

Methods for Optimizing Color Uniformity of 3D Printing Surfaces

Speaker: Pei-Li Sun (孫沛立)

Assistant Professor National Taiwan University of Science and Technology (NTUST) Presented at IS&T Electronic Imaging 2016 Previously

Overview

- Motivation
- A method for color 3D halftoning
- A multi-directional color target for estimating color variations across different surface directions
- A color compensation method to improve the consistency of color across different faces of a 3D print
- Conclusions

- 3D printing becomes widespread in recent years.
- Only few commercial products are capable of generating full-color 3D prints with acceptable quality.

Every Direct of

3D Systems - ProJet 460 Plus Powder-Binder Printing

Stratasys - Objet500 Connex3 Photopolymer Inkjet

Lamination

- Laminated object manufacturing (LOM) low quality, color enable
- Extrusion deposition
 - Fused deposition modeling (FDM) cheaper, low quality, multimaterials
- Granular Material Binding
 - Selective laser sintering (SLS) high quality, thermoplastics, metal powders, ceramic powders
 - Plaster-based 3D printing (PP) color enable
- Photopolymerization (UV curing)
 - Stereolithography (SLA) high quality
 - Digital Light Processing (DLP) faster
 - Photopolymer Inkjet (PloyJet) high quality, multi-materials

 The processing itself is based on ink-jet printing, with the powder being deposited in consecutive layers which are selectively joined by ink-jetting the binder. Three (CMY) or four (CMYK) colored binder together with the clear binder are mixed to print powder material in a full color spectrum layer by layer. After 3D printing, post-processing, including de-powder and infiltration needs to be conducted.

PolyJet

 It combines liquid photopolymer droplets of two or three base materials to produce multicolour or multi-material parts in a single run. Each photopolymer layer is cured with UV light after it is jetted, producing fully cured models that can be handled and used immediately, without post-curing. Gel-like support material is needed during the printing to support complicated geometries.

Stratasys - Objet500 Connex3 Photopolymer Inkjet

Colors are inconsistent across different faces

Powder-Binder Printing

Additive binding

Moire patterns are inconsistent across different faces

X view

Y view

Z view

Front

Back

2D Error diffusion

• Unwanted stripes in X and Y viewing directions

X view

Y view

Z view

- To optimize color 3D halftoning for a UV-curing photopolymer inkjet printing system.
- To develop a test target for ICC-based color management and for estimating multi-directional color differences.
- To reduce the omnidirectional color differences based on the above measurement.

Optimization of Color 3D Halftoning

- No white subtract. Opaque white ink is needed.
- To maximize its color gamut, CMYKW is recommended.
- To keep local volume unchanged, each sub-voxel must fill-in only one color ink-droplet. Translucent color inks are needed.
- To speed the process, the printing resolution must be low.

Develop a photopolymer 3D inkjet printer at NTUST

Cross-department cooperation:

- Color and 3D scan technologies
- Photopolymer materials
- Inkjet head
- Printing system

NTUST Prototype + Color RD Group

Dispersed threshold matrix

Different patterns across different orientations High local contrast

ΛΜΛΝ

色彩與照明科技研究所 Graduate Institute of Color and Illumination Technology

The Initial Matrix

- Well-dispersed in 3D
- Gray can be produced by layering black and white to reduce local contrast

8-bit gray	Input	X view	Y view	Z view
20				
60				HAH
100				
140				***
180				
220			XXX XXX XXX	
240				

1	49	7	55	41
33	17	39	23	9
5	53	3	51	45
37	21	35	19	13

Layer 1

Layer 2 25 47 31

59

57 15 63

29 43 27

61 11

Layer 4

Layer 3

4	52	6	54	44	28	46	30
36	20	38	22	12	60	14	62
8	56	2	50	48	32	42	26
40	24	34	18	16	64	10	58

Not bad

4x4x4 3D Matrix Optimization

Layer 1

17 46 55 1

36 28 19 44

52

38 31

2 54

57 7

9

The Optimal Matrix

8-bit gray	Input	X view	Y view	Z view
20		888		
60				
100				
140				~~~ ~~~
180				
220			333	
240		332		

	Lay	/er	2		Lay	er 3			Lay	er 4	
53	20	47	22	13	56	6	50	41	10	30	37
29	60	62	12	40	32	23	48	4	35	15	59
45	14	26	33	21	42	51	5	49	24	43	18
8	39	11	63	61	3	34	27	25	64	58	16

The patterns are similar across different orientations and the local contrast are smaller.

