident	 light	 from	 an	
illuminant	 being	 reflected	 or	 transmitted	 by	 the	 object	 represented	 by	 the	 reflectance/transmission	
data.	 The	 conversion	 of	 a	 reflectance/transmission	 vector	 to	 a	 radiance/emission	 vector	 can	 be	
represented	as	the	scalar	product	of	a	reflectance/transmission	vector	and	a	vector	for	the	illuminant.		

This	 requires	 that	 the	 vectors	 for	 the	 illuminant	 and	 reflectance/transmission	 share	 the	 same	
scalarRange.		

This	conversion	is	represented	in	the	following	equation:	

 RSE  	 	 	 	 	 	 	 	 	 	 	 	 (A.2)	

Where:	

- Eλ represents radiance/emission at wavelength λ.
- Sλ represents illuminant emission at wavelength λ.
- Rλ represents reflectance/transmission at wavelength λ.

Alternatively	this	can	be	represented	with	the	following	matrix/vector	equation:	

Sre  		 	 	 	 	 	 	 	 	 	 	 	 (A.3)	

Where:	

 e	represents	the	resulting	radiance/emission	vector	

 S	represents	a	diagonal	matrix	containing	illuminant	emissions	

 r	represents	the	starting	reflectance/transmission	vector	

A.1.4 Fluorescence	to	Radiance/Emission	

The	conversion	of	fluorescence	to	emitted	radiance	represents	incident	light	from	an	illuminant	being	
reflected	 (or	 transmitted)	 with	 fluorescence	 by	 the	 object	 represented	 by	 the	 fluorescence	 data.	
Fluorescence	data	is	represented	by	a	Donaldson	matrix,	and	the	application	of	a	Donaldson	matrix	to	a	
vector	representing	the	illuminant	emission	results	in	a	vector	of	light	radiated	from	the	object.		

The	number	of	columns	corresponds	to	the	spectralRange	of	the	source	illuminant,	and	the	number	of	
rows	corresponds	to	the	spectralRange	of	the	resulting	radiance/emission.	

This	is	represented	by	the	following	matrix	equation:	

ICC.2:2017	

198	 ©	ICC	2017	–	All	rights	reserved	

















































































m

mnn

m

n S

S

S

DD

DD

E

E

E

:

.

...

...

:...:

.....

...

:

.

2

1

,1,

,11,12

1

	 	 	 	 	 	 	 (A.4)	

Where:	

 Sj	represents	the	starting	illuminant	emission	value	for	the	j‐th	wavelength.	

 Di,j	represents	the	i,j	th	element	of	the	Donaldson	matrix	with	dimension	n	x	m.	

 Ej	represents	the	resulting	radiance/emission	vector	for	the	i‐th	wavelength.	

A.1.5 Radiance/Emission	to	Reflection/Transmission	

The	 conversion	 of	 radiance/emission	 to	 reflectance/transmission	 represents	 the	 factoring	 out	 of	 the	
incident	 light	 from	 the	 light	 being	 reflected	 or	 transmitted	 by	 the	 object.	 The	 conversion	 of	 a	
radiance/emission	vector	to	a	reflectance/transmission	vector	can	be	represented	as	scalar	product	of	
a	reflectance/transmission	vector	and	a	vector	containing	reciprocals	of	the	illuminant	emission	values	
for	each	wavelength.	Because	a	reciprocal	of	the	source	illuminant	values	for	each	wavelength	is	used	
this	requires	that	the	source	illuminant	values	are	non‐zero.	If	any	of	the	source	illuminant	values	are	
zero	then	Reflectance/Transmission	cannot	be	determined.	

This	 requires	 that	 the	 vectors	 for	 the	 illuminant	 and	 reflectance/transmission	 share	 the	 same	
scalarRange.		

The	conversion	is	represented	in	the	following	equation:	




 E
S

R 









1
		 	 	 	 	 	 	 	 	 	 (A.5)	

Where:	

 Rλ	represents	reflectance	(or	transmittance)	at	wavelength	λ.	

 Sλ	represents	illuminant	power	at	wavelength	λ.	

 Eλ represents	emitted	radiance	at	wavelength	λ.	

	

Alternatively	this	can	be	represented	with	the	following	matrix/vector	equation:	

eSr 1 	

Where:	

 e	represents	the	emitted	radiance	vector	

ICC.2:2017	

©	ICC	2017–	All	rights	reserved	 199	

 S-1	represents	a	diagonal	matrix	containing	reciprocals	of	illuminant	power	

 r	represents	the	starting	reflectance	(or	transmittance)	vector	

A.1.6 Intensity	Radiance/Emission	to	XYZ	colorimetry	

The	conversion	of	radiance/emission	intensities	to	XYZ	colorimetry	represents	the	application	of	colour	
Matching	 Functions	 (CMF’s)	 to	 the	 radiance/emission	 data.	 This	 can	 be	 represented	 by	 applying	 a	
matrix	containing	the	CMF	to	a	vector	containing	the	radiance/emission	data.	The	resulting	tristimulus	
values	are	expressed	as	absolute	intensities	since	no	relative	white	point	is	taken	into	consideration.		

This	requires	 that	 the	spectralRange	of	 the	radiance/emission	data	matches	 the	spectral	 range	of	 the	
CMF.	

This	conversion	is	represented	by	the	following	equation:	
























































n

n

n

n

E

E

E

zzz

yyy

xxx

Z

Y

X

:

.

...

...

...

683
2

1

21

21

21

	 	 	 	 	 	 	 	 (A.6)	

Where:	

ix 	 iy 	 iz 	are	the	CMF	values	for	wavelength	i	

Ei	is	the	radiance	at	wavelength	i	

A.1.7 Relative	Radiance/Emission	to	XYZ	Colorimetry	

The	conversion	of	radiance/emission	to	XYZ	colorimetry	relative	 to	a	given	 illuminant	represents	 the	
application	 of	 an	 observer’s	 colour	 Matching	 Functions	 (CMF’s)	 to	 the	 radiance/emission	 data	 and	
factoring	 this	 by	 the	 Y	 tristimulus	 value	 of	 the	 illuminant.	 This	 can	 be	 represented	 by	 applying	 a	
normalization	 factor	 to	 the	 application	 of	 a	 matrix	 containing	 the	 CMF	 to	 a	 vector	 containing	 the	
radiance/emission	data.	The	resulting	tristimulus	values	are	expressed	as	absolute	intensities	since	no	
relative	white	point	is	taken	into	consideration.		

This	 requires	 that	 the	 spectralRange	 of	 both	 the	 radiance/emission	 data	 and	 the	 relative	 illuminant	
match	the	spectral	range	of	the	CMF.	

This	conversion	is	represented	by	the	following	equation:	
























































n

n

n

n

E

E

E

zzz

yyy

xxx

k

Z

Y

X

:

.

...

...

... 2

1

21

21

21

		 	 	 	 	 	 	 (A.7)	

With:		

ICC.2:2017	

200	 ©	ICC	2017	–	All	rights	reserved	

	

	

 Ei	the	emission	spectrum	at	wavelength	i ix 	 iy 	 iz 	are	the	CMF	values	for	wavelength	i	

 X, Y, Z	represent	resulting	tristimulus	values	

 k	is	a	normalizing	constant	for	the	relative	illuminant	(with	values	Ii	for	each	wavelength	i)	and	
CMF,	where	k	is	defined	by	the	following	equation:	

i

n

i
i Iyk 




1

	 	 	 	 	 	 	 	 	 	 	 	 (A.8)	

A.1.8 Absolute/Relative	Intent	Adjustments	

ICC	 colour	 management	 support	 two	 modes	 of	 operation	 defined	 by	 rendering	 intents.	 With	 the	
absolute	 intent	 PCS	 values	 directly	 correspond	 to	 measurement	 data.	 With	 the	 relative	 intent	 PCS	
values	correspond	to	measurement	values	 that	have	been	adjusted	relative	 to	 the	media	white	point.	
ICC	profiles	can	have	tags	that	provide	transforms	for	either	relative	or	absolute	or	both.		

Relative	 to	absolute	adjustment	 is	performed	by	applying	a	diagonal	matrix	containing	relative	white	
divided	by	absolute	white	values.	Absolute	to	relative	adjustment	is	performed	by	applying	a	diagonal	
matrix	containing	absolute	white	divided	by	relative	white	values.	

For	 a	 colorimetric	 PCS,	 the	 relative	 white	 values	 are	 defined	 as	 the	 CIEXYZ	 values	 found	 in	 the	
mediaWhitePoint	tag,	and	the	absolute	white	values	are	defined	by	the	CIEXYZ	values	for	the	illuminant	
relative	to	the	observer	used	for	the	colorimetric	PCS.	The	illuminant	and	observer	are	defined	by	the	
Profile	Connection	Conditions	that	describe	the	PCS	if	a	custom	colorimetric	PCS	is	used.	If	a	standard	
PCS	 is	 used,	 then	 the	 absolute	white	point	 is	 the	 colorimetry	of	 the	D50	 illuminant	 for	 the	CIE	1931	
Standard	2‐degree	observer.	

For	a	spectral	PCS,	the	relative	white	values	are	defined	as	vector	of	PCS	encoded	values	found	in	the	
contents	of	the	spectralWhitePoint	tag.	Absolute	white	values	for	a	spectral	PCS	are	dependent	on	the	
PCS	type:	

 For	either	a	reflective	or	transmissive	PCS	are	defined	as	vectors	containing	100%	
reflectance/transmission	for	all	wavelengths.		

 Absolute	white	values	are	defined	by	the	PCC	illuminant	in	the	case	of	emissive	PCS.		

 Absolute	white	values	are	not	defined	for	spectrofluorescent	based	PCS.	(Thus	relative/absolute	
conversions	are	not	possible	in	the	case	of	a	spectrofluorescent	PCS).	

Conversion	between	absolute	and	relative	data	is	performed	using	the	following	matrix	operation:	

ICC.2:2017	

©	ICC	2017–	All	rights	reserved	 201	































































NN A

A

A

W
W

W
W

W
W

R

R

R












2

1

NAbs,

NRel,

Abs,2

Rel,2

Abs,1

Rel,1

2

1

00

00

00

	 	 	 	 (A.9)	

Where:	

 Ai	is	the	ith	entry	of	an	absolute	PCS	coordinate	vector	(CIEX,	CIEY,	or	CIEZ	for	colorimetric	PCS;	or	
value	for	the	ith	wavelength	for	a	spectrally‐based	PCS).	

 WRel,i	is	the	ith	entry	of	the	relative	white	vector	(CIEX,	CIEY,	or	CIEZ	for	colorimetric	PCS;	or	value	
for	the	ith	wavelength	for	a	spectrally‐based	PCS).	

 WAbs,i	is	the	ith	entry	of	the	absolute	white	vector	(CIEX,	CIEY,	or	CIEZ	for	colorimetric	PCS;	or	value	
for	the	ith	wavelength	for	a	spectrally‐based	PCS).	

 Ri	is	the	ith	entry	of	a	relative	PCS	coordinate	vector	(CIEX,	CIEY,	or	CIEZ	for	colorimetric	PCS;	or	
value	for	the	ith	wavelength	for	a	spectrally‐based	PCS).	

Conversion	between	relative	and	absolute	date	is	performed	using	the	following	matrix	operation:	































































NN R

R

R

W
W

W
W

W
W

A

A

A












2

1

NRel,

NAbs,

Rel,2

Abs,2

Rel,1

Abs,1

2

1

00

00

00

	 	 	 	 (A.10)	

Where:	

 Ri	is	the	ith	entry	of	a	relative	PCS	coordinate	vector	(CIEX,	CIEY,	or	CIEZ	for	colorimetric	PCS;	or	
value	for	the	ith	wavelength	for	a	spectrally‐based	PCS).	

 WAbs,i	is	the	ith	entry	of	the	absolute	white	vector	(CIEX,	CIEY,	or	CIEZ	for	colorimetric	PCS;	or	value	
for	the	ith	wavelength	for	a	spectrally‐based	PCS).	

 WRel,i	is	the	ith	entry	of	the	relative	white	vector	(CIEX,	CIEY,	or	CIEZ	for	colorimetric	PCS;	or	value	
for	the	ith	wavelength	for	a	spectrally‐based	PCS).	

 Ai	is	the	ith	entry	of	an	absolute	PCS	coordinate	vector	(CIEX,	CIEY,	or	CIEZ	for	colorimetric	PCS;	or	
value	for	the	ith	wavelength	for	a	spectrally‐based	PCS).	

Absolute/Relative	 PCS	 conversions	 are	 not	 possible	 for	 spectrally‐based	 PCS	 operations	 when	 the	
either	 the	absolute	or	 relative	white	vector	 contains	values	of	 zero	 (which	can	happen	 in	 the	 case	of	
using	an	emission	based	PCS).	 In	 this	 case	 it	would	be	expected	 that	 a	 failure	would	occur	when	 the	
adjustment	transform	operations	are	initialized.	

A.1.9 Black	Point	Compensation	

Black	Point	Compensation	is	defined	as	a	Colorimetric	PCS	operation.	BPC	is	defined	in	ISO	18619.	

A.1.10 Luminance	Matching	

ICC.2:2017	

202	 ©	ICC	2017	–	All	rights	reserved	

The	ISO	15076‐1	standard	colorimetric	PCS	as	well	colorimetric	PCS	values	in	this	part	of	ISO	20677	are	
encoded	in	terms	of	normalized	tristimulus	values.		This	means	that	tristimulus	values	are	normalized	
to	 a	 reference	white,	which	 is	 assumed	 to	 be	 the	 adapted	white	 point.	 For	 a	 surface	 colour	 this	 is	 a	
perfect	white	diffuser	viewed	under	a	D50	illuminant,	for	a	display	it	is	the	assumed	white	point	(often	
the	 display	 white	 point),	 and	 in	 both	 cases	 the	 values	 are	 scaled	 so	 that	 the	 tristimulus	 Y	 of	 the	
reference	white	is	1,0.	(These	are	relative	tristimulus	values,	as	described	in	CIE.15.)	One	consequence	
of	this	normalization	is	that	differences	in	luminance	between	source	and	destination	are	not	accounted	
for	when	connecting	a	pair	of	profiles	using	a	colorimetric	PCS.		

