

Colorimetric and spectral matching

Prague, Czech republic June 29, 2017

Marc Mahy Agfa Graphics

Overview

COLOR

- **Modeling color**
- **Color matching**
- **Process control**
- **Profile** based color transforms
 - -Visual effects
 - —Light interactions
- **Color matching**
 - -Colorimetric matching
 - -Spectral matching
 - Metameric colors

CONSORTIUM

INTERNATIONAL COLOR

- Object has the color of the "light" leaving its surface
 - -Light source SPD: $I(\lambda)$
 - Object Reflectance: $R(\lambda)$
 - -Human observer $CMF:(X(\lambda), Y(\lambda), Z(\lambda))$

CONSORTIUM

Light source

INTERNATIONAL COLOR

- -Electro Magnetic Radiation (EMR)
 - Focus on wavelength range from 300 till 800 nm
- Different standard illuminants
 - Illuminant E (equi-energy)
 - Illuminant A, D_{50} , D_{65} , F_{11}

- Object colors: Classes object types
 - —Opaque objects
 - Diffuse reflection: Lambertian reflector
 - Specular reflection: mirror
 - Most objects: diffuse and specular reflection
 - -Transparent objects
 - Absorption, no scattering: plexi, glass, ...
 - -Translucent objects
 - Absorption and scattering: backlit
 - -Special effects
 - Fluorescence: substrates
 - Metallic surfaces: (in plane) BRDF

CONSORTIUM

- Object colors: Characterizing object types
 - —Opaque objects
 - Measurement geometry: 45°:0° or 0°:45°
 - Colorimetric or reflectance spectra
 - -Transparent objects
 - Measurement geometry: d:0° or 0°:d
 - Colorimetric or transmission spectra
 - -Translucent objects
 - In reflection or transmission mode
 - For reflection mode: White backing, black backing or self backing
 - -Special effects
 - Fluorescent substrates: colorimetric data or bi-spectral reflectance
 - Metallic surfaces: BRDF based on colorimetric or reflectance data

d/0° measurement geometry

45°/0° measurement geometry

Self luminous colors

- —Displays
 - Additive color mixing based on Red, Green and Blue phosphors

- Characterizing self luminous colors
 - Displays: colorimetric data or radiant emission spectra

CONSORTIUM

Human observer

NTERNATIONAL COLOR

- —Color vision: three types of cones
- -Sensitive to EMR from 360 till 830 nm

Tristimulus color spaces

- -Based on color matching experiments
- —Grassman's laws (additivity)
- \Rightarrow Color Matching Functions (CMF's)

• Tristimulus values opaque objects

$$X = \frac{\int_{360}^{830} R(\lambda) X(\lambda) I(\lambda)}{\int_{360}^{830} Y(\lambda) I(\lambda)} \quad Z = \frac{\int_{360}^{830} R(\lambda) Z(\lambda) I(\lambda)}{\int_{360}^{830} Y(\lambda) I(\lambda)}$$

$$Y = \frac{\int_{360}^{830} R(\lambda) Y(\lambda) I(\lambda)}{\int_{360}^{830} Y(\lambda) I(\lambda)}$$
AGFA \clubsuit

Color matching

NSORTIUM

Colorimetric matching

- —Two colors (test and reference sample)
 - under the same viewing conditions
 - under different viewing conditions
- -Condition colorimetric match opaque colors
 - Same viewing conditions: $XYZ_1 = XYZ_2$
 - Different viewing conditions: $Jab_1 = Jab_2$

Examples

- -Contract proofing for a given illuminant
- —Conversion from display (D_{65}) to graphic arts (D_{50})

Issues

- -No match for changes in illumination
- AGFA 🧇 No match for observers with different CMF's

Color matching

CONSORTIUM

Spectral matching

- Two colors (test and reference sample)

- evaluated simultaneously for different illuminants
- Too strict condition spectral match opaque colors:

$$SPD_{1}(\lambda) = SPD_{2}(\lambda)$$
$$I(\lambda)R_{1}(\lambda) = I(\lambda)R_{2}(\lambda)$$
$$R_{1}(\lambda) = R_{2}(\lambda)$$

Examples

- Conventional proofing systems
 - Spectral color matching between proof and press
 - Accurately simulating screening effects

Issues

- -Not possible to get a spectral match between display and hard copy
- Only supported for object colors

Process control

Normal distribution

-Continuous probability distribution

$$\varphi(\mu,\sigma) = \frac{e^{-\frac{1}{2}x^2}}{\sqrt{2\pi}}$$

with x: variable

μ : average

 $\boldsymbol{\sigma}$: standard deviation

-Properties

- x normal distribution $\varphi(\mu, \sigma)$
- => \bar{x}_n normal distribution $\varphi(\mu, \sigma/\sqrt{n})$
- => Reducing uncertainty & increasing accuracy

COLOR

CONSORTIUM

Normal distribution (cont'd)

- -Confidence intervals
 - +/- 1σ: 68.3 % 3170 errors per 10,000 measurements
 - +/- 2σ: 95.5 % 460 errors per 10,000 measurements
 - +/- 3σ: 99.7 % 27 errors per 10,000 measurements

Profile based transforms

ICC.2 approach (iccMAX)

AGFA

Exchange color data: Both Colorimetric and spectral Profile connection spaces
- XYZ, Lab or spectral
Viewing conditions (PCC):
- Illuminant, observer and

Profile connection spaces

Source PCS Destination

Profile based transforms: Visual effects

Visual effects

ISORTIUM

- Appearance based color matching
 - Needed if viewing conditions source and destination are different
 - For ICC.1: CAT's are used
 - For ICC.2: Support provided by modified CIECAM02
- Local effects such as lightness and color induction, crispening, ...
 - Not simulated as they are present in the image

