

The Perceptual Quantizer Design Considerations and Applications

TIMO KUNKEL, PHD

DOLBY LABORATORIES, INC.

SAN FRANCISCO, CA

Introduction

- The Perceptual Quantizer or 'PQ' is an efficient signal non-linearity for HDR applications
- It is modeled after elements of human vision to efficiently and effectively encode a large absolute luminance range for content consumption
- PQ has developed into a foundation of HDR imaging

Overview

- Discuss the design considerations when developing PQ
- Outline the large field of applications

Dark Textures

@ 0.5 cd/m²

Example Application

napped example Note: This image

Color Saturation without clipping color channels

© 2022 DOLBY

Peak

Brightness

@ 6700 cd/m²

ICC HDR EXPERTS DAY - MARCH 15, 2022

3

Development of PQ

Encoding HDR for Content Delivery and Image Display

- About 15 years ago, HDR displays used custom drivers and mapping algorithms had to be developed & applied which was not very efficient from a compatibility and scalability point of view.
- Fully log or gamma functions encounter problems with contouring in certain regions when considering HDR luminance ranges
 - Efficient but not Effective for our intended Application
- Linear light formats existed offering extreme luminance ranges (e.g., OpenEXR and Radiance HDR)
 - Good for post processing and CG applications (e.g., Raytracing, SFX & Image Based Lighting IBL)
 - Effective but not Efficient for our intended Application

Design considerations:

- Don't design for today's display capabilities (limited performance)
- Nor for ranges offered by float linear luminance (limited efficiency).
- Avoid contouring artifacts (limited effectivity).
- Base it on properties of human vision!

© 2022 DOLBY

Content Luminance Ranges

- Content (Frame) Range does not have to be high!
 - Steady State typically sufficient
- But average Luminance might be **high** (*left*) **or low** (*mid*)
- Adaptation* adjusts sensitivity of HVS to highest sensitivity at Adapting Luminance L_A
- Option for HDR format: Encode and Transport the Steady State Range & Adapting Luminance?
- **Challenge:** Content contrast **can** be high (*right*)
- Now, adaptation is viewpoint and viewing environment dependent
- Imaging encoding must facilitate all cases!

* This is a simplification. Adaptive processes are more complex.

Viewing Conditions and Preferences

© 2022 DOLBY

Summary (so far)

- Fully log or gamma functions only approximate perception in certain regions when considering HDR luminance ranges
- They can work, but then, the bit depth requirements are too high
- A smaller, floating range (steady state) with adaptation metadata (such as L_A) follows perceptual properties very well but is challenging to predict and robustly implement for the intended application

Are there other options that:

- follow perceptual principles
- don't require knowledge of L_A?
- Are both effective AND efficient?

Potential Approach:

- 'Worst Case Engineering' paradigm
- Intervals at Highest HVS Sensitivity
- Model discrimination thresholds through a useful luminance range

Worst Case Engineering

- **Fundamental question:** How to determine if a signal non-linearity retains quantization steps that are all equal or below the threshold of one JND over an absolute luminance range.
 - Approach in terms of sensitivity (the inverse of threshold).
 - Particularly: How does the sensitivity of the visual system vary with luminance level.
- One approach to answer this question is to follow **worst-case engineering design principles**.

• Fundamental Concept:

- Worst-case engineering considers the most severe possible behavior of a system that can reasonably be projected to occur in a given situation.
- In the context of imaging, the worst case can be defined by either contouring steps to become visible or by unnecessarily wasting bandwidth for a given luminance level.

Worst Case Engineering

DICOM

Gray Scale Display Function

- Created for medical imaging, adopted by VESA
- Covers 0.05 to 4000 cd/m² with 1023 steps
- Could be extend it to a broader range by adding range above and below limits

Challenges

- Could see visible differences between adjacent bars on test HDR display
- Especially at darker levels
- Why?

Note: The extrapolation of the DICOM curve was carried out by Dolby for exploration of options

References:

- Bradley M. Hemminger, Richard Eugene Johnston, Jannick P. Rolland, and Keith E. Muller "Perceptual linearization of video-display monitors for medical image presentation", Proc. SPIE 2164, Medical Imaging 1994: Image Capture, Formatting, and Display, (1 May 1994); https://doi.org/10.1117/12.174005
- NEMA Standards Publication PS 3.14-2008, Digital Imaging and Communications in Medicine (DICOM), Part 14: Grayscale Standard Display Function, National Electrical Manufacturers Association, 2008.
- P. G. J. Barten, "Contrast Sensitivity of the Human Eye and its Effects on Image Quality", SPIE Optical Engineering Press, 1999.
- P. G. J. Barten, "Formula for the contrast sensitivity of the human eye", Proc. SPIE-IS&T Vol. 5294:231-238, Jan. 2004.