In	 some	 cases	 it	may	 be	 desirable	 for	 the	 colour	management	 goal	 to	 take	 the	 actual	 luminances	 of	
source	and	destination	into	account,	and	this	can	be	accomplished	by	using	luminance	information	from	
the	profiles	to	provide	a	scaling	of	tristimulus	values	during	PCS	processing	by	the	CMM.	The	absolute	
photometric	 luminance	 in	 cd/m2	 can	 be	 provided	 in	 the	 CIE	 Y	 value	 of	 the	 illuminant	 field	 of	 the	
spectralViewingConditions	tag	(of	a	profile	based	on	this	part	of	 ISO	20677)	or	the	CIE	Y	value	of	 the	
luminanceTag	(of	a	profile	based	on	ISO	15076‐1).			When	such	tags	are	not	available	then	the	default	
luminance	of	160	cd/m2	(associated	with	 the	perceptual	PCS	defined	by	 ISO	15076‐1,	or	 the	standard	
viewing	condition	P2	specified	 for	graphic	arts	and	photography	 in	 ISO	3664)	can	be	used.	 	Additionally,	an	
override	 of	 a	 profile’s	 luminance	 can	 be	 provided	 by	 the	 CIE	 Y	 value	 of	 the	 illuminant	 field	 of	 the	
spectralViewingConditions	defined	by	alternate	Profile	Connection	Conditions		when	they	are	provided	
to	the	CMM	for	a	profile.	

When	luminance	matching	is	desired,	the	instructed	CMM	performs	a	Colorimetric	PCS	operation	that	
scales	the	tristimulus	values	by	the	ratio	of	the	luminance	associated	with	the	source	profile	divided	by	
the	luminance	associated	with	the	destination	profile.	

An	 important	 caution	 related	 to	 the	 use	 of	 luminance	 matching	 is	 that	 clipping	 may	 occur	 when	
tristimulus	 values	 are	 scaled	 outside	 the	 range	 that	 the	 destination	 profile	 is	 capable	 of	 adequately	
handling.	

A.2 Various	PCS	Operations	

Figure	A.1	provides	a	high	level	overview	of	various	PCS	operations	and	conversions.	When	two	profiles	
are	connected	only	one	ICC	In	and	one	ICC	out	connection	point	is	used	for	the	profiles.	The	location	of	
these	connection	points	are	determined	by	the	type	of	PCS	that	is	used	for	each	profile.	

ICC.2:2017	

©	ICC	2017–	All	rights	reserved	 203	

	

Figure	A.1	–	Spectral	and	colorimetric	PCS	operations	

	

A.3 Pseudo‐code	description	of	PCS	to	PCS	transformations	

A.3.1 Overview	

The	various	PCS	mapping	possibilities	are	outlined	in	Table	A.1.	

Table	A.1	–	Various	PCS	mapping	possibilities	

From	Lab	 From	XYZ	
From	
Reflectance	

From	
Transmittance/	
Transmissive	

From	
Radiant/	
Emission	

From	
Fluorescence

To	Lab	
Yes	

(A.3.2)	

Yes	

(A.3.4)	

Using	PCC

(A.3.6)	

Using	PCC

(A.3.11)	

Using	PCC	

(A.3.16)	

Using	PCC	

(A.3.21)	

To	XYZ	
Yes	

(A.3.3)	

Yes	

(A.3.5)	

Using	PCC

(A.3.7)	

Using	PCC

(A.3.12)	

Using	PCC	

(A.3.17)	

Using	PCC	

(A.3.22)	

To	Reflectance	 No	 No	
Yes	

(A.3.8)	

Yes	

(A.3.13)	

Extract	PCC	
illuminant	

(A.3.18)	

Apply	then	
extract	PCC	
illuminant	

(A.3.23)	

To	
Transmittance/	
Transmissive	

No	 No	
Yes	

(A.3.9)	

Yes	

(A.3.14)	

Use	PCC	
illuminant	

(A.3.19)	

Apply	then	
extract	PCC	
illuminant	

ICC.2:2017	

204	 ©	ICC	2017	–	All	rights	reserved	

(A.3.24)	

To	 Radiant	 /	
Emission	

No	 No	

Apply	PCC	
Illuminant	

(A.3.10)	

Apply	PCC	
illuminant	

(A.3.15)	

Yes	

(A.3.20)	

Apply	PCC	
illuminant	

(A.3.25)	

To	Fluorescence	 No	 No	 No	 No	 No	

Exact	match	
required	

(A.3.26)	

	

PCS	 processing	 uses	 Profile	 Connection	 Conditions	 to	 determine	 the	 transforms	 that	 are	 needed	 to	
convert	 between	 the	 various	 connections	 outlined	 in	 Table	 A.1.	 Each	 profile	 has	 profile	 connection	
conditions	that	are	made	up	of	colorimetric	and	spectral	PCS	information	from	the	profile	header	(see	
7.2),	 information	 from	 spectralViewingConditionsTag	 (see	 9.2.105),	 and	 transformations	 in	 the	
customToStandardPCCTag	(see	9.2.56)	and	standardToCustomPCCTag	(see	9.2.107).	PCC	information	is	
obtained	either	 from	the	profiles	 involved	 in	 the	 connection	or	 from	outside	sources	provided	 to	 the	
CMM.	

PCS	 connection	 transforms	 involving	a	 colorimetric	PCS	 (either	Lab	or	XYZ)	 are	generally	performed	
relative	 to	 the	 ISO	 15076‐1	 standard	 colorimetric	 PCS,	 which	 uses	 the	 CIE	 1931	 Standard	 2‐degree	
observer	with	a	D50	illuminant.	The	conversion	is	done	in	two	general	steps,	which	are	each	made	up	of	
sub‐steps.	The	first	general	step	converts	to	XYZ	values	for	the	standard	colorimetric	PCS.	The	second	
step	converts	 from	XYZ	values	 for	 the	standard	colorimetric	PCS.	However,	 the	standard	colorimetric	
PCS	is	not	needed	or	used	when	identical	colorimetric	PCS	usage	is	indicated	by	the	PCC	information	for	
both	sides	of	the	connection.	In	this	case	only	the	custom	colorimetric	PCS	is	used.	

For	 each	 of	 these	 general	 steps	 the	 sub‐steps	 used	 to	 define	 them	will	 involve	 zero	 or	more	 of	 the	
following	 steps:	 conversion	 to/from	 XYZ,	 potential	 application	 of	 absolute/relative	 white	 point	
adjustment,	 potential	 application	 of	 black	 point	 adjustment,	 conversion	 using	 the	 PCC	
customToStandardPCCTag,	or	conversion	using	the	standardToCustomPCCTag.	

PCS	 connection	 transforms	 involving	 spectrally‐based	PCS	 can	 involve	 resampling	with	 expansion	 or	
compression	of	 spectral	 information	by	wavelength	 to	match	observer,	 illuminant	definitions	defined	
by	 the	 relevant	 PCC	 or	 connection	 spectral	 sampling	 requirements	 between	 the	 two	 profiles.	
Additionally,	illuminant	information	is	applied	or	factored	out.	

When	connecting	a	spectrally‐based	PCS	 to	a	colorimetric	PCS	a	conversion	 to	colorimetry	 is	needed.	
First	the	conversion	to	colorimetry	is	performed	by	applying	the	source	PCC	observer	and	illuminant.	
Then	colorimetric	PCS	connection	is	performed	(as	if	the	source	PCS	was	colorimetric).	

NOTE	1		 Fluorescent	 PCS	 connection	 is	 different	 from	 other	 spectral	 PCS	 connection	 in	 that	 spectralRange	
conversion	 is	performed	on	the	 illuminant	(if	 it	doesn’t	match	the	 input	spectral	 input	range	of	 the	Fluorescent	
PCS.	This	 is	 due	 to	 the	difficulty	of	 resampling	Donaldson	matrices	 that	 correspond	 to	 the	 spectral	PCS.	Linear	
resampling	 of	 the	 illuminant	 is	 performed.	However,	 this	 is	 generally	 not	 advisable	 so	 it	 is	 recommended	 that	
workflows	be	set	up	to	use	an	illuminant	that	matches	the	spectral	input	range	of	the	fluorescent	PCS.		

ICC.2:2017	

©	ICC	2017–	All	rights	reserved	 205	

NOTE	2		 Most	of	the	PCS	operations	described	in	this	section	can	be	implemented	as	matrix	operations	that	can	
be	concatenated	for	performance	purposes.	

A.3.2 From	Lab	to	Lab	

The	following	pseudo‐code	describes	this	PCS	conversion:	

 XYZ = Convert_from_PCSLAB();
 If source relative/absolute intent and/or black point compensation adjustment is needed
 XYZ = Scale_and_shift(XYZ, …);
 Endif
 If sourcePCS != destinationPCS
 If sourcePCS != standardPCS
 XYZ = Apply_Tag(XYZ, source_PCC_customToStandardPCSTag);
 Endif
 If destinationPCS != standardPCS
 XYZ = Apply_Tag(XYZ, destination_PCC_standardToCustomPCSTag);
 Endif
 Endif

 If luminance matching is needed
 XYZ = Scale(XYZ, source_luminance / destination_luminance)
 Endif

 If destination relative/absolute intent and/or black point compensation adjustment is needed
 XYZ = Scale_and_shift(XYZ, …);
 Endif
 Convert_to_PCSLAB(XYZ);

A.3.3 From	Lab	to	XYZ	

The	following	pseudo‐code	describes	this	PCS	conversion:	

 XYZ = Convert_from_PCSLAB();
 If source relative/absolute intent and/or black point compensation adjustment is needed
 XYZ = Scale_and_shift(XYZ, …);
 Endif
 If sourcePCS != destinationPCS
 If sourcePCS != standardPCS
 XYZ = Apply_Tag(XYZ, source_PCC_customToStandardPCSTag);
 Endif
 If destinationPCS != standardPCS
 XYZ = Apply_Tag(XYZ, destination_PCC_standardToCustomPCSTag);
 Endif
 Endif

 If luminance matching is needed
 XYZ = Scale(XYZ, source_luminance / destination_luminance)
 Endif

 If destination relative/absolute intent and/or black point compensation adjustment is needed
 XYZ = Scale_and_shift(XYZ, …);
 Endif
 Convert_to_PCSXYZ(XYZ);

A.3.4 From	XYZ	to	Lab	

The	following	pseudo‐code	describes	this	PCS	conversion:	

 XYZ = Convert_from_PCSXYZ();
 If source relative/absolute intent and/or black point compensation adjustment is needed
 XYZ = Scale_and_shift(XYZ, …);
 Endif
 If sourcePCS != destinationPCS
 If sourcePCS != standardPCS
 XYZ = Apply_Tag(XYZ, source_PCC_customToStandardPCSTag);
 Endif
 If destinationPCS != standardPCS
 XYZ = Apply_Tag(XYZ, destination_PCC_standardToCustomPCSTag);
 Endif
 Endif

ICC.2:2017	

206	 ©	ICC	2017	–	All	rights	reserved	

 If luminance matching is needed
 XYZ = Scale(XYZ, source_luminance / destination_luminance)
 Endif

 If destination relative/absolute intent and/or black point compensation adjustment is needed
 XYZ = Scale_and_shift(XYZ, …);
 Endif
 Convert_to_PCSLAB(XYZ);

A.3.5 From	XYZ	to	XYZ	

The	following	pseudo‐code	describes	this	PCS	conversion:	

 XYZ = Convert_from_PCSXYZ();
 If source relative/absolute intent and/or black point compensation adjustment is needed
 XYZ = Scale_and_shift(XYZ, …);
 Endif
 If sourcePCS != destinationPCS
 If sourcePCS != standardPCS
 XYZ = Apply_Tag(XYZ, source_PCC_customToStandardPCSTag);
 Endif
 If destinationPCS != standardPCS
 XYZ = Apply_Tag(XYZ, destination_PCC_standardToCustomPCSTag);
 Endif
 Endif

 If luminance matching is needed
 XYZ = Scale(XYZ, source_luminance / destination_luminance)
 Endif

 If destination relative/absolute intent and/or black point compensation adjustment is needed
 XYZ = Scale_and_shift(XYZ, …);
 Endif
 Convert_to_PCSXYZ(XYZ);

A.3.6 From	Reflectance	to	Lab	

The	following	pseudo‐code	describes	this	PCS	conversion:	

 reflectance = Convert_from_PCS_Reflectance();

 If source relative/absolute adjustment is needed
 reflectance = Scale(reflectance, …);
 Endif

If spectralRange(reflectance) != spectralRange(source_PCC_illuminant)
 reflectance = Adjust_range(reflectance, spectralRange(source_PCC_illuminant));

Endif

radiance = Apply_illuminant(reflectance, source_PCC_illuminant);

If spectralRange(radiance) != spectralRange(source_PCC_observer)
 radiance = Adjust_range(radiance, spectralRange(source_PCC_observer));

Endif

XYZ = Apply_relative_observer(radiance, source_PCC_Observer, src_PCC_illuminant);

 If black point compensation adjustment is needed
 XYZ=Scale_and_shift(XYZ, ...);
 Endif

 If sourcePCC_PCS != destinationPCS
 If sourcePCS != standardPCS
 XYZ = Apply_Tag(XYZ, source_PCC_customToStandardPCSTag);
 Endif

 If destinationPCS != standardPCS
 XYZ = Apply_Tag(XYZ, destination_PCC_standardToCustomPCSTag);
 Endif
 Endif

ICC.2:2017	

©	ICC	2017–	All	rights	reserved	 207	

 If luminance matching is needed
 XYZ = Scale(XYZ, source_luminance / destination_luminance)

 If destination relative/absolute intent and/or black point compensation adjustment is needed
 XYZ = Scale_and_shift(XYZ, …);
 Endif

 Convert_to_PCSLAB(XYZ);

A.3.7 From	Reflectance	to	XYZ	

The	following	pseudo‐code	describes	this	PCS	conversion:	

 reflectance = Convert_from_PCS_Reflectance();

 If source relative/absolute adjustment is needed
 reflectance = Scale(reflectance, …);
 Endif

If spectralRange(reflectance) != spectralRange(source_PCC_illuminant)
 reflectance = Adjust_range(reflectance, spectralRange(source_PCC_illuminant));

Endif

radiance = Apply_illuminant(reflectance, source_PCC_illuminant);

If spectralRange(radiance) != spectralRange(source_PCC_observer)
 radiance = Adjust_range(radiance, spectralRange(source_PCC_observer));

Endif

XYZ = Apply_relative_observer(radiance, source_PCC_Observer, src_PCC_illuminant);

