June 27, 2017

ICC-CMRF (2016-2017)

An Efficient Uniform Color Space for High Dynamic Range and Wide Gamut Imagery

Presenter:Muhammad Safdar (PhD)Supervisor:Prof. M. Ronnier Luo

Zhejiang University, China

Uniform Color Space

- Predicts perceptual color difference
- > No inter-dependence b/w lightness, chroma, and hue

Criteria for a New UCS

- **4** To uniformly encode high dynamic range signals e.g., 0-10,000 cd/m²
- **5** To uniformly encode wide gamut image signals e.g., Rec.2020

1) CIELAB

CIE/ISO standard

2) CAM16-UCS

Accurately predicts small color difference data

3) IC_TC_P

Dolby's proposal for HDR and WCG

4) $J_z a_z b_z$

Current Proposal

• CIE, Colorimetry, 2004

• C. Li et al., Color Imaging Conf., 2016

• Dolby, 2016

Criteria and Visual Data

No.	Criteria	Data sets	Purpose
1	Perceptual Color Difference	i) COMBVD ii) OSA	i) Training ii) Testing
2	Perceptual Uniformity	 i) COMBVD Ellipses ii) MacAdam Ellipses iii) Munsell Data 	i) Reference ii) Testing iii) Testing
3	Hue Linearity	 i) Hung & Berns ii) Ebner & Fairchild iii) Xiao <i>et al.</i> 	i) Referenceii) Testingiii) Testing
4	Wide-range Lightness Prediction	i) RIT SL1 ii) RIT SL2	i) Testing ii) Training
5	Grey-scale convergence	Chroma-ratio metric (%)	Chroma-Ratio = $100 \frac{3C_w}{C_r + C_g + C_b}$

(3)

Proposed J_za_zb_z space

$$\begin{bmatrix} X'_{D65} \\ Y'_{D65} \end{bmatrix} = \begin{bmatrix} bX_{D65} \\ gY_{D65} \end{bmatrix} - \begin{bmatrix} (b-1)Z_{D65} \\ (g-1)X_{D65} \end{bmatrix}$$
(1)

$$\begin{bmatrix} L \\ M \\ S \end{bmatrix} = \begin{bmatrix} 0.41478972 & 0.579999 & 0.0146480 \\ -0.2015100 & 1.120649 & 0.0531008 \\ -0.0166008 & 0.264800 & 0.6684799 \end{bmatrix} \begin{bmatrix} X_{D65} \\ Y_{D65} \\ Z_{D65} \end{bmatrix}$$
(2)

$$\left\{L, M', S', \right\} = \left(\frac{c_1 + c_2 \left(\frac{\{L, M, S\}}{10,000}\right)^n}{1 + c_3 \left(\frac{\{L, M, S\}}{10,000}\right)^n}\right)$$
 where $n = 2610 / 2^{14}$
 $p = 1.7 \times 2523 / 2^5$

$$\begin{bmatrix} I \\ a_z \\ b_z \end{bmatrix} = \begin{bmatrix} 0.5 & 0.5 & 0 \\ 3.524000 & -4.066708 & 0.542708 \\ 0.199076 & 1.096799 & -1.295875 \end{bmatrix} \begin{bmatrix} L \\ M' \\ S' \end{bmatrix}$$
(4)

$$J_{z} = \left(\frac{(1+d)I_{z}}{1+dI_{z}}\right) \qquad \text{where} \quad d = -0.56 \tag{5}$$

Results (Uniformity)

Results (Uniformity in WCG)

Results (Quantitative)

Results (Hue Linearity)

Results (Quantitative)

Results (Lightness Prediction)

Results (Lightness)

Conclusions

- $J_z a_z b_z \rightarrow$
- Second best for small color difference
- Best for large color difference
- Best for wide gamut uniformity
- > Best for hue linearity
- Best for wide-range lightness prediction
- Plausible grey-scale convergence

J_za_zb_z gave overall best performance and should be confidently used

Demonstration (Image Segmentation)

