

國立臺灣科技大學 TACWAN TECH National Taiwan University of Science and Technology



### ICC Display and 3D Print Meeting Taipei 2016

## Introduction to 3D Holographic Display Technologies

### Prof. Chien-Yu Chen

Graduate Institute of Color and Illumination Technology National Taiwan University of Science & Technology

# Outline



• The research teams of CGH

• CGH researched in my team

• The future of CGH



2

3

4

# Introduction to holography



D. Gabor, "A new microscopic principle," Nature 161, 777-778 (1948).

# Categories of Holography

| Category                                                                  | Interference<br>fringe                   | <b>Recording of</b><br>interference fringes | Reconstruction                                                                                                                              |
|---------------------------------------------------------------------------|------------------------------------------|---------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| Holography                                                                | optical<br>interference                  | DCG or PDLC                                 | Interference has been recorded as<br>the photosensitive material<br>hologram.                                                               |
| Digital<br>Holography                                                     | optical<br>interference                  | CCD or CMOS                                 | Spatial Light Modulator                                                                                                                     |
| Computer<br>Generated<br>Holography                                       | phase<br>calculation<br>with<br>computer | Lithography or etching                      | <ul> <li><sup>1</sup> Diffractive optical element after<br/>lithography or etching</li> <li><sup>2</sup> Spatial Light Modulator</li> </ul> |
| The difficulties of holography 1 The photosensitive material formulations |                                          |                                             |                                                                                                                                             |

2. The diffraction efficiency is vulnerable to decay after long time. In recent years, the development of holography gradually toward to **digital holography and computer generated holography**.



# **Optical holography**





onal Taiwan University of nce and Technology

# **Digital holography**





# Computer generated hologarphy





# **The research teams of CGH**



### **Famous Teams of CGH in the world**







園立臺湾科技大学 TACWAN TECH National Taiwan University of Science and Technology

## **CGH researched in my team**

### Novel algorithm

- Modified Gerchberg-Saxton algorithm
- New application
  - Vision Training

### IICGH

- Integral computer-generated hologram
- Full color CGH display system
  - Full color mode
  - Reduce speckle noise

### **CGH researched in my team**

#### Novel MGSA applied in CGH

Application



### **Integral computer-generated hologram**



TECH Net Dengted Hot T. Chang, B. S. Lin, P. J. Wu, G. S. Huang, C. Y. Chen\*, Journal of Optics. 2014.

### **Full-color computer-generated hologram (I)**

### → A Double Parabolic Mirror Projection System

The double parabolic projection system is composed of double parabolic mirrors. The full-color computer-generated hologram is a real image, which could be remade a virtual image through the double parabolic projection system. The image magnification appears 1.2. The horizontal viewing angle appears 360° and the vertical viewing angle 15-75°.





C.Y Chen, H.T Chang, T.J Chang, C.H Chuang, "Full-Color and Less-Speckle MGSA Computer Generated Hologram Floating on a Dual Parabolic Projection System", Chinese Optics Letters, August, 2015





### **Full-color computer-generated hologram (II)**

### $\rightarrow$ Pyramid-type floating projection system

- Four image display surfaces could be used for presenting distinct information and switch the angle of view for the 360 degree viewing.
- The 3D perception of dynamic floating images could be reinforced by the pyramid structure.
- The matching of algorithms and optical mechanisms we developed could present <u>various colors</u> on different display surfaces.
- Large-size holographic image (surround splice)





Pei-Jung Wu, Chih-Hao Chuang, Chien-Yu Chen\*, Hsuan-Ting Chang, Tsung-Jan Chang,
"A Full-color Computer Generated Holography for Panoramic Reconstruction", Society for Information Display (SID), San Francisco USA, May 2016.(Post)