 If black point compensation adjustment is needed
 XYZ=Scale_and_shift(XYZ, ...);
 Endif

 If sourcePCC_PCS != destinationPCS
 If sourcePCS != standardPCS
 XYZ = Apply_Tag(XYZ, source_PCC_customToStandardPCSTag);
 Endif

 If destinationPCS != standardPCS
 XYZ = Apply_Tag(XYZ, destination_PCC_standardToCustomPCSTag);
 Endif
 Endif

 If luminance matching is needed
 XYZ = Scale(XYZ, source_luminance / destination_luminance)

 If destination relative/absolute intent and/or black point compensation adjustment is needed
 XYZ = Scale_and_shift(XYZ, …);
 Endif

 Convert_to_PCSXYZ(XYZ);

A.3.8 From	Reflectance	to	Reflectance	

The	following	pseudo‐code	describes	this	PCS	conversion:	

 reflectance = Convert_from_PCS_Reflectance();

 If source relative/absolute adjustment is needed
 reflectance = Scale(reflectance, …);
 Endif

If spectralRange(reflectance) != spectralRange(destination_PCS)
 reflectance = Adjust_range(reflectance, spectralRange(destination_PCS));

Endif

 If destination relative/absolute adjustment is needed
 reflectance = Scale(reflectance, …);
 Endif

ICC.2:2017	

208	 ©	ICC	2017	–	All	rights	reserved	

Convert_to_PCS_Reflectance(reflectance);

A.3.9 From	Reflectance	to	Transmittance	

The	following	pseudo‐code	describes	this	PCS	conversion:	

 reflectance = Convert_from_PCS_Reflectance();

 If source relative/absolute adjustment is needed
 reflectance = Scale(reflectance, …);
 Endif

If spectralRange(reflectance) != spectralRange(destination_PCS)
 reflectance = Adjust_range(reflectance, spectralRange(destination_PCS));

Endif

 If destination relative/absolute adjustment is needed
 reflectance = Scale(reflectance, …);
 Endif

 Convert_to_PCS_Transmittance(reflectance);

A.3.10 From	Reflectance	to	Radiance	

The	following	pseudo‐code	describes	this	PCS	conversion:	

 reflectance = Convert_from_PCS_Reflectance();

 If source relative/absolute adjustment is needed
 reflectance = Scale(reflectance, …);
 Endif

If spectralRange(reflectance) != spectralRange(source_PCC_illuminant)
 reflectance = Adjust_range(reflectance, spectralRange(source_PCC_illuminant));

Endif

radiance = ApplyIlluminant(reflectance, source_PCC_illuminant);

If spectralRange(radiance) != spectralRange(destination_PCS)
 radiance = Adjust_range(radiance, spectralRange(destination_PCS));

Endif

 If destination relative/absolute adjustment is needed
 radiance = Scale(radiance, …);
 Endif

 Convert_to_PCS_Radiance(radiance);

A.3.11 From	Transmittance	to	Lab	

The	following	pseudo‐code	describes	this	PCS	conversion:	

 transmittance = Convert_from_PCS_Transmittance();

 If source relative/absolute adjustment is needed
 transmittance = Scale(transmittance, …);
 Endif

If spectralRange(transmittance) != spectralRange(source_PCC_illuminant)
 transmittance = Adjust_range(transmittance, spectralRange(source_PCC_illuminant));

Endif

radiance = Apply_illuminant(transmittance, source_PCC_illuminant);

If spectralRange(radiance) != spectralRange(source_PCC_observer)
 radiance = Adjust_range(radiance, spectralRange(source_PCC_observer));

Endif

XYZ = Apply_relative_observer(radiance, source_PCC_Observer, src_PCC_illuminant);

ICC.2:2017	

©	ICC	2017–	All	rights	reserved	 209	

 If luminance matching is needed
 XYZ = Scale(XYZ, source_luminance / destination_luminance)
 Endif

 If black point compensation adjustment is needed
 XYZ=Scale_and_shift(XYZ, ...);
 Endif

 If sourcePCC_PCS != destinationPCS
 If sourcePCS != standardPCS
 XYZ = Apply_Tag(XYZ, source_PCC_customToStandardPCSTag);
 Endif

 If destinationPCS != standardPCS
 XYZ = Apply_Tag(XYZ, destination_PCC_standardToCustomPCSTag);
 Endif
 Endif

 If destination relative/absolute intent and/or black point compensation adjustment is needed
 XYZ = Scale_and_shift(XYZ, …);
 Endif

 Convert_to_PCSLab(XYZ);

A.3.12 From	Transmittance	to	XYZ	

The	following	pseudo‐code	describes	this	PCS	conversion:	

 transmittance = Convert_from_PCS_Transmittance();

 If source relative/absolute adjustment is needed
 transmittance = Scale(transmittance, …);
 Endif

If spectralRange(transmittance) != spectralRange(source_PCC_illuminant)
 transmittance = Adjust_range(transmittance, spectralRange(source_PCC_illuminant));

Endif

radiance = Apply_illuminant(transmittance, source_PCC_illuminant);

If spectralRange(radiance) != spectralRange(source_PCC_observer)
 radiance = Adjust_range(radiance, spectralRange(source_PCC_observer));

Endif

XYZ = Apply_relative_observer(radiance, source_PCC_Observer, src_PCC_illuminant);

 If black point compensation adjustment is needed
 XYZ=Scale_and_shift(XYZ, ...);
 Endif

 If sourcePCC_PCS != destinationPCS
 If sourcePCS != standardPCS
 XYZ = Apply_Tag(XYZ, source_PCC_customToStandardPCSTag);
 Endif

 If destinationPCS != standardPCS
 XYZ = Apply_Tag(XYZ, destination_PCC_standardToCustomPCSTag);
 Endif
 Endif

 If luminance matching is needed
 XYZ = Scale(XYZ, source_luminance / destination_luminance)
 Endif

 If destination relative/absolute intent and/or black point compensation adjustment is needed
 XYZ = Scale_and_shift(XYZ, …);
 Endif

 Convert_to_PCSLab(XYZ);

A.3.13 From	Transmittance	to	Reflectance	

The	following	pseudo‐code	describes	this	PCS	conversion:	

ICC.2:2017	

210	 ©	ICC	2017	–	All	rights	reserved	

 transmittance = Convert_from_PCS_Transmittance();

 If source relative/absolute adjustment is needed
 transmittance = Scale(transmittance, …);
 Endif

If spectralRange(transmittance) != spectralRange(destination_PCS)
 transmittance = Adjust_range(transmittance, spectralRange(destination_PCS));

Endif

 If destination relative/absolute adjustment is needed
 transmittance = Scale(transmittance, …);
 Endif

Convert_to_PCS_Reflectance(transmittance);

A.3.14 From	Transmittance	to	Transmittance	

The	following	pseudo‐code	describes	this	PCS	conversion:	

 transmittance = Convert_from_PCS_Transmittance();

 If source relative/absolute adjustment is needed
 transmittance = Scale(transmittance, …);
 Endif

If spectralRange(transmittance) != spectralRange(destination_PCS)
 transmittance = Adjust_range(transmittance, spectralRange(destination_PCS));

Endif

 If destination relative/absolute adjustment is needed
 transmittance = Scale(transmittance, …);
 Endif

Convert_to_PCS_Transmittance(transmittance);

A.3.15 From	Transmittance	to	Radiance	

The	following	pseudo‐code	describes	this	PCS	conversion:	

 transmittance = Convert_from_PCS_Reflectance();

 If source relative/absolute adjustment is needed
 transmittance = Scale(transmittance, …);
 Endif

If spectralRange(transmittance) != spectralRange(source_PCC_illuminant)
 transmittance = Adjust_range(transmittance, spectralRange(source_PCC_illuminant));

Endif

radiance = ApplyIlluminant(transmittance, source_PCC_illuminant);

If spectralRange(radiance) != spectralRange(destination_PCS)
 radiance = Adjust_range(radiance, spectralRange(destination_PCS));

Endif

 If destination relative/absolute adjustment is needed
 radiance = Scale(radiance, …);
 Endif

 Convert_to_PCS_Radiance(radiance);

A.3.16 From	Radiance	to	Lab	

The	following	pseudo‐code	describes	this	PCS	conversion:	

 radiance = Convert_from_PCS_Radiance();

 If source relative/absolute adjustment is needed
 radiance = Scale(radiance, …);

ICC.2:2017	

©	ICC	2017–	All	rights	reserved	 211	

 Endif

If spectralRange(radiance) != spectralRange(source_PCC_observer)
 radiance = Adjust_range(radiance, spectralRange(source_PCC_observer));

Endif

XYZ = Apply_intensity_observer(radiance, source_PCC_Observer);

 If black point compensation adjustment is needed
 XYZ=Scale_and_shift(XYZ, ...);
 Endif

 If sourcePCC_PCS != destinationPCS
 If sourcePCS != standardPCS
 XYZ = Apply_Tag(XYZ, source_PCC_customToStandardPCSTag);
 Endif

 If destinationPCS != standardPCS
 XYZ = Apply_Tag(XYZ, destination_PCC_standardToCustomPCSTag);
 Endif
 Endif

 If luminance matching is needed
 XYZ = Scale(XYZ, source_luminance / destination_luminance)
 Endif

 If destination relative/absolute intent and/or black point compensation adjustment is needed
 XYZ = Scale_and_shift(XYZ, …);
 Endif

 Convert_to_PCSLAB(XYZ);

A.3.17 From	Radiance	to	XYZ	

The	following	pseudo‐code	describes	this	PCS	conversion:	

 radiance = Convert_from_PCS_Radiance();

 If source relative/absolute adjustment is needed
 radiance = Scale(radiance, …);
 Endif

If spectralRange(radiance) != spectralRange(source_PCC_observer)
 radiance = Adjust_range(radiance, spectralRange(source_PCC_observer));

Endif

XYZ = Apply_intensity_observer(radiance, source_PCC_Observer);

 If black point compensation adjustment is needed
 XYZ=Scale_and_shift(XYZ, ...);
 Endif

 If sourcePCC_PCS != destinationPCS
 If sourcePCS != standardPCS
 XYZ = Apply_Tag(XYZ, source_PCC_customToStandardPCSTag);
 Endif

 If destinationPCS != standardPCS
 XYZ = Apply_Tag(XYZ, destination_PCC_standardToCustomPCSTag);
 Endif
 Endif

 If luminance matching is needed
 XYZ = Scale(XYZ, source_luminance / destination_luminance)
 Endif

 If destination relative/absolute intent and/or black point compensation adjustment is needed
 XYZ = Scale_and_shift(XYZ, …);
 Endif

 Convert_to_PCSXYZ(XYZ);

A.3.18 From	Radiance	to	Reflectance	

ICC.2:2017	

212	 ©	ICC	2017	–	All	rights	reserved	

The	following	pseudo‐code	describes	this	PCS	conversion:	

 radiance = Convert_from_PCS_Radiance();

 If source relative/absolute adjustment is needed
 radiance = Scale(radiance, …);
 Endif

If spectralRange(radiance) != spectralRange(source_PCC_illuminant)
 radiance = Adjust_range(radiance, spectralRange(source_PCC_illuminant));

Endif

reflectance = FactorOutIlluminant(radiance, source_PCC_illuminant);

If spectralRange(reflectance) != spectralRange(destination_PCS)
 reflectance = Adjust_range(reflectance, spectralRange(destination_PCS));

Endif

 If destination relative/absolute adjustment is needed
 reflectance = Scale(reflectance, …);
 Endif

Convert_to_PCS_Reflectance(reflectance);

A.3.19 From	Radiance	to	Transmittance	

The	following	pseudo‐code	describes	this	PCS	conversion:	

 radiance = Convert_from_PCS_Radiance();

 If source relative/absolute adjustment is needed
 radiance = Scale(radiance, …);
 Endif

If spectralRange(radiance) != spectralRange(source_PCC_illuminant)
 radiance = Adjust_range(radiance, spectralRange(source_PCC_illuminant));

Endif

transmittance = FactorOutIlluminant(radiance, source_PCC_illuminant);

 If spectralRange(transmittance) != spectralRange(destination_PCS)
 transmittance = Adjust_range(transmittance, spectralRange(destination_PCS));

Endif

 If destination relative/absolute adjustment is needed
 transmittance = Scale(transmittance, …);
 Endif

 Convert_to_PCS_Transmittance(transmittance);

A.3.20 From	Radiance	to	Radiance	

The	following	pseudo‐code	describes	this	PCS	conversion:	

 radiance = Convert_from_PCS_Radiance();

 If source relative/absolute adjustment is needed
 radiance = Scale(radiance, …);
 Endif

If spectralRange(radiance) != spectralRange(destination_PCS)
 radiance = Adjust_range(radiance, spectralRange(destination_PCS));

Endif

 If destination relative/absolute adjustment is needed
 radiance = Scale(radiance, …);
 Endif

Convert_to_PCS_Radiance(radiance);

ICC.2:2017	

©	ICC	2017–	All	rights	reserved	 213	

A.3.21 From	Fluorescence	to	Lab	

The	following	pseudo‐code	describes	this	PCS	conversion:	

 fluorescence = Convert_from_PCS_Fluorescence();

 illuminant = source_PCC_illuminant

If spectralInputRange(fluorescence) != spectralRange(source_PCC_illuminant)
 illuminant = Adjust_range(source_PCC_illuminant, spectralInputRange(fluorescence));

Endif

radiance = Apply_Donaldson_matrix(fluorescence, illuminant);

If spectralRange(radiance) != spectralRange(source_PCC_observer)
 radiance = Adjust_range(radiance, spectralRange(source_PCC_observer));

Endif

illuminant2 = Adjust_range(illuminant, spectralOutputRange(fluorescence));
If (spectralRange(illuminant2) != spectralRange(source_PCC_observer)

 illuminant2 = Adjust_range(illuminant2, spectralRange(source_PCC_observer);
Endif

XYZ = Apply_relative_observer(radiance, source_PCC_Observer, illuminant2);

 If source relative/absolute intent and/or black point compensation adjustment is needed
 XYZ=Scale_and_shift(XYZ, ...);
 Endif

 If sourcePCC_PCS != destinationPCS
 If sourcePCS != standardPCS
 XYZ = Apply_Tag(XYZ, source_PCC_customToStandardPCSTag);
 Endif