Segmentation (7 regions) using K-means clustering algorithm

Original

CAM16-UCS

IC_TC_P

Deliverables

1. Journal Paper: *Optics Express* (*IF=3.3*)

https://www.osapublishing.org/oe/abstract.cfm?uri=oe-25-13-15131

2. MATLAB Code for J_za_zb_z

Model Development

> Initially, we start using a structure similar to IC_TC_P

(1)

(2)

 $(\mathbf{3})$

$$\begin{bmatrix} L \\ M \\ S \end{bmatrix} = \begin{bmatrix} \alpha_{1,1} & \alpha_{1,2} & 1 - \alpha_{1,1} - \alpha_{1,2} \\ \alpha_{2,1} & \alpha_{2,2} & 1 - \alpha_{2,1} - \alpha_{2,2} \\ \alpha_{3,1} & \alpha_{3,2} & 1 - \alpha_{3,1} - \alpha_{3,2} \end{bmatrix} \begin{bmatrix} X_{\text{D65}} \\ Y_{\text{D65}} \\ Z_{\text{D65}} \end{bmatrix}$$

$$\left\{L', M', S', \right\} = \left(\frac{c_1 + c_2\left(\frac{\left\{L, M, S\right\}}{10,000}\right)^n}{1 + c_3\left(\frac{\left\{L, M, S\right\}}{10,000}\right)^n}\right)^p$$

$$\begin{bmatrix} I \\ a_{z} \\ b_{z} \end{bmatrix} = \begin{bmatrix} \omega_{1,1} & \omega_{1,2} & 1 - \omega_{1,1} - \omega_{1,2} \\ \omega_{2,1} & \omega_{2,2} & 1 - \omega_{2,1} - \omega_{2,2} \\ \omega_{3,1} & \omega_{3,2} & 1 - \omega_{3,1} - \omega_{3,2} \end{bmatrix} \begin{bmatrix} L \\ M \\ S \end{bmatrix}$$

Model Development

> Then we introduced a linear given below to correct hue linearity

$$\begin{bmatrix} X_{D65} \\ Y_{D65} \end{bmatrix} = \begin{bmatrix} bX_{D65} \\ gY_{D65} \end{bmatrix} - \begin{bmatrix} (b-1)Z_{D65} \\ (g-1)X_{D65} \end{bmatrix}$$
$$\begin{bmatrix} L \\ M \\ S \end{bmatrix} = \begin{bmatrix} \alpha_{1,1} & \alpha_{1,2} & 1-\alpha_{1,1}-\alpha_{1,2} \\ \alpha_{2,1} & \alpha_{2,2} & 1-\alpha_{2,1}-\alpha_{2,2} \\ \alpha_{3,1} & \alpha_{3,2} & 1-\alpha_{3,1}-\alpha_{3,2} \end{bmatrix} \begin{bmatrix} X_{D65} \\ Y_{D65} \\ Z_{D65} \end{bmatrix}$$
$$\{L, M, S, S, \} = \begin{bmatrix} c_1 + c_2 \left(\frac{\{L, M, S\}}{10,000} \right)^n \\ 1 + c_3 \left(\frac{\{L, M, S\}}{10,000} \right)^n \\ 1 + c_3 \left(\frac{\{L, M, S\}}{10,000} \right)^n \end{bmatrix}$$
$$\begin{bmatrix} I_z \\ a_z \\ b_z \end{bmatrix} = \begin{bmatrix} \omega_{1,1} & \omega_{1,2} & 1-\omega_{1,1}-\omega_{1,2} \\ \omega_{2,1} & \omega_{2,2} & 1-\omega_{2,1}-\omega_{2,2} \\ \omega_{3,1} & \omega_{3,2} & 1-\omega_{3,1}-\omega_{3,2} \end{bmatrix} \begin{bmatrix} L \\ M' \\ S' \end{bmatrix}$$

(1) 0.15 0.1 (2) yellowness-blueness 0.05 0 -0.05 -0.1 (3) -0.15 -0.2 -0.2 -0.1 0.1 0 redness-greenness (4)

Model Development

Another simple equation to tune perceptual lightness

$$J_{z} = \left(\frac{\left(1+d\right)I_{z}}{1+dI_{z}}\right)$$
(5)