© 2022 DOLBY

ICC HDR EXPERTS DAY - MARCH 15, 2022

The Barten Model

- DICOM is based on the Barten Model
- The Barten model is not a fixed curve, but a model with many parameter values
- DICOM's choice of parameters are not ideal for our use case

Reference:

- M. Cowan, G. Kennel, T. Maier, and B. Walker, "Contrast Sensitivity Experiment to Determine the Bit Depth for Digital Cinema", *SMPTE Mot. Imag. J.*, 113:281-292, Sept. 2004.
- Mantiuk, R., Daly, S., Myszkowski, K., and Seidel, H. 2005. "Predicting visible differences in high dynamic range images: model and its calibration". In Proc. SPIE, vol. 5666, 204–214.

Optimize Barten Model Parameters

- Highest Sensitivity at any light adaptation level, regardless of frequency
- Must work with zero noise imagery
- Angular size of 40° instead of DICOM's 2°
- Recomputing the photon conversion factor for a D65 white point
- Tracking the peaks of contrast sensitivity instead of DICOM's fixed 4 cycles/degree

Reference: P. Whittle, "Increments and decrements: luminance discrimination", Vis Res. V 26, #10, 1677-1691, 1986.

Using Modulation to Set JND Steps

 Once we know the modulation threshold (m_t) at a given luminance level, we can calculate the next JND step up or down from that level

$$m_{t} = \frac{L_{\max} - L_{\min}}{L_{\max} + L_{\min}} \quad so: \quad L_{j+1} = L_{j} \frac{1 + m_{t}}{1 - m_{t}} \quad and \quad L_{j-1} = L_{j} \frac{1 - m_{t}}{1 + m_{t}}$$

• We can also use fractions of a JND step to cover a desired range with a desired bit depth

References:

1. S. Miller, M. Nezamabadi and S. Daly, "Perceptual Signal Coding for More Efficient Usage of Bit Codes," The 2012 Annual Technical Conference & Exhibition, 2012, SMPTE, pp. 1-9, doi: 10.5594/M001446.

Quantization Resolution ∆L/L

Finding a Functional Representation

The perceptual model is a table built by iteration of fractional JNDs

• Awkward for standardization & specification

Identify functional form:

- Continuous function
- With no transitions required
- Invertible

Absolute Boundaries:

PQ_{Max}

- Accepted for PQ max: 10,000 cd/m²
 - To fit to 12 Bits as usable by SDI
 - Also preferred by Hollywood studios & MovieLabs

Encode Equation $L = \left(\frac{D^{1/m} - c_1}{c_2 - c_3 D^{1/m}}\right)^{1/n}$

Decode Equation

ם ת	$\left(c_1+c_2L^n\right)^m$
D =	$\left(\overline{1+c_3L^n}\right)$

PQ_{Min}

- Lowest Level of Visibility at 10⁻⁶ cd/m²
- To simplify math, extended down to
 0.0 cd/m² (added negligible 'cost' to the accuracy)

Quantization Performance

Legend

Artifacts Very Likely Visible

Artifacts Visible Under Some Circumstances

Barten Threshold No Artifacts Visible -Efficient for Encoding

Inefficient for Encoding -Good for Post-Processing

Source: ICDM IDMS v1.1

Verification

Psychophysical Experiment: Detectability

• Test detectability thresholds using JND cross pattern & real images

Psychophysical Experiment: Preference Luminance Range

- In parallel to the mathematical modelling, a psychophysical experiment was carried out
- Objective: Identify the preference HDR luminance range
- Result: Reflected similar ranges for entertainment content

Vetting by Studios & Standardization Efforts

SMPTE standardization efforts involved extremely rigorous vetting of the technology using

- Professional, stable equipment, with careful calibration,
- · Critical viewing, with all sorts of content and corner cases

References:

1. S. Miller, M. Nezamabadi and S. Daly, "Perceptual Signal Coding for More Efficient Usage of Bit Codes," The 2012 Annual Technical Conference & Exhibition, 2012, SMPTE, pp. 1-9, doi: 10.5594/M001446.

 S. Daly, T. Kunkel, X. Sun, S. Farrell & P. Crum (2013): '41.1: Distinguished Paper: Viewer Preferences for Shadow, Diffuse, Specular, and Emissive Luminance Limits of High Dynamic Range Displays', SID Symposium Digest of Technical Papers, 44: 563-566. DOI: 10.1002/j.2168-0159.2013.tb06271.x

JND Cross Test Pattern (nearest neighbor test)¹

+R +G

-R -G

+R +G -B

+R -G -B

-R -G +B

+R +B

-R -B

Real Images¹

Note: Here, patch color contrast to background is amplified for visualization.