 If destinationPCS != standardPCS
 XYZ = Apply_Tag(XYZ, destination_PCC_standardToCustomPCSTag);
 Endif
 Endif

 If luminance matching is needed
 XYZ = Scale(XYZ, source_luminance / destination_luminance)
 Endif

 If destination relative/absolute intent and/or black point compensation adjustment is needed
 XYZ = Scale_and_shift(XYZ, …);
 Endif

 Convert_to_PCSLab(XYZ);

A.3.22 From	Fluorescence	to	XYZ	

The	following	pseudo‐code	describes	this	PCS	conversion:	

 fluorescence = Convert_from_PCS_Fluorescence();

 illuminant = source_PCC_illuminant

If spectralInputRange(fluorescence) != spectralRange(source_PCC_illuminant)
 illuminant = Adjust_range(source_PCC_illuminant, spectralInputRange(fluorescence));

Endif

radiance = Apply_Donaldson_matrix(fluorescence, illuminant);

If spectralRange(radiance) != spectralRange(source_PCC_observer)
 radiance = Adjust_range(radiance, spectralRange(source_PCC_observer));

Endif

illuminant2 = Adjust_range(illuminant, spectralOutputRange(fluorescence));
If (spectralRange(illuminant2) != spectralRange(source_PCC_observer)

 illuminant2 = Adjust_range(illuminant2, spectralRange(source_PCC_observer);
Endif

XYZ = Apply_relative_observer(radiance, source_PCC_Observer, illuminant2);

 If source relative/absolute intent and/or black point compensation adjustment is needed

ICC.2:2017	

214	 ©	ICC	2017	–	All	rights	reserved	

 XYZ=Scale_and_shift(XYZ, ...);
 Endif

 If sourcePCC_PCS != destinationPCS
 If sourcePCS != standardPCS
 XYZ = Apply_Tag(XYZ, source_PCC_customToStandardPCSTag);
 Endif

 If destinationPCS != standardPCS
 XYZ = Apply_Tag(XYZ, destination_PCC_standardToCustomPCSTag);
 Endif
 Endif

 If luminance matching is needed
 XYZ = Scale(XYZ, source_luminance / destination_luminance)
 Endif

 If destination relative/absolute intent and/or black point compensation adjustment is needed
 XYZ = Scale_and_shift(XYZ, …);
 Endif

 Convert_to_PCSXYZ(XYZ);

A.3.23 From	Fluorescence	to	Reflectance	

The	following	pseudo‐code	describes	this	PCS	conversion:	

 fluorescence = Convert_from_PCS_Fluorescence();

 illuminant = source_PCC_illuminant

If spectralInputRange(fluorescence) != spectralRange(source_PCC_illuminant)
 illuminant = Adjust_range(source_PCC_illuminant, spectralInputRange(fluorescence));

Endif

radiance = Apply_Donaldson_matrix(fluorescence, illuminant);

If spectralRange(radiance) != spectralRange(source_PCC_illuminant)
 radiance = Adjust_range(radiance, spectralRange(source_PCC_illuminant));

Endif

reflectance = FactorOutIlluminant(radiance, source_PCC_illuminant);

If spectralRange(reflectance) != spectralRange(destination_PCS)
 reflectance = Adjust_range(reflectance, spectralRange(destination_PCS));

Endif

 If luminance matching is needed
 XYZ = Scale(XYZ, source_luminance / destination_luminance)
 Endif

 If destination relative/absolute adjustment is needed
 reflectance = Scale(reflectance, …);
 Endif

 Convert_to_PCS_Reflectance(reflectance);

A.3.24 From	Fluorescence	tor	Transmitance	

The	following	pseudo‐code	describes	this	PCS	conversion:	

 fluorescence = Convert_from_PCS_Fluorescence();

 illuminant = source_PCC_illuminant

If spectralInputRange(fluorescence) != spectralRange(source_PCC_illuminant)
 illuminant = Adjust_range(source_PCC_illuminant, spectralInputRange(fluorescence));

Endif

radiance = Apply_Donaldson_matrix(fluorescence, illuminant);

If spectralRange(radiance) != spectralRange(source_PCC_illuminant)
 radiance = Adjust_range(radiance, spectralRange(source_PCC_illuminant));

Endif

ICC.2:2017	

©	ICC	2017–	All	rights	reserved	 215	

transmittance = FactorOutIlluminant(radiance, source_PCC_illuminant);

If spectralRange(transmittance) != spectralRange(destination_PCS)

 transmittance = Adjust_range(transmittance, spectralRange(destination_PCS));
Endif

 If luminance matching is needed
 XYZ = Scale(XYZ, source_luminance / destination_luminance)
 Endif

 If destination relative/absolute adjustment is needed
 transmittance = Scale(transmittance, …);
 Endif

 Convert_to_PCS_Transmittance(transmittance);

A.3.25 From	Fluorescence	to	Radiance	

The	following	pseudo‐code	describes	this	PCS	conversion:	

 fluorescence = Convert_from_PCS_Fluorescence();

 illuminant = source_PCC_illuminant

If spectralInputRange(fluorescence) != spectralRange(source_PCC_illuminant)
 illuminant = Adjust_range(source_PCC_illuminant, spectralInputRange(fluorescence));

Endif

radiance = Apply_Donaldson_matrix(fluorescence, illuminant);

If spectralRange(radiance) != spectralRange(destination_PCS)
 radiance = Adjust_range(radiance, spectralRange(destination_PCS));

Endif

 If luminance matching is needed
 XYZ = Scale(XYZ, source_luminance / destination_luminance)
 Endif

 If destination relative/absolute adjustment is needed
 radiance = Scale(radiance, …);
 Endif

 Convert_to_PCS_Radiance(radiance);

A.3.26 From	Fluorescence	to	Fluorescence	

No	 conversion	 is	 made.	 The	 connection	 is	 only	 valid	 if	 spectralFluorescentRange(source_PCS)	 is	 the	
same	as	the	spectralFluorescentRange(destination_PCS).	

	 	

ICC.2:2017	

216	 ©	ICC	2017	–	All	rights	reserved	

Annex	B	(informative)	Gamut	Boundary	Description	

B.1 Introduction	

The	Gamut	Boundary	Description	tag	introduces	a	precise	method	of	describing	a	gamut	boundary.	The	
Gamut	Boundary	description	describes	the	gamut	boundary	as	a	collection	of	3D	vertices	and	faces.		

The	Gamut	Boundary	Description	tag	can	be	used	to	individually	describe	the	gamut	boundaries	for	the	
different	rendering	intents.	For	the	perceptual	intent,	the	actual	reference	medium	gamut	that	is	used	
can	be	encoded.	Separate	gamut	boundaries	for	relative	and	absolute	intents	are	permitted	because	the	
floating‐point	tags	permit	separate	transforms.		

The	gamut	boundary	description	 is	 composed	of	 a	 set	of	vertices	and	 faces.	The	vertices	contain	PCS	
values	and	optional	device	values.	The	faces	are	described	by	a	set	of	vertex	IDs.	Useful	gamut	boundary	
attributes	such	as	edges	and	surface	normals	can	be	computed	from	the	vertices	and	faces.	

If	the	gamut	boundary	description	includes	device	values,	then	the	gamut	boundary	description	can	be	
used	to	transform	values	from	PCS	to	device	values.	

B.2 Computing	the	entries	in	a	Gamut	Boundary	Descriptor	Tag:	

To	compute	the	faces	and	vertices	for	the	gbd	tag	for	a	given	rendering	intent	the	following	procedure	
can	be	used:	

 Generate	a	set	of	device	coordinates	on	the	gamut	boundary	of	the	encoding.	These	coordinates	
are	 arranged	 so	 that	 the	 ratio	 of	 the	 relative	 colorant	 amounts	 varies	 in	 the	 horizontal	
direction,	and	the	total	colorant	amount	varies	in	the	vertical	direction.	(An	example	image	is	
given	by	Green	in	[11]).	The	white	point	and	black	point	shall	be	repeated	across	the	first	and	
last	rows	in	the	coordinate	array.	

 Using	the	AToBx	LUT	for	the	rendering	intent,	convert	the	device	coordinates	in	1	to	the	PCS.	

 If	 the	AToBx	LUT	 contains	more	 than	3	 input	 channels,	 convert	 the	PCS	 coordinates	 back	 to	
device	coordinates	using	the	BToAx	LUT	and	then	back	to	PCS	coordinates,	in	both	cases	using	
the	selected	rendering	intent.	

 The	data	from	step	2	(or	3)	is	read	row‐wise	and	arranged	as	a	n*m	x3	array	to	form	the	vertex	
array.		

 To	construct	the	face	array	for	this	data,	start	with	the	upper	left	device	coordinate	and	move	
clockwise	to	the	two	coordinates	in	the	next	row,	as	shown	in	Figure	B.1.	The	first	row	of	the	
faces	 list	 is	 therefore	 [1,	m+2,	m+1]	where	m	 is	 the	number	of	coordinates	 in	 the	mxn	set	of	
device	coordinates.	The	next	row	in	the	faces	list	is	[1,	2,	m+1].	Continue	to	move	through	the	
device	coordinates	until	the	face	list	is	fully	populated	with	one	row	per	face.	

The	following	Matlab	code	can	be	used	to	generate	a	face	array	for	an	nxm	array	of	device	coordinates:	

% facemat array offsets
q=zeros(m,3);
t=(0:n-1)*m;
H=zeros(m*(n-1),3);
for i=1:n-1

ICC.2:2017	

©	ICC	2017–	All	rights	reserved	 217	

 H((i-1)*m+1 :m*i,:)=q+t(i);
end

% left triangles facemat array
L=(1:m)';M=[(m+2):(m+m),m+1]';N=((m+1):m+m)';
LMN=[L,M,N];
R=repmat(LMN,n-1,1);
facematL=R+H;

% right triangles facemat array
O=(1:m)';Q=[2:m,1]';S=[(m+2):(m+m),m+1]';
OQS=[O,Q,S];
T=repmat(OQS,n-1,1);
facematR=T+H;
faces=[facematL;facematR];

B.3 Gamut	mapping	

Gamut	mapping	 can	 be	 performed	 using	 the	 data	 defined	 in	 a	 gamut	 boundary	 description	 tag.	 For	
Colorimetric	rendering	intents,	the	mapping	is	essentially	a	clipping	of	all	out‐of‐gamut	coordinates	to	
the	boundary	of	the	destination	gamut.	For	Perceptual	and	Saturation	intents,	the	mapping	can	involve	
a	 compression	 from	 source	 to	 destination	 gamut	 so	 that	 clipping	 artefacts	 are	 avoided.	A	 number	 of	
algorithms	have	been	defined	for	both	clipping	and	compression.	Below	some	operations	using	a	gamut	
boundary	descriptor	based	on	a	list	of	vertices	and	faces	is	described.	

To	compress	a	coordinate	to	the	surface	of	a	gamut,	it	is	moved	towards	a	point	on	the	achromatic	axis	
by	 an	 amount	 determined	 by	 the	 distance	 between	 the	 coordinate,	 the	 gamut	 surface	 and	 the	
achromatic	axis,	and	the	selected	compression	function.	

In	order	to	find	the	point	on	the	gamut	surface	that	a	given	coordinate	maps	to,	it	is	necessary	to	find	
the	point	of	 intersection	between	the	plane	on	which	a	 face	 lies	and	a	vector	representing	the	 line	of	
clipping	or	compression	 from	the	point	being	mapped.	 It	 is	 then	necessary	to	determine	whether	 the	
intersection	 lies	 inside	 the	 face.	This	process	 is	 iterated	 for	 all	 the	 faces	 in	 the	 face	 list,	 and	 the	 face	
intersection	closest	to	the	point	being	mapped	is	selected.	Finally,	the	compression	function	is	applied.	

B.3.1 Intersection	between	vector	and	plane	

Given	the	three	vertices	of	a	face,	the	plane	equation	is	

knnnzyx zyx ],,[],,[(B.1)	

where	N	is	the	normal	to	the	plane:	

   2321 PPPPN  	 	 	 	 	 	 	 	 	 	 (B.2)	

and	 	 	 	 	 	 	 	 	 	 	 	 	 (B.3)	

	 1NPk 

ICC.2:2017	

218	 ©	ICC	2017	–	All	rights	reserved	

The	mapping	vector	L	intersects	the	plane	P	at	point	S	in	3D	space.	

 
 

 121

12

11

LLtLS

LLN

LPN
t








	 	 	 	 	 	 	 	 	 	 	 (B.4)	

B.3.2 Determine	if	an	intersection	between	line	and	face	lies	inside	a	face.	

The	intersection	point	between	a	mapping	line	and	the	plane	in	which	a	given	face	lies	can	be	defined	by	
Barycentric	 coefficients	with	 respect	 to	 the	 coordinates	of	 the	 face.	 If	 the	 three	 coefficients	 lie	 in	 the	
range	[0,1]	and	sum	to	unity	(within	a	small	tolerance)	the	point	lies	inside	the	face.	

ICC.2:2017	

©	ICC	2017–	All	rights	reserved	 219	

Annex	C	(informative)	ICC	Colour	Appearance	Model	Transformations	

C.1 Introduction	

The	ICC	Colour	Appearance	model	is	based	on	the	CIECAT02	transform	as	published	by	the	CIE	[4].	It	is	a	
simple	 modification	 of	 CIECAM02	 to	 obtain	 a	 stable	 transform	 from	 measured	 XYZ	 to	 perceived	
opponent‐colour	Jab	and	back.	All	parameters	specifying	the	viewing	conditions	and	visual	measures	as	
specified	by	the	original	model	are	also	supported	by	the	ICC	Colour	Appearance	model.	

The	top‐level	structure	of	CIECAM02	from	XYZ	to	Jab	is	as	follows:	

e) The	XYZ	values	are	linearly	transformed	to	a	chromatic‐adaptation	basis	and	independently	scaled	
to	 the	 input	 white	 to	 produce	 Von‐Kries‐adapted	 values.	 The	 chromatic‐adaptation	 basis	 that	 is	
used	in	CIECAM02	is	called	CIECAT02.	

f) The	adapted	XYZ	values	are	added	to	non‐adapted	values	in	a	pre‐selected	proportion	D	called	the	
degree	of	adaptation.	

g) The	resulting	RGB	values	are	converted	to	 the	Hunt‐Pointer‐Estevez	(HPE)	R’G’B’	space,	and	then	
subjected	to	a	power‐function	nonlinearity	(hyperbolic	function)	to	become	R’aG’aB’a.	

h) The	opponent‐colour	values	a,	b	are	computed	as	linear	combinations	of	R’aG’aB’a.	

i) The	 lightness	 J	 is	 computed	starting	 from	another	 linear	 combination	A	of	R’aG’aB’a.	This	 involves	
dividing	A	by	the	value	Aw	for	white,	and	evaluating	a	non‐integer	power	of	the	quotient.	

