
 1

White Paper 25
Level: Advanced

Date: February 2012

Color management implementation classification

Overview
Color management is used and implemented in many ways. As different
implementations and specific architectures are proposed it is useful to have a
common conceptual framework within which these can be compared. This paper
briefly provides a definition of Color Management that can be used in the
analysis of different architectural implementations. It then presents a general
high-level architecture for Color Management and outlines a continuum for
comparing different architectural implementations. In conclusion, different
categories of architectural implementations are identified and compared using
the presented continuum.

An important point to note is that there is no universal best way to implement
color management. Each implementation will have its trade-offs as it achieves its
goals related to color management, and the choices involved in these trade-offs
are often different for different use cases. This paper is intended to facilitate
analysis and comparison of architectural implementations, and as such does not
focus on specific workflows.

Color Management
The Glossary of terms in ICC White Paper #5 defines the term “color
management” as used in digital imaging as follows:

color management (digital imaging)

communication of the associated data required for unambiguous
interpretation of color content data, and application of color data conversions,
as required, to produce the intended reproductions. [ICC.1]

NOTE 1 Color content may consist of text, line art, graphics, and pictorial images, in raster or
vector form, all of which may be color managed.

NOTE 2 Color management considers the characteristics of input and output devices in
determining color data conversions for these devices.

Italics added for emphasis

 2

Implementations of Color Management involve how four important parts from this
definition are achieved: communication, data, application, and intended
reproductions.

Architectural Layers of ICC Color Management
Generally, the architecture for current ICC Color Management is implemented in
layers as shown in figure 1.

Note: Other architectures may exist but these layers can be thought to exist on a
conceptual level.

 Generally the higher the level in the architecture, the more proprietary the
implementation is considered to be. The lower levels are often considered to be
more open.

Note: Even though metadata in the lowest levels can be created using
proprietary transform generation implementations, the metadata is typically
encoded in standard formats that can be used by more open implementations.

Figure 1 – Color Management Layers

The top layer or Application / Driver layer is the client for Color Management.
It ingests source image data and exports destination image data, possibly
requesting lower levels to perform color management of the image data. This
layer may gather and/or process color metadata, or may defer some or all
gathering and processing to lower levels.

The Color Management System layer processes color metadata, not color data.
It obtains color metadata from the application level, from devices or their drivers,

Application / Driver

Color Management System (CMS)

Color Management Module
(CMM)

Color Metadata / Profile File(s) /
Profile Generator Open

Proprietary

 3

or from user input. The CMS determines the class of color metadata (such as
OpenEXR CTL or ICC profiles), which in turn determines the class of CMM to
use. In some cases, the color metadata can prescribe a preference for a CMM
within its class.

The Color Management Module layer assembles and executes color transforms.
The CMM takes direction from upper and lower layers in addition to providing its
own operational logic to perform transformations of the color data. Some CMMs
can be used with only one class of color metadata, while other CMMs can be
used with multiple classes. On some systems, multiple CMMs may be available
for ICC profiles.

The lowest layer is the Color Metadata / Profile layer that provides information
used to assemble and execute color transforms in the CMM layer. Color
Metadata may describe the characteristics of a color data source or destination,
which are often related to physical or virtual reference devices/media. Color
metadata may also provide color transforms, and/or instructions for the
application of color transforms. Many metadata formats are in current use. Some
metadata have variable digital representations, such as measurement data or
transform data, while other metadata are in the form of explicit or implied
references to specifications (e.g. sRGB and the Digital Cinema X’Y’Z’). In the
ICC workflow, the metadata is encoded as an ICC profile constructed according
to the ICC profile format specification. Often, a Metadata/Profile Generator
application is used to create the metadata/profile. Metadata/Profile Generators
can use their own operational logic in the process of generating the transforms
encoded in the metadata/profile.

Note: Since applications and/or drivers make all color management requests
through the Color Management System layer, the term “color management
system” often refers to the aggregate of the lower layers, instead of the top layer
only. The context determines whether a single level or the aggregate is being
referred to.

The CMM/Metadata Implementation Continuum
Most of the color transforms in a color management implementation are defined
in the bottom two layers. The implementation possibilities can be considered as
a continuum of runtime behavior with possible implementations of CMM and
metadata layers at the extremes of each end. This can be seen in Figure 2.