#### The first surface-white CGH



#### The second surface-cyan CGH



The third surface-magenta CGH



#### The fourth surface-yellow CGH.



# **Publications**

### **SCI Journal :**

- Chien-Yue Chen\*, Hsuan-Ting Chang, Tsung-Jan Chang, Chih-Hao Chuang, "Full-Color and Less-Speckle MGSA Computer Generated Hologram Floating on a Dual Parabolic Projection System", Chinese Optics Letters, August, 2015
- Pei-Jung Wu, <u>Chien-Yue Chen</u>\*, Qing-Long Deng, Hsuan-Ting Chang, Bor-Shyh Lin, Guan-Syun Huang, "Integral computer-generated hologram via a modified Gerchberg-Saxton algorithm", Journal of Optics, Vol.17, No.1, 2014.
- Chien-Yue Chen\*, Qing-Long Deng, Pei-Jung Wu, BorShyh Lin, Hsuan-Ting Chang, Hone-Ene Hwang, and Guan-Syun Huang, "Speckle reduction by combination of digital filter and optical suppression in holographic display", Applied Optics, Vol.53, No.27, pp. G163-G168, 2014.
- Qing-Long Deng, Bor-Shyh Lin, Pei-Jung Wu, Kuan-Yao Chiu, Ping-Lin Fan, and Chien-Yue Chen\*, "A Hybrid temporal and spatial speckle suppression method for laser display", Optics Express, Vol.21, No.25, pp. 31072-31081, 2013.
- Qing-Long Deng, Bor-Shyh Lin, Hsuan T. Chang, Guan-Syun Huang, and <u>Chien-Yue Chen\*</u>, "MGSA type computer generated holography for vision training with head-mounted display", IEEE/OSA Journal of Display Technology, Vol.10, No.06, pp.433-437, 2013. (SCI)
- Qing-Long Deng, Bor-Shyh Lin, Hsuan T. Chang, Guan-Syun Huang, and <u>Chien-Yue Chen\*</u>, "MGSA type computer generated holography for vision training with head-mounted display", IEEE/OSA Journal of Display Technology, Vol.10, No.06, pp.433-437, 2013.
- Chien-Yue Chen\*, Wei-Chia Su, Ching-Huang Lin, Ming-De Ke, Qing-Long Deng, Kuan-Yao Chiu, "Reduction both of speckle and distortion in projection imaging system by using a rotating diffuser", Optical Review, Vol.19, No.6, pp.440-443, 2012.

### Patent:

- Invention patent of ROC , "The method of laser speckle reduction" (Patent No. 102120871)
- Invention patent of US, "Diffraction-type 3D display element and method for fabricating the same" (US 8,926,849 B2)





國立臺灣科技大學 TACWAN TECH National Taiwan University of Science and Technology

# **The future of CGH**

# I) Single LCoS

#### Warsaw University of Technology, M. Makowski et al.

In 2010, M. Makowski et al.used a single SLM to keep the setup very simple. Division of the SLM area into three sections addressed by three Fourier holograms calculated for red, blue, and green color components





M. Makowski, I. Ducin, M. Sypek, A. Siemion, A. Siemion, J. Suszek, and A. Kolodziejczyk, "Color image projection based on Fourier holograms", Opt. Lett., Vol. 35, No. 8, pp. 1227-1229, 2010.

# **II) Micro optical system**

#### Warsaw University of Technology, M. Makowski et al.

In 2012, M. Makowski et al.used three light fibers to simplify and miniaturize the system setup.



### (a)Optical system (b)Experimental result





M. Makowski, I. Ducin, K. Kakarenko, J. Suszek, M. Sypek, and A.Kolodziejczyk, "Simple holographic projection in color", Opt. Express, Vol. 20, No. 22, pp. 25130-25136, 2012.

# **III) Apply on HMD**

#### KAIST, J. Hahn et al

In 2014, J. Hahn et al.used RGB LED as light source, and realized the non-intrusive CGH HMD. But it only display in single color.





Fig. 6. (a) Full head-mounted holographic display system, (b) control box with RGB LEDs fed to a multimode optical fiber and (c) optics of the holographic display module





Moon, E., Kim, M., Roh, J., Kim, H., & Hahn, J. (2014). Holographic headmounted display with RGB light emitting diode light source. Optics express, 22(6), 6526-6534.





Image source: http://www.hongkiat.com/blog/augmented-reality-next-big-thing/

# Fantasy Interlaces Reality, Holography Creates The Future!!