The	basic	problem	with	CIECAM02	is	due	to	the	choice	of	“sharpened”	CIECAT02	primaries.	That	means	
the	 chromaticity	 triangle	 of	 the	 CIECAT02	 primaries	 intersects	 the	 spectrum	 locus	 several	 times.	 In	
turn,	 this	 implies	 there	 are	 illuminants	 and	 colours	 that	 are	physically	producible	but	 lie	outside	 the	
triangle.	 Three	 kinds	 of	 problem	 can	 thereby	 arise	 in	 CIECAT02,	 quite	 apart	 from	 its	 context	 in	
CIECAM02:	

j) An	 illuminant	 whose	 chromaticity	 lies	 on	 an	 edge	 of	 the	 triangle	 causes	 a	 zero	 Von‐Kries	
denominator,	and	hence	a	division	by	zero	in	creating	the	Von‐Kries	ratios.		

k) Because	 the	 CIECAT02	 triangle	 falls	 slightly	 outside	 the	 HPE	 triangle,	 adaptation	 to	 a	 bluish	
illuminant	moves	 a	 colour	 from	 inside	 the	HPE	 triangle	 to	 outside	 the	HPE	 triangle,	 resulting	 in	
negative	 R’G’B’	 values	 and	 hence	 a	 negative	 A	 value.	 The	 value	 Aw	 on	 the	 other	 hand	 is	 always	
positive	as	shown	in	by	Luo	[5].	This	issue,	also	referred	to	as	the	yellow‐blue	problem,	is	solved	in	
the	CIE	reportership	R8‐07	[6].	

l) A	 colour	 that	 lies	 outside	 the	 CIECAT02	 triangle	 has	 at	 least	 one	 negative	 coordinate,	 so	 when	
chromatic	adaptation	happens,	that	colour	moves	in	the	wrong	direction	in	the	chromaticity	space.	
For	 example,	 for	CIECAT02	 there	 is	 a	band	of	purple	 colours	within	 the	 spectrum	 locus	 that	 lies	
outside	the	primary	triangle	for	CIECAT02	RGB.	If	the	starting	point	a	white	light	and	adaptation	to	
a	more	purple	light	occurs,	all	the	purple	colours	within	the	CIECAT02	triangle	shift	toward	green	
(away	 from	purple),	 but	 colours	 that	 are	 outside	 the	CIECAT02	 triangle	 becomes	more	purple‐‐‐
contrary	to	actual	experience.	

Apart	from	the	above	mentioned	problems,	there	are	additional	hazards	because	CIECAM02	applies	a	
power	function	(power	<	1)	to	the	R'G'B'	values.	This	results	in	an	infinite	slope	of	the	power	function	at	
zero,	destabilizing	colour	management	algorithms	for	colours	going	to	black	(XYZ	=	(0,0,0)).	

ICC.2:2017	

220	 ©	ICC	2017	–	All	rights	reserved	

C.2 The	ICC	colour	appearance	model	

A	 simple	way	 to	 resolve	 the	 before	mentioned	 problems	 is	 obtained	 as	 follows:	 First	 of	 all	 negative	
R'G'B'	values	need	to	be	avoided.	As	a	consequence,	 the	HPE	triangle	will	 lie	outside	or	be	coincident	
with	any	candidate	CIECAT02	triangle.	On	the	other	hand,	to	assure	internal	consistency,	the	candidate	
Von‐Kries	primaries	make	a	triangle	that	circumscribes	the	spectrum	locus.	As	mentioned	by	Süsstrunk	
and	 Brill[4,5],	 "Three	 chromaticity	 sets	 are	 nested:	 The	 HPE	 triangle	 encompasses	 the	 modified	
CIECAT02	triangle,	which	in	turn	encompasses	the	spectrum	locus".	

A	simple	and	stable	solution	is	obtained	by	replacing	CIECAT02	by	the	HPE	triangle.	Even	though	HPE	is	
not	the	best	set	of	fundamental	primaries,	it	is	a	significant	improvement	over	a	Von‐Kries	adaptation	in	
XYZ	as	implemented	in	the	CIELAB	model,	which	is	commonly	used	in	colour	management.	

As	a	consequence,	the	range	of	colours	and	illuminants	for	which	the	model	is	invertible	is	given	by	the	
range	of	positive	RGB	values	defined	by	HPE	triangle	for	the	colours,	and	strict	positive	RGB	values	as	
defined	by	the	HPE	triangle	for	the	illuminants.	If	colours	outside	this	region	are	used,	they	have	to	be	
mapped	onto	the	boundary	of	the	RGB	space	defined	by	the	HPE	triangle.	Illuminants	are	assumed	to	be	
always	 real	 hence	 no	 mapping	 strategy	 is	 needed.	 In	 the	 ICC	 colour	 appearance	 model,	 colours	 are	
mapped	in	the	HPE	RGB	space	by	clipping	component	by	component	the	values	to	the	nearest	value.	

The	instability	near	the	black	point	is	due	to	the	following	hyperbolic	function	

   
  42.0

42.0

13.27

400

xF

xF
xf

L

L


 	 	 	 	 	 	 	 	 	 	 (C.1)	

with	x	ranging	from	0	to	1	(in	CIECAM02	x	represents	R’/100,	G’/100	and	B’/100).	

For	x	going	to	zero,	the	derivative	of	the	function	f(x)	goes	to	infinity,	resulting	in	unstable	behaviour.	
This	can	be	solved	by	replacing	f(x)	with	the	function	g(x)	defined	as	follows:	

   
     

 
255

4

255
4
255
4

255

4
12307.0

1

2307.1

1

2

1






















xforx
g

xg

xforfxh
h

xg

	 	 	 	 	 (C.2)	

with	 	    
  3169.0

3169.0

13.27

400

xF

xF
xh

L

L


 .	 	 	 	 	 	 	 	 (C.3)	

	 	

ICC.2:2017	

©	ICC	2017–	All	rights	reserved	 221	

Annex	D	(informative)	Named	Colour	Profiles	

D.1 Introduction	

In	 addition	 to	 the	 information	 specified	 in	 ISO	15076‐1,	 the	 namedColor	 profile	 can	 also	 specify	 tint	
values,	spectral	PCS,	spectral	over	black,	etc	in	the	namedColorTag.	An	example	of	the	namedColorTag	
is	described	as	following:	

	

Figure	D.1	namedColorTag	example	

Where	the	deviceData	and	the	tintValues	are	optional,	 the	pcsData	 is	required	 if	 the	pcsColorSpace	 is	
defined	in	profile	header	and	the	spectralData	is	required	if	the	spectralColorSpace	is	defined	in	profile	
header.	

D.2 Rendering	intent	of	a	named	colour	

The	zeroTintStruct	is	used	to	specify	the	information	on	a	substrate	as	well	as	over	a	black	substrate.	
The	PCS	or	spectral	PCS	of	the	substrate	enables	the	value	of	a	named	colour	represented	with	either	
the	ICC‐absolute	colorimetric	or	the	relative	colorimetric	rendering	intent. The	rendering	intent	field	
in	the	header	is	used	to	indicate	which	one	is	to	be	used.		

D.3 Spectral	calculation	for	a	tint	value	

For	a	named	colour	with	a	tint	value	in	between	two	tint	values,	a	linear	interpolation	is	assumed.		

	Example	1:		

	A	colour	with	name	of	‘Color1’	and	tint	value	of	20%.		

The	tint	value	of	20%	is	in	between	the	zero	tint	value	and	the	tint	value	of	33%.	The	estimated	CIELab	
value	is:	

											L*1_0.2=20/33*(L*1_0.33‐L0)+L0	 	 	 	 	 	 	 	 	 (D.1)	

ICC.2:2017	

222	 ©	ICC	2017	–	All	rights	reserved	

											a*1_0.2=20/33*(a*1_0.33‐L0)+L0	 	 	 	 	 	 	 	 	 (D.2)	

											b*1_0.2=20/33*(L*1_0.33‐L0)+L0	 	 	 	 	 	 	 	 	 (D.3)	

Example	2:	

A	colour	with	name	of	‘ColorN’	and	tint	value	of	40%.		

The	tint	value	of	40%	is	in	between	the	tint	value	of	25%	and	the	tint	value	of	50%.		

The	estimated	spectral	values	of	this	colour	are:	

								s400_0.5=0.6*(s400_0.50‐s400_0.25)+	s400_0.25	 	 	 	 	 	 (D.4)	

								…	

								s700_0.5=0.6*(s700_0.5‐s700_0.25)+	s700_0.25		 	 	 	 	 	 (D.5)	

Similarly,	the	PCS	values	and	the	spectral	values	over	black	can	also	be	obtained.		

D.4 Overprint	calculation	

One	way	to	calculate	a	spot	colour	overprint	in	between	two	tint	values	is	to	apply	an	overprint	model	
on	the	tristimulus	values	obtained	from	the	corresponding	spectral	values	on	the	substrate	and	over	the	
substrate.	One	bibliography	reference	outlines	a	few	possible	methods.[9]	

D.5 Example	of	a	namedColor	profile	in	a	colour	management	workflow	

The	PCS	or	spectral	PCS	representations	enable	CMM	to	process	a	named	colour	in	conjunction	with	a	
namedColor	 profile,	 a	 device	 destination	 profile,	 or/and	 a	 source	 profile.	 For	 example,	 a	 spot	 colour	
viewed	on	a	sRGB	display	with	the	perceptual	rendering	intent	is	simulated	on	a	glossy	paper	under	a	
custom	viewing	condition	with	the	relative	colorimetric	rendering	intent,	where	the	viewing	conditions	
are	specified	in	the	PCC.	The	ICC	colour	appearance	model	transformation	can	be	used	to	convert	this	
colour	 from	 the	 D50	 to	 the	 custom	 viewing	 condition.	 The	 colour	 is	 then	 interpolated	 with	 the	
associated	device	output	profile	to	obtain	its	device	value.	

	 	

ICC.2:2017	

©	ICC	2017–	All	rights	reserved	 223	

Annex	E	(informative)	Sparse	Matrix	Operations	

The	following	discussion	provides	pseudo	code	to	describe	the	addition	of	two	sparse	matrices	as	well	
as	the	multiplication	of	a	vector	by	a	sparse	matrix.	In	each	case	a	sparse	matrix	is	represented	using	
the	following	general	structure:	

Structure SparseMatrix {
 rows
 columns
 entries
 offset[rows+1]
 index[entries]
 data[entries]
}	

NOTE	1	 The	first	element	in	each	array	in	the	following	pseudo	code	is	assumed	to	be	zero	(0).	

NOTE2	 In	the	above	structure	offset[rows]	have	the	same	value	as	entries	

NOTE	3	 The	max_entries	value	used	below	 is	determined	using	 the	 formula	 to	determine	 the	max	number	of	
entries	given	 the	number	of	bytes	available	 to	encode	 the	 sparse	matrix	 (S),	 the	number	of	 rows	 in	 the	 sparse	
matrix	(R),	and	the	number	of	bytes	used	to	encode	each	matrix	entry.	(See	Sparse	Matrix	Encoding).	

Addition	of	sparse	matrices	

The	following	pseudo	code	performs	the	addition	of	the	following	matrix	operation	

C = a A + b B (E.1)

	

Where	A,	B,	C	are	sparse	matrices,	and	a,	b	are	scalar	values:	

if (not ((A.rows equals B.rows) and (A.columns equals B.columns)))

 Return Failure;

endif

C.rows = A.rows

C.columns = A.columns

pos=0;

row = 0;

while (row < A.rows)

 nA = A.offset[row+1] – A.offset[row]

 nB = B.offset[row+1] – B.offset[row]

 C.index[row] = pos;

 if (nA!=0 and nB != 0)

ICC.2:2017	

224	 ©	ICC	2017	–	All	rights	reserved	

 i=0;

 j=0;

 while (i<nA or j<nB)

 if (pos >= max_entry)

 return failure;

 endif

 if (i<nA and j<nB)

 if (A.index[A.offset[row]+i] < B.index[B.offset[row]+j])

 C.index[pos] = A.index[A.offset[row]+i];

 C.data[pos] = a * A.data[A.offset[row]+i];

 pos = pos +1;

 i = i+1;

 elseif (B.index[B.offset[row]+ j] < A.index[A.offset[row] + i])

 C.index[pos] = B.index[B.offset[row] + j];

 C.data[pos] = b * B.data[B.offset[row] + j];

 pos = pos +1;

 j = j+1;

 else

 C.index[pos] = A.index[A.offset[row]+i];

 C.data[pos] = a * A.data[A.offset[row] + i] +

 b * B.data[B.offset[row] + j];

 pos = pos + 1;

 i = i + 1;

 j = j + 1;

 endif

 elseif (i<nA)

 C.index[pos] = A.index[A.offset[row] + i];

 C.data[pos] = a * A.data[A.offset[row] + i];

 pos = pos + 1;

 i = i + 1;

 else

 C.index[pos] = B.index[B.offset[row] + j];

 C.data[pos] = b * B.data[B.offset[row] + j];

 oos = pos + 1;

 j = j + 1;

 endif

 endwhile

 elseif (nB equals 0)

 if (pos+nA >= max_entry)

 return failure;

ICC.2:2017	

©	ICC	2017–	All	rights	reserved	 225	

 endif

 for i=0 to nA-1

 C.index[pos] = A.index[A.offset[row]+i];

 C.data[pos] = a * A.index[A.offset[row]+i];

 pos = pos + 1

 endfor

 elseif (nA equals 0)

 if (pos+nB >= max_entry)

 return failure;

 endif

 for i=0 to nB-1

 C.index[pos] = B.index[B.offset[row]+i];

 C.data[pos] = b * B.index[B.offset[row]+i];

 endfor

 endif

 row = row + 1;

endwhile

C.entries = pos;

C.index[C.rows] = pos;

Return C;

Multiplication of vector by sparse matrix

The following pseudo code performs a multiplication of a vector x by a sparse matrix M

y = M x (E.2)

Where M is a sparse matrix, and x, y are vectors and the length of the vectors is same as number of columns
in M

j=0;

while (j < M.rows)

 pos = M.offset[j];

 nC = M.offset[j+1] – pos;

 y[j] = 0

ICC.2:2017	

226	 ©	ICC	2017	–	All	rights	reserved	

 i = 0;

 while (i<nC)

 y[i] = y[i] + x[i] * M.data[M.index[pos + i]];

 i = i +1;

 endwhile

 j = j + 1;

endwhile

	 	

ICC.2:2017	

©	ICC	2017–	All	rights	reserved	 227	

Annex	F	(informative)	Calculator	Elements	

F.1 Textual	representation	of	calculator	processing	elements	

The	actual	encoding	of	contents	of	operations	in	a	calculator	processing	element	is	specified	in	Clause	
11.	However,	when	discussing	the	contents	of	a	calculator	element’s	main	function,	it	is	useful	to	use	a	
text	nomenclature	for	expressing	the	sequences	of	operations	to	perform.	The	following	guidelines	can	
be	used	for	describing	calculator	element	main	function	contents:	

A	sequence	of	operations	is	delineated	by	curly	parenthesis	{	}.	