Print substrates

- -Large variety of substrates used in ink jet applications
 - Plastics, backlit, plexi, glass, wood, ...
 - Special light objects interactions
 - \Rightarrow Not always easily to measure

Measurement instruments

- -Both available for reflectance and transmittance
- —Support M0, M1 and M2 measurement conditions for reflectance
 - M1 either for D₅₀ or a custom illuminant
- -Typical characteristics
 - Different apertures to measure local non-uniformities
 - Spectral data provided
 - Black and white backing available

• Effect thickness substrate

—Plexiglass

COLOR

CONSORTIUM

-Reflectance measurements are not accurate or meaningfull

- Transparent and translucent substrates
 - -Interaction light in substrate

—Measurement dot gain based on ISO-12233 (Slanted edge method)

Profile based transforms: Light into Edge Sprea

- **Transparent and translucent substrates**
 - —Based on edge spread function

COLOR

CONSORTIUM

- Patch size on translucent substrates 20 mm
- Patch size on transparent substrates 5 mm

distance

- Transparent and translucent substrates
 - —Effect illumination size

INTERNATIONAL COLOR

- Effect white ink on transparent substrate
- Effect cyan ink on translucent substrate

INTERNATIONAL COLOR CONSORTIUM

Profile based transforms: Light interactions

Transparent substrates

—Tunneling effect (inter-reflections in substrate)

Textile

- -Non-uniform surface
- —Effect directional geometry

Directional Geometry Variations

Textile substrate

Proofing substrate

INTERNATIONAL COLOR

CONSORTIUM

5 5 4 4 3 3 Z-value 2 2 1 0 -1 -2 -2 -3 -3 -4 -4 -5 -5 45 45 135 0 90 135 180 225 270 315 360 0 90 180 225 270 315 360 AGFA Angle Angle

Conventional color management

- —Supported both by ICC.1 and ICC.2 (iccMAX)
- Use cases

AG

NTERNATIONAL

- —Perceptual match => typically viewing in isolation
- —Proofing => side by side evaluation
- Object type combinations for ICC.2 (iccMAX)

Colorimetric match	Opaque	Trans- parent	Trans- lucent	Display	Fluorescent substrate
Opaque					
Transparent					
Translucent					
Display					
Fluorescent substr.					

Handling mismatch in viewing conditions

—ICC.1: CAT's

NTERNATIONAL COLOR

CONSORTIUM

- Perceptual: CAT's used

- Proofing: undo CAT's, recalculation destination profile is needed

- -ICC.2: Profile Connection Conditions (PCC's)
 - Perceptual: mechanism in place to handle different PCC's
 - Proofing: inverse table cannot be reused

INTERNATIONAL COLOR

CONSORTIUM

Handling mismatch in viewing conditions (con'd) D_{50} -Effect illuminants on gamut D₆₅ -Spectral measurement file for Fogra51 D₉₃ **Illuminant A** | * a* b* Hue = 50° L*=50

C*

Closed loop

- —Iteratively improving device model (forward transform)
- -Closed loop approach limited by
 - Accuracy measurements
 - Stability printer
- -Results in
 - Increased profile accuracy w.r.t. behavior printer

Accurate linking

INTERNATIONAL COLOR

CONSORTIUM

-Reduction interpolation errors for in-gamut and out-of-gamut colors

Stability neutrals

COLOR

- -Proofing: Absolute colorimetric intent
- -Neutral check target
- -RGB target consisting of 11 different neutrals repeated per line (x26)

Colorimetric matching: Stability neutrals

Conventional link

Closed loop + Accurate linking

Spectral matching

- Not explicitly supported by conventional color management
 - -Dedicated support provided by ICC.2 (iccMAX) only
- Use cases

AGFA 4

- —Similar appearance prints from different CMYK presses
- -Packaging: spot color processing
- Object type combinations for ICC.2 (iccMAX)

Spectral match	Opaque	Trans- parent	Trans- lucent	Display	Fluorescent substrate
Opaque					
Transparent					
Translucent					
Display				Identical	
Fluorescent substr.					Identical

Focus on matching between opaque objects, CMYK printed output

INTERNATIONAL COLOR

CONSORTIUM

• Spectral match preserving transformations

-Repurposing transformation

- From Fogra51 to CGATS TR 006
- Preserves GCR from source
- \Rightarrow Acceptable spectral match
- —Identity transform
 - Repurposing transform between identical profiles
 - \Rightarrow Preserves spectral match

Spectral matching

Spot color mixing

CONSORTIUM

NTERNATIONAL COLOR

- Dynamic rendering of spot colors
 - Spectra step wedge on white and black background (CxF/X-4)
 - Output profile defines substrate and viewing conditions
- -Rendering characteristics
 - Realistic rendering of ink combinations based on spectral mixing
 - Continuity between different subsets of ink values

—Spectra substrate and process inks: **spectral reflectance estimation**

Spectral matching

CONSORTIUM

- Spot color mixing (cont'd)
 - -Spectral reflectance estimation
 - Given discrete version of the tristimulus values XYZ

$$X = k \sum_{i=1}^{N} R_{i} I_{i} X_{i} \qquad Y = k \sum_{i=1}^{N} R_{i} I_{i} Y_{i} \qquad Z = k \sum_{i=1}^{N} R_{i} I_{i} Z_{i}$$

- with R_i reflectance spectrum object I_i spectral power distribution illuminant $X_i Y_i Z_i$ color matching functionsNdimension spectral space

- Invert tristimulus values XYZ and solve for R_i with constraints
 - » Reflectance: $0 \le R_i \le 1$ $i: 1 \rightarrow N$
 - » Smoothness criteria
 - » Typical aim curves

Thank you for your attention • Any questions?