Viewer Preferences for Shadow, Diffuse, Specular, and Emissive Luminance Limits²

+R +G +B

-R -G -B

-R +G +B

-R +G -E

+G +B

Final Form of the Perceptual Quantizer

In the end, 10 years ago, in January 2012, PQ took on its finished form with a range of 0 to 10,000 cd/m² and the following formula:

$$L = 10,000 \left(\frac{\max\left[\left(V^{1/m_2} - c_1 \right), 0 \right]}{c_2 - c_3 V^{1/m_2}} \right)^{1/m_1} \qquad m_1 = \frac{2010}{4096} \times \frac{1}{4} = 0.1593017578125$$
$$m_2 = \frac{2523}{4096} \times 128 = 78.84375$$
$$c_1 = \frac{3424}{4096} = 0.8359375$$
$$c_2 = \frac{2413}{4096} \times 32 = 18.8515625$$
$$c_3 = \frac{2392}{4096} \times 32 = 18.6875$$

Today, PQ is standardized in SMPTE ST.2084 and ITU-R Rec. BT.2100

2610

1

Applications

© 2022 DOLBY

ICC HDR EXPERTS DAY - MARCH 15, 2022

Luminance Capabilities of Today's HDR Imaging Pipeline

Capture, Postproduction & Deployment

- Tools for capture, process and distribute HDR in PQ are deployed at scale
- Both professional and consumer level options are available to create, process and distribute HDR PQ content
 - Most major video editing tools support PQ
 - Availability of higher end HDR-capable content editing and grading displays with high luminance capability of ~700 to 4000 cd/m²
 - Support on computers, mobile devices, or tablets for UGC content

Display

- HDR capable displays are widely available in the market at different price points, and all support the PQ non-linearity
- Luminance capabilities
 - Deep blacks (<0.1 cd/m²) down to no light emission
 - Maximum luminance levels reaching 700-1000cd/m² (some offer up to 2000 cd/m²).
 - Color gamut has extended from ITU-R rec. BT.709 to P3 or towards ITU-R Rec. BT.2020
- HDR TVs & mobile phones have been around for several years,
- Computer & tablet displays are also catching up.

Key Standards for Color Gamut:

ITU-R Rec. BT.2020-2 ITU-R Rec. BT.2100-2

Parameter values for ultra-high definition television systems for production and international programme exchange. Image parameter values for high dynamic range television for use in production and international programme exchange.

APPLICATIONS

Availability

Displays

- Of 225 million TVs sold globally in 2020,
- 58% included HDR functionality
- 10% even provided 500 cd/m² peak luminance or higher (Source: OMDIA)
- Many also support **dynamic metadata**-enabled HDR formats.

HDR supported on PCs, mobile phones, tablets, as well as gaming platforms

HDR content is readily available

• Cinema, Blu-ray, broadcast, gaming & OTT

Summary

STATE OF THE OWNER WHEN

Summary

Designing PQ

Complex considerations went into designing PQ This included modelling as well as several psychophysical studies

2

PQ is established!

After its standardization in SMPTE ST.2084 and later ITU-R Rec. BT.2100, PQ has found wide-spread adoption with many HDR applications.

'Backbone' of Consumer HDR

PQ, together with HLG, form the backbone of today's consumer HDR.

Continue enjoying the quality and fidelity improvements, HDR continues to provide!

THANK YOU!

Dolby

Contact: timo.kunkel@dolby.com

Acknowledgement: Scott Daly & Scott Miller

© 2022 DOLBY

429 REFERENCES

deministrion television systems for

Tellevinicon Technical report. ITU.

APPENDIX

REFERENCES

© 2022 DOLBY

Standards Related to HDR

ARIB STD-B67 ٠

CTA 861.3-A-2016 ٠

- EBU Tech 3320 ٠
- ETSI TS 103 433-1 ٠
- SID ICDM IDMS 1.1 ٠
- ITU-R Rec. BT.601-7 ٠
- ITU-R Rec. BT.709-6 ٠
- ٠ ITU-R Rec. BT.1886
- ITU-R Rec. BT.2020-2 ٠
- ITU-R Rec. BT.2035 ٠
- ITU-R Rec. BT.2100-2 ٠
- ITU-R Rec. BT.2124 ٠
- ITU-R Rec. BT.2408-0 ٠
- ITU-T Rec. H.273 ٠
- OpenEXR ٠
- SMPTE ST 0196-2003 ٠
- SMPTE ST 0431-1-2006 ٠
- SMPTE RP 0431-2-2007 ٠
- SMPTE ST 2084:2014 ٠
- SMPTE ST 2086:2018 ٠
- SMPTE ST 2094-0:2017 ٠
- **VESA DisplayHDR:** ٠