	 Example:	{	…	}	

Numbers	correspond	to	putting	values	on	stack.		

Example:	95	or	pi	

Operations	are	simply	the	text	based	(without	padded	spaces)	names	of	the	operation.		

	 Example:	pow	

Conditional	 operations	 with	 associated	 streams	 are	 represented	 using	 sequences	 of	 operations	
delineated	by	curly	parenthesis	{	}.		

	 Example:	if	{	…}	else	{	…	}	

CMM	environemant	variables	are	identified	by	placing	the	32‐bit	four	character	environment	variable	
signature	 (or	 8‐digit	 hexadecimal	 value)	 in	 parentheses	 after	 the	 env	 operator.	 CMM	 environment	
variable	signatures	with	less	than	four	characters	are	space	padded.	

	 Example:	env(true)	is	the	same	as	env(74727565)	

	 Example:	env(xx)	is	the	same	as	env(78782020)	

Stack	operations,	 if	not	followed	by	a	size	specification	(n)	or	by	a	size	and	repeat	specification	(n,r),	
assume	only	one	stack	element	is	involved.	If	a	size	specification	is	provided,	at	least	two	operations	are	
needed.		

	 Example:	copy	or	copy(5)	or	copy(3,2)	

Variable	 length	 operations	 if	 not	 followed	 by	 a	 size	 specification	 [n]	 assume	 only	 two	 operations.	 If	
specified,	at	least	two	operations	are	needed.	

	 Example:	and	or	and[5]	

Requirements	of	channel	vector	operations	are	described	in	11.2.1.	

	 Example:	tget[0]	or	tget[0,3]	

ICC.2:2017	

228	 ©	ICC	2017	–	All	rights	reserved	

F.2 Examples	

The	following	are	examples	of	defining	calculator	elements	within	a	multiProcessElementTag.	

F.2.1 Polynomial	device	modelling	

The	following	discussion	shows	a	basic	example	of	device	modelling,	which	can	definitely	be	improved	
upon.	 The	 exact	 details	 of	 the	model	 are	 not	 as	 important	 as	 understanding	 the	 processing	 element	
interaction	in	the	approach.	

Suppose	that	the	colorimetric	measurement	of	CMYK	device	output	can	be	modelled	using	the	following	
equations:	(Note:	More	complicated	functions	are	likely	to	be	needed).	

YKaMKaMYaCKaCYaCMaKaYaMaCaab

YKaMKaMYaCKaCYaCMaKaYaMaCaaa

YKaMKaMYaCKaCYaCMaKaYaMaCaaL

3,113,103,93,83,73,63,53,43,33,23,1

2,112,102,92,82,72,62,52,42,32,22,1

1,111,101,91,81,71,61,51,41,31,21,1

*

*

*







	 (F.1)	

This	can	be	expressed	as	a	matrix/vector	equation	as	follows:	











































































YK

MK

MY

CK

CY

CM

K

Y

M

C

aa

aa

aa

b

a

L

1

...

*

*

*

11,31,3

11,21,2

11.11,1

	 	 	 	 	 	 	 	 	 (F.2)	

Expressing	this	as	a	calculator	element	can	be	done	using	matrix	and	vector	operations	by	first	placing	
the	coefficients	of	the	matrix	followed	by	calculations	of	the	vector	on	the	stack	as	follows:	

Assume	C=in[0],	M=in[1],	Y=in[2],	K=i[3],	mat(0)	=	matrix	as	defined	above	
{
1.0 in[0,4]
in[0,2] mul
in[0] in[2] mul
in[0] in[3] mul
in[1,2] mul
in[1] in[3] mul
in[2,2] mul
mat(0) out[0,3]
}

ICC.2:2017	

©	ICC	2017–	All	rights	reserved	 229	

Assume	L=out[0],	a=out[1],	b=out[2]	

F.3 RGBW	Display	Projector	Inverse	Model	

The	 following	 example	 shows	 how	 a	 single	 Calculator	 Element	 can	 be	 used	 to	 encode	 the	 entire	
transformation	from	XYZ	to	RGB	input	values	of	the	inverse	model	for	an	RGBW	projector.		

NOTE		 This	is	an	implementation	of	the	algorithm	proposed	by	David	Wyble	and	Mitchel	Rosen	in	“Colorimetric	
Management	of	DLPTM	Projectors”,	IS&T/SID	Eleventh	Color	Imaging	Conference,	228‐232,	(2004).		

Assume	X=in[0],	 Y=in[1],	 Z=in[2],	mtx(0)	 =	matrix	used	 to	 estimate	 theoretical	RGB	values,	mtx(1)	=	
matrix	used	to	estimate	pre‐LUT	RGB	values,	curv(2)=white	LUT	with	max	red,	curv(3)=white	LUT	with	
max	 green,	 curv(4)=white	LUT	with	max	blue,	 curv(5)=inverse	RGB	 transfer	 curves.	 In	 the	 following	
example	values	in	Italics	represent	constants	that	would	actually	be	used.	

{
 in[0,3]
 XDisplayWhite YDisplayWhite ZDisplayWhite mul[3]
 0.9642 1.000 0.8249 div[3]

 XDisplayBlack YDisplayBlack ZDisplayBlack sub[3]
 copy(3) tput[3,3] %requested normalized XYZ

 mtx(0) copy(3) tput[0,3] %theoretical RGB values

 max(3) 1.0 gt if {
 tget[0,3] min(3)
 copy tget[0] eq if {
 curv(2)
 } else {
 copy tget[1] eq if {
 curv(3)
 } else {
 curv(4)
 }
 }
 neg copy(1,2)
 (XDisplayWhite - XDisplayBlack)
 (YDisplayWhite - YDisplayBlack)
 (ZDisplayWhite - ZDisplayBlack)
 mul[3]
 tget[3,3] add[3]
 mtx(1)
 }
 curv(5) out[0,3]
}

ICC.2:2017	

230	 ©	ICC	2017	–	All	rights	reserved	

F.4 CLUT	interpolation	using	Lch	addressing	from	an	XYZ	PCS	Example	

The	 following	 example	 shows	 how	 a	 single	 Calculator	 Element	 can	 be	 used	 to	 encode	 the	 entire	
transformation	from	XYZ	to	Lab,	and	then	to	Lch	and	then	through	a	sub‐CLUT.		

Assume	X=in[0],	Y=in[1],	Z=in[2],	clut[0]	=	colour	lookup	table	to	convert	to	CMYK	output	

{ in[0,3] 0.9642 1.000 0.8249 div[3] tLab ctop 100 182 360 div[3] clut[0] out[0,4] }

Assume	C=out[0],	M=out[1],	Y=out[2],	K=out[3]	

NOTE	 This	 is	 only	 a	 textual	 representation	 of	 how	 the	 data	 is	 stored	 in	 the	 calculator	 element.	 The	 actual	
function	operations	are	stored	as	an	array	of	8‐byte	operation	definitions.	

	 	

ICC.2:2017	

©	ICC	2017–	All	rights	reserved	 231	

Annex	G	(informative)	BRDF	description	

G.1 Introduction	

The	light	that	comes	from	a	surface	to	a	viewer	of	the	surface	is	defined	by	a	complex	function	that	is	
controlled	by	many	factors.	As	a	surface	is	viewed	from	different	angles,	or	the	angle	of	the	light	shining	
on	 the	 surface	 changes,	 the	 appearance	 of	 the	 object	 changes.	 Specular	 highlights	 can	 appear,	 and	
colours	can	change.		

A	 Bidirectional	 Reflection	 Distribution	 Function	 (BRDF)	 describes	 the	 light	 that	 is	 reflected	 from	 an	
opaque	surface.	The	inputs	to	the	function	are	the	direction	of	the	incoming	light	relative	to	the	surface	
normal	and	the	direction	of	the	viewer	relative	to	the	surface	normal.	

The	output	of	the	function	is	the	ratio	of	reflected	radiance	to	the	irradiance	incident	on	the	surface.	The	
function	has	the	form:	

	 	 	 	 	 	 	 	 	 	 (G.1)	

where	Li	is	incoming	radiance,	Lr	is	reflected	radiance,	ωi	is	the	unit	vector	that	points	to	the	position	of	
the	light,	ωr	is	the	unit	vector	that	points	to	the	position	of	the	observer,	and	θi	is	the	angle	between	ωi	
and	n.		

The	function	can	be	visualized	with	the	diagram	shown	in	Figure	G.1.	

	

Figure	G.1	–	BRDF	function	

Both	ωi	and	ωr	are	defined	relative	to	the	surface	normal.	Since	both	vectors	are	unit	length,	the	BRDF	
function	is	four‐dimensional.	

Functions	related	to	 the	BRDF	function	can	also	describe	sub‐surface	scattering,	shadowing,	masking,	
and	inter‐reflections.	These	types	of	functions	could	be	supported	by	the	addition	of	new	function	types.	

fr (i,r)  dLr (r)

Li (i)cosidi

ICC.2:2017	

232	 ©	ICC	2017	–	All	rights	reserved	

G.2 Purpose	

The	 initial	 purpose	 for	 including	 BRDF	 support	 into	 ICC	 Profiles	 is	 to	 allow	 a	 profile	 to	 provide	 the	
necessary	 information	 for	 defining	 the	 appearance	 of	 a	 surface	 for	 arbitrary	 lighting	 conditions	 and	
viewing	positions.		

For	the	most	part	ICC	colour	management	assumes	0:45	geometry,	and	conversion	between	geometries	
is	 not	 defined.	 However,	 if	 a	 3‐dimensional	 object	 within	 the	 context	 of	 a	 3‐dimensional	 rendering	
system	 uses	 a	 BRDF	 colour	 defined	 by	 an	 ICC	 profile,	 the	 ICC	 profile	 can	 provide	 all	 the	 BRDF	
information	for	the	rendering	system	to	generate	an	appearance	simulation	of	the	object.	

A	baseline	case	allows	a	CMM	to	use	0:45	geometry	with	BRDF	information	to	derive	colour	appearance	
information	that	is	appropriate	for	connecting	to	an	output	profile.	

G.3 The	BRDFStruct	Element	and	the	BRDFFunction	Element	

Two	types	of	BRDF	tags	are	supported.	The	two	types	of	tags	supply	data	that	neither	alone	can	provide.		

The	 BRDFStruct	 type	 tags	 (see	 brdfColorimetricParameter0Tag,	 brdfColorimetricParameter1Tag,	
brdfColorimetricParameter2Tag,	 brdfColorimetricParameter3Tag,	 brdfSpectralParameter0Tag,	
brdfSpectralParameter1Tag,	 brdfSpectralParameter2Tag,	 brdfSpectralParameter3Tag,	 brdfMToB0,	
brdfMToB1,	 brdfMToB2,	 brdfMToB3,	 brdfMToS0,	 brdfMToS1,	 brdfMToS2,	 and	 brdfMToS3)	 supplies	
parameters	for	a	BRDF	model	that	can	be	used	by	3D	rendering	software.		

The	 BRDF	 Function	 tags	 (see	 brdfAToB0Tag,	 brdfAToB1Tag,	 brdfAToB2Tag,	 brdfAToB3,	
brdfDToB0Tag,	brdfDToB1Tag,	brdfDToB2Tag,	and	brdfDToB3Tag)	provide	PCS	or	spectralPCS	values	
when	given	lighting	direction,	viewing	angle,	and	device	values.	They	can	be	implemented	as	a	function	
or	 lookup	tables	within	 the	multiProcessElementType.	The	BRDF	Function	tags	can	be	more	accurate	
than	the	results	from	using	parameters	with	a	BRDF	model.	

The	 reverse	 BRDF	 Function	 tags	 (see	 brdfBToA0Tag,	 brdfBToA1Tag,	 brdfBToA2Tag,	 brdfBToA3,	
brdfBToD0Tag,	brdfBToD1Tag,	brdfBToD2Tag,	and	brdfBToD3Tag)	provide	device	values	when	given	
lighting	direction,	viewing	angle,	and	PCS	or	spectralPCS	values.	They	can	be	implemented	as	a	function	
or	lookup	tables	within	the	multiProcessElementType.		

NOTE	 	Obtaining	BRDF	model	parameters	for	the	purpose	of	3D	rendering	from	the	BRDF	Function	type	would	
require	fitting	the	data	from	the	transform	to	a	BRDF	model.	The	cost	of	performing	this	fitting	would	most	likely	
be	impractical	for	many	use	cases.	

G.4 BRDF	model	support	in	ICC	Profiles	with	BRDFStruct		

BRDF	information	can	be	expressed	as	a	single	function	(monochrome	BRDF)	that	is	applied	uniformly	
to	all	channels	of	the	resulting	colour,	or	separate	BRDF	information	can	be	defined	for	each	individual	
channel	 (chromatic	 BRDF)	 of	 the	 resulting	 colour.	 The	 first	 case	 (monochrome	 BRDF)	 allows	 for	 a	
simple	and	compact	representation	of	surface	appearance	that	in	many	cases	will	be	sufficient.	With	the	
second	case	(chromatic	BRDF)	the	characteristics	of	special	effects	pigments	can	be	expressed.		