Grayscale Comparison

RGB to CMYKW conversion

$$\{R,G,B,C,M,Y,K,W\} \in \begin{bmatrix} 0 & 1 \end{bmatrix}$$

1. Gray Component Replacement

$$\begin{bmatrix} C' \\ M' \\ Y' \end{bmatrix} = \begin{bmatrix} 1-R \\ 1-G \\ 1-B \end{bmatrix}$$

$$K = \min(C', M', Y')$$

$$\begin{bmatrix} C \\ M \\ Y \end{bmatrix} = \begin{bmatrix} C'-K \\ Y'-K \\ M'-K \end{bmatrix}$$

$$W = \min(R, G, B)$$

3. Scaling

$$\begin{bmatrix} C_{\%} \\ M_{\%} \\ Y_{\%} \\ K_{\%} \\ W_{\%} \end{bmatrix} = \frac{1}{C + M + Y + K + W} \begin{bmatrix} C \\ M \\ Y \\ K \\ W \end{bmatrix}$$

4. Quantization

$$\begin{bmatrix} C_n \\ M_n \\ Y_n \\ K_n \\ W_n \end{bmatrix} = round \begin{cases} 64 \begin{bmatrix} C_{\%} \\ M_{\%} \\ Y_{\%} \\ K_{\%} \\ W_{\%} \end{bmatrix} \end{cases}$$

The color order is matter!

Page 23

Comparison

(R, G, B)=(0.8, 0.1, 0.5) as an example

Comparison

Workflow

Unit: ΔE_{RGB}

8-bit (256 lev	vel for each channel)	Primary	Mean	Мах	
Gray		KW	1.72	3.44	
Color		CMYKW	0.45	16.06	

ΤΛΙΜΛΝ

色彩與照明科技研究所 Graduate Institute of Color and Illumination Technology

Quantization error with 2x2x2 matrix

unit: ΔE_{RGB}

8-bit (256 le	evel for each channel)	Primary	Mean	Max.	
Gray		KW	13.75	27.50	
Color		CMYKW	3.33	87.40	

Compare the size of threshold matrix

4x4x4

Page 29

Hybrid Approach

Result in good sharpness and good uniformity

3dsMax simulation

8x8x8 input voxels

A test target for estimating multi-directional color differences

Equipment

3D Systems - ProJet 460 Plus

Powder-Binder Printing

Patented test target

- 13 pieces, puzzle-like target
- 26 orientations
- Generate ICC profile based on the central puzzle

Compatible to X-rite i1 toolkit

Manual Scan or Auto Scan

• Both sides must be measured.

Multi-directional color differences

Compared to the Z direction

Mean Errors

CMYK Errors Black is most serious

Graduate Institute of Color and Illumination Technology

Omnidirectional Color Correction

Color variations in (L*, a*) plot

WAN

研究所

Gamut scaling toward the white point

F究所

Measure the multi-directional L*a*b* values for CMYK primaries

Averaging the ΔE between the white point and the CMYK primaries

Calculate the ratio of the mean ΔE of orientation (α , θ) to the mean ΔE of the top direction.

Generate a 5x9 2D LUT to store the ratio **S** for each of the direction.

- 1. Calculate the (α, θ) from the surface normal of the input voxel.
- 2. Obtain the S value by interpolating the 2D (α , θ) LUT.
- 3. Modify its LAB value based on the following equation:

$$\begin{bmatrix} \mathbf{L}^{*'} \\ \mathbf{a}^{*'} \\ \mathbf{b}^{*'} \end{bmatrix} = \begin{bmatrix} 100 - s \cdot (100 - \mathbf{L}^{*}) \\ s \cdot \mathbf{a}^{*} \\ s \cdot \mathbf{b}^{*} \end{bmatrix}$$

Results

Conclusions

- A **hybrid 3D color dithering method** is proposed to improve image quality of a UV-curing photopolymer 3D inkjet system.
- It uses two different sizes of optimal threshold matrices to perform color halftoning in **KMCYW** order.
- A **Multi-directional Color Target** was designed to estimate color performance of surfaces in 26 directions.
- A **omnidirectional color correction method** also is proposed to improve the color consistency of the color across different faces of a 3D print.

Acknowledgement

Thank you for your listening Pei-Li Sun (孫沛立) plsun@yahoo.com

National Taiwan University of Science and Technology