- Essential Parameter Values for the Extended Image Dynamic Range Television (EIDRTV) System for Programme Production
- HDR Static Metadata Extensions
- User Requirements for Video Monitors in Television Production. Version 4.1 (9/2019)
 - High-Performance Single Layer High Dynamic Range (HDR) System for use in Consumer Electronics devices
 - SID International Committee for Display Metrology (ICDM) Information Display Measurements Standard v1.1
 - Studio encoding parameters of digital television for standard 4:3 and wide screen 16:9 aspect ratios. ITU-R. March 2011
 - Parameter values for the HDTV standards for production and international programme exchange. ITU-R. June 2015
 - Reference electro-optical transfer function for flat panel displays used in HDTV studio production. ITU-R. March 2011
 - Parameter values for ultra-high definition television systems for production and international programme exchange. Oct. 2015
 - A reference viewing environment for evaluation of HDTV program material or completed programmes
 - Image parameter values for high dynamic range television for use in production and international programme exchange. July 2018
 - Objective metric for the assessment of the potential visibility of colour differences in television. ITU-R. Jan. 2019.
 - Operational practices in HDR television production. ITU-R. Oct. 2017.
 - Coding-independent code points for video signal type identification, 2016
 - High-dynamic-range scene-linear image data and associated metadata format. www.openexr.com
 - Motion-Picture Film Indoor Theater and Review Room Projection Screen Luminance & Viewing Conditions
 - D-Cinema Quality Screen Luminance Level, Chromaticity and Uniformity
 - D-Cinema Quality Reference Projector and Environment
 - High Dynamic Range Electro-Optical Transfer Function of Mastering Reference Displays. SMPTE 2014
 - Mastering Display Color Volume Metadata Supporting High Luminance and Wide Color Gamut Images
 - Overview Document Dynamic Metadata for Color Volume Transformation. DOI: 10.5594/SMPTE.OV2094-0.2017.
 - VESA High-performance Monitor and Display Compliance Test Specification (DisplayHDR CTS). Rev. 1.1 (2019). www.displayhdr.org

Super states

Appendix

What is a JND (Just Noticeable Difference)

Crispening Effect

- The visual system is more **sensitive to lightness variations around the background** luminance
- This is known as the Crispening Effect.

References:

- Takasaki, H. (1966). Lightness change of gray induced by change in reflectance of gray background. Journal of the Optical Society of America, 56(4), 504-509. https://doi.org/10.1364/JOSA.56.000504
- Takasaki, H. (1967). Chromatic Changes Induced by Changes in Chromaticity of Background of Constant Lightness. Journal of the Optical Society of America, 57(1), 93-96. https://doi.org/10.1364/JOSA.57.000093
- Semmelroth, C. C. (1970). Prediction of Lightness and Brightness on Different Backgrounds. Journal of the Optical Society of America, 60(12), 1685-1689.
- P. Whittle, "Increments and decrements: luminance discrimination", Vis Res. V 26, #10, 1677-1691, 1986.

Contouring

The Barten Model

The Barten model parameters as used for PQ

$$CSF = \frac{1}{m_{t}} = \frac{M_{opt}(u)/k}{\sqrt{\frac{2}{T} \left(\frac{1}{X_{0}^{2}} + \frac{1}{X_{max}^{2}} + \frac{u^{2}}{N_{max}^{2}}\right) \left(\frac{1}{\eta p E} + \frac{\Phi_{0}}{1 - e^{-(u/u_{0})^{2}}}\right)}}$$
$$M_{opt}(u) = e^{-2\pi^{2}\sigma^{2}u^{2}}$$
$$\sigma = \sqrt{\sigma_{0}^{2} + (C_{ab}d)^{2}}$$
$$d = 5 - 3\tanh\left(0.4\log\left(LX_{0}^{2}/40^{2}\right)\right)$$
$$E = \frac{\pi d^{2}}{4}L\left(1 - (d/9.7)^{2} + (d/12.4)^{4}\right)$$

$$k = 3.0$$

$$\sigma_0 = 0.5 \operatorname{arcmin}$$

$$C_{ab} = 0.08 \operatorname{arcmin/mm}$$

$$T = 0.1 \operatorname{sec}$$

$$X_0 = 40^{\circ}$$

$$X_{\max} = 12^{\circ}$$

$$N_{\max} = 15 \operatorname{cycles}$$

$$\eta = 0.03$$

$$\Phi_0 = 3 \times 10^{-8} \operatorname{sec} \operatorname{deg}^2$$

$$u_0 = 7 \operatorname{cycles/deg}$$

$$p = 1.25 \times 10^6 \operatorname{photons/sec/deg^2/Td}$$