G.5 Workflows	

The	following	workflows	are	envisioned:	

ICC.2:2017	

©	ICC	2017–	All	rights	reserved	 233	

G.5.1 Normal	non‐BRDF:	

For	a	non‐BRDF	workflow	a	profile	with	BRDF	tags	 functions	 is	used	 just	 like	a	profile	without	BRFD	
tags,	as	illustrated	in	Figure	G.2.	

	

Figure	G.2	non‐BRDF	workflow	

G.5.2 Getting	BRDF	parameters	from	a	profile	with	monochrome	BRDF	tags:	

In	this	workflow,	illustrated	in	Figures	G.3	and	G.4,	rendering	parameters	are	provided	by	a	profile	with	
monochrome	BRDFStruct	tags.	The	full	set	of	parameters	is	calculated	by	combining	the	output	of	the	
AToBxTag/DToBxTag/MToBxTag	 with	 the	 output	 a	 brdfColorimetricParameterX	 (hereafter	 BCPx),	
brdfSpectralParameterX	(BSPx)	tag,	brdfMToBx,	or	brdfMToSx	tag	(hereafter	referred	to	collectively	as	
BRDx	tags).	The	parameters	are	combined	as	described	in	Clause	12.2.1.	

	

Figure	G.3	BRDF	parameters	from	profile	with	monochrome	BRDF	tags	

	

Figure	G.4	BRDF	parameters	from	profile	with	monochrome	BRDF	tags	

	

The	 following	 is	an	example	of	how	to	get	colour	BRDF	parameters	 from	a	profile	with	monochrome	
Blinn‐Phong	BRDx	tags:	

Get	colour	BRDF	parameters	for	device	value	of	(1.0,	0.2,	0.7)	from	a	colorimetric	profile	with	a	Blinn‐
Phong	BRDFx	Tag	

ICC.2:2017	

234	 ©	ICC	2017	–	All	rights	reserved	

1. Pass device values through AToBx/DToBx to get PCS.

a. The Tag returns an XYZ of (0.35,0.25,0.2).

b. B = 0.35,0.25,0.2

2. Get the monochrome BRDF parameters passing the device or material channel values through the
BRDx tag.

a. The BRDx tag returns (0.5,0.51,0.49, 0.01,0.02,0.03, 0.3,0.31,0.29, 5.0,5.0,5.0).

b. These returned values translate to:

i. ld = 0.5,0.51,0.49

ii. ls = 0.01,0.02,0.03

iii. lgs = 0.3,0.31,0.29

iv. n = 5.0,5.0,5.0

3. Combine the PCS values and the monochrome BRDF parameters to get kd, ks, and n.

a. kd = ldB

b. kd = 0.5*0.35,0.51*0.25,0.49*0.2

c. kd = 0.175,0.1275,0.098

d. ks = lsB+lgs

e. ks = 0.01*0.35+0.3,0.02*0.25+0.31,0.03*0.2+0.29

f. ks = 0.3035,0.315,0.302

g. n = 5.0,5.0,5.0

G.5.3 Getting	BRDF	parameters	from	a	profile	with	chromatic	BRDF	tags:	

In	 this	 workflow,	 illustrated	 in	 Figure	 G.5,	 rendering	 parameters	 are	 provided	 by	 a	 profile	 with	
chromatic	 BRDFStruct	 tags.	 The	 full	 set	 of	 parameters	 is	 provided	 by	 the	
brdfColorimetricParameter0Tag,	 	brdfColorimetricParameter1Tag,	brdfColorimetricParameter2Tag,	or	
brdfColorimetricParameter3Tag,	 (hereafter	 BCPx	 tags);	 or	 brdfSpectralParameter0Tag,	
brdfSpectralParameter1Tag,	 brdfSpectralParameter2Tag,	 or	 brdfSpectralParameter3Tag	 (hereafter	
BSPx	tags).	

	

Figure	G.5	BRDF	parameters	from	profile	with	chromatic	BRDF	tags	

	The	following	is	an	example	of	how	to	get	colour	BRDF	parameters	from	a	profile	with	chromatic	Blinn‐
Phong	BCPx/BSPx	tags:	

Get	colour	BRDF	parameters	for	device	value	of	(1.0,	0.2,	0.7)	from	a	colorimetric	profile	with	a	Blinn‐
Phong	BRDF	Tag	

1. Pass device values through BCPx to get colour BDF parameters.

a. The BCPx tag returns (0.175,0.1275,0.098, 0.3035,0.315,0.302, 5.0,5.0,5.0).

b. kd = 0.175,0.1275,0.098

c. ks = 0.3035,0.315,0.302

ICC.2:2017	

©	ICC	2017–	All	rights	reserved	 235	

d. n = 5.0,5.0,5.0

G.5.4 Getting	 PCS	 values	 for	 a	 lighting	 position,	 viewing	 position,	 and	 device	 values	 from	 a	
BRDF	Function	element:	

The	 brdfAToBx/brdfDToBx	 BRDF	 Function	 tags	 allows	 PCS	 values	 to	 be	 obtained	 for	 a	 given	
illumination	angle,	viewing	angle,	and	set	of	device	values	for	the	workflow	illustrated	in	Figure	G.6.		

	

Figure	G.6	Obtaining	PCS	values	from	a	BRDF	function	element	

G.5.5 Getting	 device	 values	 for	 a	 lighting	 position,	 viewing	 position,	 and	 PCS	 values	 from	 a	
BRDF	Function	element:	

The	 brdfBToAx/brdfBToDx	 BRDF	 Function	 tags	 allow	 device	 values	 to	 be	 obtained	 for	 a	 given	
illumination	angle,	viewing	angle,	and	set	of	device	values	for	the	workflow	illustrated	in	Figure	G.7.		

	

Figure	G.7	Obtaining	PCS	values	from	a	BRDF	function	element	

G.5.6 Getting	 PCS	 values	 for	 a	 lighting	 position,	 viewing	 position,	 and	 device	 values	 from	 a	
BRDF	Structure	element:	

The	BRDF	Structure	element	provides	BRDF	parameters	for	a	specified	BRDF	model,	as	shown	in	Figure	
G.8.	Acquiring	PCS	values	from	these	parameters	requires	the	implementation	of	the	BRDF	model	using	
the	the	brdfColorimetricParameterX	(BCPx)	or	brdfSpectralParameterX	(BSPx)	tags..		

	

	

Figure	G.8	Obtaining	PCS	values	from	a	BRDF	Structure	element	

An	example	of	the	implementation	of	a	BRDF	model	is	in	the	next	Clause.	

ICC.2:2017	

236	 ©	ICC	2017	–	All	rights	reserved	

G.5.7 Obtain	45/0	PCS	from	profile	that	doesn’t	use	0:45	geometry	and	has	BRDFStructure	tags	

For	a	profile	that	doesn’t	use	0:45	geometry	but	has	BRDF	tags,	it	is	possible	to	get	0:45	PCS	values,	as	
illustrated	 in	 Figure	 G.9.	 If	 the	 profile	 supplies	 BRDF	 parameters	 for	 a	 BRDF	 model	 with	 a	
BRDFStructure	 tag,	 the	 PCS	 values	 are	 calculated	 by	 using	 the	 BRDF	 model	 with	 the	
brdfColorimetricParameterX	(BCPx)	or	brdfSpectralParameterX	(BSPx)	tags.		

	

Figure	G.9	Obtaining	0:45	PCS	values	from	a	BRDF	Structure	tag	

The	 following	 example	 shows	 how	 0:45	 colorimetric	 PCS	 values	 can	 calculated	 from	 a	 profile	 with	
brdfColorimetricParameterX		tags:	

Get	colour	BRDF	parameters	for	device	value	of	(1.0,	0.2,	0.7)	from	a	colorimetric	profile	with	a	Blinn‐
Phong	BRDF	Tag	

1. Pass device values through brdfColorimetricParameterX to get colour BDF parameters.

a. The brdfColorimetricParameterX tag returns (0.175,0.1275,0.098, 0.3035,0.315,0.302,
5.0,5.0,5.0).

b. kd = 0.175,0.1275,0.098

c. ks = 0.3035,0.315,0.302

d. n = 5.0,5.0,5.0

2. Compute PCS values

a. Light is at 45° and viewer is at 0°.

b. Lm can be defined as (0.707,0.707,0).

c. N (and the view direction) is (1,0,0).

d. Hm is the half angle between Lm and the viewing direction. Hm is (0.9239,0.3827,0).

e. The Blinn-Phong equation is:




















 






 

lightsm
sm

n

msdmmdp iHNkiNLkI ,

^^

,

^^

f. The dot product Lm·N is 0.707.

g. The dot product N·Hm is 0.9239

h. With im,d and im,s equal to 1.0, Ip is:

Ip = 0.3280,0.3022,0.2726

G.5.8 Obtain	Spherical	PCS	from	profile	that	uses	0:45	geometry	and	has	BRDFStructure	tags	

ICC.2:2017	

©	ICC	2017–	All	rights	reserved	 237	

An	instrument	with	spherical	geometry	uses	a	sphere	with	highly	reflective	white	coating	and	a	baffled	
light	 source	 located	 near	 the	 rear	 of	 the	 sphere.	 The	 measurement	 geometry	 of	 a	 typical	 8°	 sphere	
instrument	is	illustrated	in	the	simplified	diagram	shown	in	Figure	G.10:	

	

Figure	G.10	d:8	measurement	using	integrated	sphere	

The	sample	is	viewed	8°	from	perpendicular	and	the	associated	specular	is	also	at	8°.	The	specular	port	
is	located	where	the	specular	component	impinges	on	the	sphere.	Opening	the	port	allows	the	specular	
component	to	exit	without	being	detected.	

Acquiring	 spherical	 measurements	 by	 using	 the	 brdfColorimetricParameterX	 (BCPx)	 or	
brdfSpectralParameterX	 (BSPx)	 tags	 in	 a	 profile	 requires	 that	 an	 illumination	map	 be	 applied	 to	 the	
BRDF	model,	as	illustrated	in	Figure	G.11	

	

Figure	G.11	Obtaining	PCS	values	using	an	illumination	map	

The	illumination	map	is	a	fully	illuminated	sphere	with	a	hole	at	the	specular	if	the	specular	is	not	being	
included.		

Sample

Viewing Port Specular Port

8° 8°

ICC.2:2017	

238	 ©	ICC	2017	–	All	rights	reserved	

G.6 Rendering	intent	usage	with	BRDF	data	

The	usage	of	 rendering	 intents	with	BRDF	data	mirrors	 the	usage	of	 rendering	 intents	without	BRDF	
data.	When	the	illumination	and	viewing	angles	match	the	profile’s	default	(typically	0:45),	the	colour	
from	the	BRDF	closely	matches	the	colour	of	the	non‐BRDF	transform	for	the	corresponding	rendering	
intent.	 For	 differing	 angles	 the	 colours	 are	 transformed	 in	 a	 similar	manner,	 as	 illustrated	 in	 Figure	
G.12.		

	

Figure	G.12	Matching	PCS	values	using	BRDF	and	non‐BRDF	intents	

G.7 Normal	map	and	height	map	usage	with	BRDF	data	

A	BRDF	doesn’t	provide	spatial	 information	about	a	surface.	 Information	about	 the	 texture	of	surface	
can	be	included	in	a	profile	through	the	inclusion	of	a	height	map	or	a	normal	map.	Both	types	of	maps	
can	 be	 used	 to	 specify	 the	 small	 variations	 in	 surface	 height	 that	 are	 typical	 with	 many	 types	 of	
substrates.		

	

Figure	G.13	Magnified	images	of	common	papers	with	different	surface	characteristics.	

ICC.2:2017	

©	ICC	2017–	All	rights	reserved	 239	

Two	examples	of	the	surface	variations	that	could	be	characterized	by	these	maps	are	illustrated	in	the	
images	shown	in	Figure	G.13,	where	the	left	image	is	matte	paper	and	the	right	image	is	a	high	quality	
semi‐glossy	paper.	

A	 normal	 map	 is	 suitable	 for	 use	 in	 the	 3D	 graphics	 technique	 of	 normal	 mapping.	 This	 technique	
enhances	the	appearance	of	detail	without	 increasing	the	number	of	polygons.	This	technique	doesn’t	
alter	 the	 geometry,	 but	 provides	 a	 shader	 with	 a	 high‐res	 map	 of	 surface	 orientation.	 This	 surface	
orientation	is	then	used	when	the	BRDF	is	applied.	Normal	mapping	can	have	unrealistic	results	when	
the	variations	in	surface	height	are	large.	For	typical	substrates	the	variation	in	height	is	small	enough	
for	this	technique	to	appear	realistic.	

A	height	map	can	be	used	with	 the	technique	of	displacement	mapping.	Displacement	mapping	alters	
the	geometry	in	the	scene	and	leads	to	correct	outlines	and	shadows.		

When	a	texture	is	used	for	3D	rendering	it	is	typically	not	of	high	enough	resolution	to	be	applied	across	
the	entire	surface.	The	texture	is	typically	repeated	across	the	surface	so	that	the	entire	surface	can	be	
covered	and	the	correct	resolution	can	be	maintained.	When	the	texture	is	repeated	across	the	surface	
the	boundaries	between	 the	edges	of	 the	 texture	need	 to	be	 seamless	 so	 that	 the	edges	between	 the	
borders	of	the	texture	are	not	visible.		

It	is	possible	to	compute	a	height	map	from	a	normal	map	and	a	normal	map	from	a	height	map	using	
numerical	techniques.			

ICC.2:2017	

240	 ©	ICC	2017	–	All	rights	reserved	

Annex	H	(informative)	Directional	Emissive	Color	

The	light	emission	experienced	by	an	observer	often	changes	as	an	observer	views	an	emissive	surface	
(display)	viewed	from	different	angles	as	well	as	focusing	upon	different	positions	in	the	field	of	view.				
An	example	is	found	in	Figure	H.1.		The	directional	tags	are	implemented	as	multiProcessElelement	tags	
that	take	viewing	angle	and	relative	position	with	either	device	or	PCS	values	and	return	PCS	or	Device	
values	associated	with	the	expected	observer	experience.	

	

Figure	H.1	Viewing	angles	relative	to	display	

The	 forward	 directional	 tags	 (directionalAToB0Tag,	 directionalAToB1Tag,	 directionalAToB2Tag,	
directionalAToB3Tag,	 directionalBToA0Tag,	 directionaDToB0Tag,	 directionaDToB1Tag,	
directionaDToB2Tag,	 directionaDToB3Tag)	 provide	 a	 means	 of	 describing	 the	 observed	 color	 or	
spectral	emission	based	upon	viewing	angle	and	relative	position	on	the	display.		