 4

Figure 2 – CMM/Metadata Implementation Continuum

If the transform operations are defined and controlled well in advance of
applying the color data transform(s), for example, when the color metadata
defines the operations to perform, the implementation is classified as Static. In
this situation, the color metadata provides the complete operational logic, and the
CMM needs no additional logic to determine what transforms to apply to the color
data. This generally means that the operational logic in the transformations is
assembled and used at the time the color metadata is created.

If the transform operations are mostly defined by the CMM, user settings,
and/or image data, and not in the color metadata specification, the
implementation is classified as Dynamic. In this situation, the operational logic is
provided by the CMM. Color metadata, if used at all, provides only basic color
measurement information. A Dynamic CMM is free to implement any operational
logic that it wishes, but this comes at a cost of interoperability and predictability
between Dynamic CMMs with different implementations and/or configurations.
This generally means that the operational logic in the transformations is
assembled and used at the time the transformations are applied

For most dynamic implementations, accurate color characterization
(measurement) data needs to be retrievable for the source and destination color
data encodings (which may be for specific devices). The ICC.1:2001-04 profile
specification (version 4) improved the ICC profile format to ensure that Dynamic
CMMs could retrieve accurate color characterization data.

Note: Current basic ICC implementations are not entirely Static. Rendering
Intent linking, the XYZ to/from Lab conversion, and the absolute rendering intent
operations to adjust the white point for absolute colorimetry represent dynamic
runtime behavior required by the ICC profile specification. Additionally, CMMs
that perform black point compensation also provide additional Dynamic runtime

Static
•Smart Metadata

•Dumb CMM

Dynamic
•Dumb Metadata,

•Smart CMM

Smart Operations
•Function Inversion

•Rendering

•Re-Rendering

•White/Black Point Compensation

•Gamut Mapping

•Color Appearance Modeling

•Scaling

•Black Generation

•Secret Sauce

 5

behavior. Dynamic behavior is predictable when it is clearly specified in a
standard. Thus the Dynamic behavior is required to be available by the
implementation and the specifics of when and how to apply the Dynamic
behavior is clearly defined.

Overcoming Limitations
With an understanding of the architectural layers of color management and the
CMM/Metadata Implementation Continuum, analysis and comparison between
different implementations is possible.

A basic ICC color management implementation, which supports only the
transformations implied by the ICC profile specification, is limited to only those
transforms that can be encoded in ICC profiles, or those that the CMM must
dynamically implement as defined in the ICC profile specification. Additions need
to be made somewhere in the color management layers to go beyond these
limitations.

Changes made in lower layers of the architecture are easier to standardize for
organizations like the ICC. Though it can be done at higher levels in the
architecture, generally the CMM is modified, and possibly the color metadata.
Different implementation approaches therefore correspond to movement in the
CMM/Metadata implementation continuum.

In a Dynamic CMM implementation the sequence control is centralized in the
CMM, but to be open and cross platform, agreement on sequence/control within
the CMM is required. In the past, coming to agreement has proven to be difficult.
Some reasons include the significant preferential/artistic aspects of cross-media
color reproduction, and the estimation of the color appearance of images viewed
in different conditions. With such lack of agreement, different CMM
implementers have provided additional operational logic to address different use
cases, possibly requiring private tags and/or external configurations to go beyond
the limitations of basic ICC implementations. However, if private tags are used
then they may not be understood by other CMMs. Interoperability between
different Dynamic CMMs is therefore limited to the baseline behavior required by
the ICC profile specification.

Extending the CMM/Metadata Implementation
Continuum
An alternative modification to a CMM would be to define a Pluggable CMM that
provides a standardized extendable control architecture using a plug-in method
to provide the implementation of pre-defined steps. Some of these defined steps
might provide, for example, device modeling, gamut mapping, or device channel
separation as plug-ins. Default plug-ins can be prescribed for such an
implementation, but they can be replaced to meet specific needs. This allows for

 6

secret sauce to be implemented in proprietary plug-ins while still providing for
some level of baseline openness.

(Note: A Plug-in can be thought of as additional form of operational metadata that
provides the implementation of transform/control logic not provided directly by the
CMM).

In providing plug-ins to a standardized CMM, movement on the CMM/Metadata
implementation continuum could be considered to be in a different dimension
than the Static versus Dynamic runtime behavior. An additional Fixed versus
Programmable dimension to the CMM/Metadata Implementation Continuum
allows comparisons to be made between different levels of plug-in capability of
Pluggable CMMs. A revised continuum, which replaces that of Figure 2, is
shown in Figure 3.