The	 reverse	 directional	 tags	 (directionalBToA1Tag,	 directionalBToA2Tag,	 directionalBToA3Tag,	
directionalBToD0Tag,	 directionalBToD1Tag,	 directionalBToD2Tag,	 directionalBToD3Tag)	 provide	 a	
means	 of	 determining	 the	 device	 values	 needed	 to	 obtained	 an	 observed	 color	 or	 spectral	 emission	
based	upon	viewing	angle	and	relative	position	on	the	display.		

ICC.2:2017	

©	ICC	2017–	All	rights	reserved	 241	

Annex	I	(informative)	Material	Connection	Spaces	

I.1 Introduction	

A	 foundational	 principle	 of	 ICC	 based	 colour	management	 has	 been	 the	 use	 of	 a	 Profile	 Connection	
Space	(PCS)	to	connect	profiles.	A	PCS	provides	the	answer	to	the	question	“What	does	the	colour	look	
like?”	when	defined	colorimetrically,	or	“What	relationship	does	the	colour	have	to	light?”	when	defined	
spectrally.		

An	alternative	method	of	connecting	profiles	can	be	said	to	have	always	existed,	but	has	seldom	been	
concretely	 identified.	When	 two	 profiles	 have	 the	 same	 signature	 in	 the	 device	 colour	 space	 field	 of	
their	 profile	 headers	 and	 their	 assumptions	 about	 device	 channel	 encoding	 are	 the	 same,	 then	 such	
profiles	can	be	connected	together	by	passing	the	device	channel	results	from	one	profile	as	input	data	
to	the	next	profile.	This	can	potentially	be	done	by	either	the	CMM	directly	or	by	an	application	making	
successive	 calls	 to	 a	 CMM	 that	 does	 not	 support	 device	 channel	 connection.	 When	 profiles	 are	
connected	 in	 this	manner	 a	 kind	 of	 “Device	 Connection	 Space”	 is	 formed	 that	 answers	 the	 questions	
“What	is	the	recipe	for	the	colour?”	or	just	simply	“What	is	it?”	with	the	implication	that	the	meaning	of	
the	 colour	 encoding	 is	 only	 defined	 by	 the	 device	 channel	 values	 provided	 and	 used	 by	 the	 profiles	
involved.	

One	limitation	of	using	such	a	“Device	Connection	Space”	is	that	both	the	number	of	channels	and	order	
of	 the	 channels	need	 to	be	 the	 same	 for	both	profiles.	This	 is	because	 there	 is	no	 implicit	processing	
associated	 with	 “Device	 Connection	 Space”	 channel	 connection.	 For	 each	 and	 every	 channel	 in	 the	
connection	space,	data	from	the	ith	channel	of	one	profile	is	passed	directly	to	the	ith	channel	of	the	next	
profile	without	any	modification	of	the	channel	data	value.	

The	concept	of	a	“Material	Connection	Space”	(MCS)	as	defined	by	this	part	of	ISO	20677‐1		essentially	
extends	the	concept	of	a	“Device	Connection	Space”	to	allow	for	flexibility	in	both	the	number	and	order	
of	the	channels	while	maintaining	the	same	“What	is	it?”	concept	of	the	channel	data	encoding.		

Material	Connection	Space	 (MCS)	 channel	 connection	 flexibility	enables	various	 ICC	based	workflows	
that	would	be	difficult	if	not	impossible	to	otherwise	implement.	

No	processing	of	the	actual	data	is	performed	when	MCS	channel	data	is	passed	from	one	profile	to	the	
next	 profile	 across	 the	 MCS	 connection.	 The	 only	 processing	 that	 is	 performed	 is	 routing	 and	
initialization	 of	 “connected”	Material	 channels.	MCS	 channels	 have	no	processing	 relationship	 to	 PCS	
channels	 as	 far	 as	 a	CMM	 is	 concerned	 (in	 the	 same	manner	 that	 there	 is	no	processing	 relationship	
between	 device	 channels	 and	 PCS	 channels).	 Any	 processing	 that	 is	 done	 between	 MCS	 and	 PCS	
connections	is	provided	by	transformation	tags	within	the	ICC	profiles	being	used.	

I.2 MCS	connection	basics	

MCS	usage	is	identified	by	the	MCS	field	of	the	profile	header,	which	contains	a	signature	indicating	the	
number	of	channels	participating	in	the	MCS.		

The	flags	field	in	the	profile	header	has	also	been	extended	to	indicate	that	the	MCS	channels	defined	by	
the	 profile	 need	 to	 form	 a	 proper	 subset	 of	 the	 MCS	 channels	 defined	 in	 the	 profile	 that	 is	 being	
connected	 to.	 	 This	 logic	 is	 better	 understood	 relative	 to	 the	 example	 of	 connecting	 a	

ICC.2:2017	

242	 ©	ICC	2017	–	All	rights	reserved	

MaterialIdentification	 (MID)	 profile	 to	 a	 MaterialVisualization	 (MVIS)	 profile	 using	 MCS	 connection.		
Four	possible	use	cases	of	MCS	subset	flag	combinations	exist.	

i) If the neither the MID profile nor the MVIS profile have the MCS subset flag set then there are no
subset requirements.

ii) If only the MID profile has the MCS subset flag set then all of the MCS channels in the MID profile
need to be present in the MVIS profile (i.e. the MID MCS channels need to be a subset of the
MVIS MCS channels).

iii) If only the MVIS profile has the MCS subset flag set then all of the MCS channels in the MVIS
profile need to be present in the MID profile (i.e. the MVIS MCS channels need to be a subset of
the MID MCS channels).

iv) If both the MID and MVIS profiles have the MCS subset flag then both profiles need to contain the
same set of MCS channels (though order of the MCS channels can vary).

MCS	connection	requires	that	these	flags,	along	with	the	MaterialTypeArrayTags	be	used	to	determine	
whether	the	MCS	channels	meet	the	sub‐set	requirements	of	both	the	profiles.	

The	 MaterialTypeArrayTag	 defines	 names	 for	 each	 of	 the	 channels	 in	 the	 MCS.	 MCS	 channel	 data	
routing	is	based	upon	matching	channel	names	in	the	profiles	being	connected.	

The	optional	MaterialDefaults	tag	provides	default	values	for	channels	that	are	not	present	in	a	source	
profile.	

Four	classes	of	profile	are	able	to	participate	in	MCS	connection.	Two	can	be	used	as	input	and	two	can	
be	used	as	output.	Input	class	profiles	and	MaterialIdentification	class	profiles	can	provide	AToM0	tags	
that	transform	device	channel	data	to	MCS	channel	data;	MaterialLink	class	profiles	provide	MToA0	tags	
that	 transform	 MCS	 channel	 data	 to	 device	 channel	 data;	 and	 MaterialVisualization	 class	 profiles	
provide	either	MToS0	(spectral)	or	MToB0	(colorimetric)	tags	to	provide	transforms	that	go	from	MCS	
channel	data	to	PCS	channel	data	(spectral	or	colorimetric).	

When	MCS	connection	routing	is	determined,	channels	with	identical	names	are	“connected”.	Thus,	for	
each	MCS	 channel	 of	 the	 source	 profile	 data	 is	 passed	 directly	 to	 an	MCS	 channel	 of	 the	 destination	
profile	 that	has	an	 identical	name.	Source	MCS	Channel	data	 is	not	used	when	the	destination	profile	
does	 not	 have	 an	MCS	 channel	with	 an	 identical	 name.	Destination	MCS	 channels	 are	 passed	 default	
values	(either	zero	or	from	the	MaterialDefaultValuesTag)	when	the	source	MCS	does	not	have	an	MCS	
channel	with	an	identical	name.	

I.3 MCS	connection	examples	

Examples	of	 a	 few	possible	MCS	workflow	connections	are	depicted	 in	 the	Figures	 I1	–	 I5	 (not	 to	be	
considered	an	exhaustive	set).	

ICC.2:2017	

©	ICC	2017–	All	rights	reserved	 243	

	

Figure	I.1	Workflow	with	NO	material	channel	subset	requirements.	

(NOTE	This	connection	would	be	expected	to	fail	if	the	MCS	subset	requirement	was	enabled	for	either	the	MID	or	
MVIS	profile	due	to	the	fact	that	their	material	channels	are	not	subsets	of	one	another).		

	

	

	

	

Figure	I.2	Workflow	with	requirement	that	material	channels	of	MID	profile	are	a	subset	of	the	
material	channels	of	the	MVIS	profile.	

ICC.2:2017	

244	 ©	ICC	2017	–	All	rights	reserved	

(NOTE		 value	of	zero	is	passed	into	MVIS	channel	index	3	because	no	MaterialDefaultValuesTag	is	defined	in	the	
MVIS	profile).	

	

	

	

Figure	I.3	Workflow	with	requirement	that	material	channels	of	the	MVIS	profile	are	a	subset	of	
the	material	channels	of	the	MID	profile.	

(NOTE		 Data	from	MID	profile’s	channels	indexed	1	&	4	are	ignored	in	the	connection).	

	

	

	

Figure	I.4	Workflow	where	MID	and	MVIS	profiles	have	equivalent	material	channels.	

	

ICC.2:2017	

©	ICC	2017–	All	rights	reserved	 245	

	

Figure	I.5	Workflow	with	NO	material	channel	subset	requirements	using	MaterialLink	profile.	

ICC.2:2017	

246	 ©	ICC	2017	–	All	rights	reserved	

Annex	J	(informative)	ColorEncodingSpace	class	profiles	

ColorEncodingSpace	class	profiles	allow	for	profile	files	that	have	minimum	data	structure	which	can	be	
embedded	 in	 images	 with	 clear,	 concise,	 and	 non‐redundant	 (canonical)	 information	 relative	 to	 a	
“named”	referance	that	is	provided	to	the	CMM	for	determining	the	actual	transforms	to	apply.		Because	
the	actual	transformation	is	not	defined	by	the	profile,	the	CMM	is	responsible	for	determining/defining	
the	transform	to	use.		

Various	methods	can	be	employed	by	a	CMM	to	provide	the	appropriate	transform.	

One	method	of	implementing	support	for	ColorEncodingSpace	class	profiles	within	a	CMM	is	to	utilize	a	
repository	of	either	fully	specified	ColorEncodingSpace	class	profiles	(described	below)	that	provide	the	
information	 to	establish	 the	needed	 transforms,	or	profiles	of	other	 classes	 (display,	 colorspace,	 etc.)	
that	also	contain	a	referenceNameTag	that	associates	the	profile	with	a	named	color	encoding	space.	

When	a	ColorEncodingSpace	class	profile	is	presented	to	the	CMM,	the	CMM	could	look	for	a	profile	in	
its	repository	that	has	a	matching	color	encoding	space	name	in	the	referenceNameTag	of	the	matching	
profile	 (or	 colorSpaceNameTag	 if	 the	 referenceNameTag	 is	 set	 to	 “ISO	 22028‐1”).	 	 If	 the	 matching	
profile	 is	 not	 a	ColorEncodingSpace	 class	profile	 then	 the	profile	 can	directly	be	used	 in	place	of	 the	
presented	profile,	and	any	optional	parameters	in	the	presented	profile	will	be	ignored.	

If	 the	 matching	 repository	 profile	 is	 a	 fully	 specified	 ColorEncodingSpace	 class	 profile	 then	 the	
colorSpaceNameTag	of	the	matching	repository	profile	will	have	the	same	text	as	the	profile	presented	
to	the	CMM,	and	the	colorEncodingParamsTag	of	 the	matching	repository	profile	will	define	all	of	 the	
parameters	for	the	color	endocing	space	(as	defined	by	ISO	22028‐1).[2]		These	parameters	can	then	be	
used	 (along	 with	 any	 overrides	 provided	 by	 the	 presented	 profile’s	 colorEncodingParamsTag)	 to	
dynamicly	create	a	temporary	profile	to	be	used	to	perform	color	transforms	in	place	of	the	presented	
profile.	

The	information	in	the	colorEncodingParamsTag	represents	(to	some	degree)	a	logical	replacement	of	
the	Matrix/TRC	architecture	defined	in	ISO	15061‐1	with	the	addition	of	viewing	condition	information	
that	can	be	used	along	with	a	color	appearance	model	to	correct	for	differences	in	viewing	conditions.		

Therefore,	a	 temporary	profile	can	be	created	using	a	transform	multiProcessElementsTag	containg	a	
curve	set	element	and	matrix	element	populated	with	information	from	the	colorEncodingsParamsTag	
data	 with	 appropriate	 profile	 connection	 conditions	 tags	 that	 utilize	 a	 matrix	 element	 and/or	 color	
appearance	elements	to	adjust	for	differences	in	viewing	conditions.	

The	temporary	profile	might	be	deleted	when	it	is	no	longer	needed	to	perform	color	transformations.	

	

ICC.2:2017	

©	ICC	2017–	All	rights	reserved	 247	

Bibliography

[1] ISO 15076-1, Image technology colour management -- Architecture, profile format and data structure -
- Part 1: Based on ICC.1:2010

[2] ISO 22028-1, Photography and graphic technology -- Extended colour encodings for digital image
storage, manipulation and interchange -- Part 1: Architecture and requirements

[3] ANSI CGATS TR 001:1995, Graphic Technology — Color Characterization Data for Type 1 Printing

[4] Commission Internationale de l’Eclairage, A colour appearance model for colour management
systems: CIECAM02, (159) (2004).

[5] Li CJ, Luo MR, Testing the robustness of CIECAM02, Color Res Appl (30) (2005) 99-106.

[6] Süsstrunk S, R8-07, CAT in CIECAM02.

[7] Süsstrunk S, Brill MH, The nesting instinct: Repairing non-nested gamuts in CIECAM02, late breaking-
news paper, 14th SID/IS&T Color Imaging Conference Scottsdale, AZ, (2006).

[8] Brill, MH, Süsstrunk S, Repairing gamut problems in CIECAM02: A progress report, Color Res Appl 33
(2008), 424-426; and Erratum, p. 493.

[9] Deshpande K, “N-colour separation methods for accurate reproduction of spot colours,” Ph.D.
dissertation, University of the Arts London, May 2015.

[10] Green PJ, A test target for defining media gamut boundaries, Proc. SPIE 4300, (2001) 105-113.

	