Figure 3 – Revised CMM/Metadata implementation continuum

One serious concern with a Pluggable CMM implementation would be that the
unambiguous communication of color requires that all CMMs in a complete
workflow are configured the same when asked do the exact same task. Do they
all have the same plug-ins installed? Is the same essential architecture
implemented on different platforms? Are plug-ins implemented (the same) for
every platform? Are the plug-ins all configured the same? With Pluggable CMM
implementations, interoperability is a significant concern.

Static Dynamic

Smart Operations
•Function Inversion

•Rendering

•Re-Rendering

•White/Black Point Compensation

•Gamut Mapping

•Color Appearance Modeling

•Scaling

•Black Generation

•Secret SauceFixed

Programmable (4) (3)

(2) (1)

 7

With this revised version of the CMM/Metadata implementation continuum, a
Static Programmable implementation is open for consideration. If the runtime
behavior is to be Static, then the Programmability needs to be fully controlled by
the color metadata. Both the color metadata and the CMM need to be extended
to provide more operational options, which are controlled by the color metadata.
In this case, the operational logic of both the CMM and the color metadata are
extended, but the runtime behavior remains Static.

With a Static Programmable implementation, greater control and flexibility are
possible in an open fashion with the CMM understanding little about what is
going on. The additional control is open, as it is added to the color metadata.

A Static Programmable CMM can be thought of as a general purpose Color
Transform Virtual Machine (VM) which can easily be ported to different platforms.
All that is needed is a specification of the basic building blocks of the VM, and the
color metadata can then provide the sequencing to implement various workflows.
A Static Programmable CMM doesn’t necessarily need to understand what the
sequence of operations defined in the color metadata is trying to accomplish.
Because of this a Static Programmable CMM can be considered to be a more
capable Static CMM.

Placing operational sequence control in the color metadata allows for
unambiguous communication of both data and application to get intended results.
For some vendors, the openness may be seen as a weakness – the sequence of
operations is openly defined, and any secret sauce is potentially less hidden.
However, the increased openness improves the unambiguous communication of
color.

Note: ICC.1:2010 includes of a set of optional tags that allow for the
implementation of a Static Programmable CMM. (See White Paper 28 –
Introducing the mutiProcessingElement Tag Type).

Review and Comparisons
For comparison purposes the four corners of the CMM/Metadata implementation
continuum of Figure 3 are now presented with a brief description and general
advantages or observations along with disadvantages or concerns.

Note 1: It should be recognized that an advantage to one person might be
considered as a disadvantage to another person (and vice-versa).

Note 2: These represent extremes of the implementation continuum and hybrid
approaches will combine features with associated tradeoffs.

1. Static Fixed

 8

The operational logic of the transforms involved are placed in fixed
sequence in the color metadata. The CMM is responsible for applying the
transform steps with limited conversion between transforms.

Advantages/Observations:

 Most of what needs to be specified is in the metadata specification.
 CMM specification not as necessary
 Easy to make open and cross platform
 Predictability fairly easy to achieve between different

implementations
 Proprietary know how is encapsulated/hidden in metadata

Disadvantages/Concerns:

 Limited to transforms options provided in the specification
 Little dynamic runtime behavior is implied
 If knowledge of both source and destination is to be used then it is

needed at the time the metadata is created.
o Knowledge of an intermediary can be used if knowledge of

either the source or destination is not known.
o Use of an intermediary requires that it is well specified and

used consistently by different implementations
o Use of an intermediary is not the same as knowing both the

source and destination
 Limited to features provided in the specification

2. Dynamic Fixed
All operational logic of the transform is placed in the CMM. The color
metadata only contains characterization/measurement data. Transforms
are calculated dynamically at runtime.

Advantages/Observations:

 Proprietary color management requirements may be implemented
by proprietary CMMs using standard color metadata (Note: Usually
no secret sauce is in the color metadata).

 The CMM may provide an interface for end-user control of results.
 Dynamic transform generation allows for transforms to be created

based on knowledge of data from source and destination as well as
image.

o If knowledge of both source and destination is used then it
is not needed until the time the dynamic transformation is
generated.

 Flexibility in metadata/profile connection.

Disadvantages/Concerns:

 9

 An Open solution requires an agreed upon CMM specification with
all operational and transform logic being clearly defined and
specified.

o In practice, solutions are usually proprietary for the reasons
noted previously, and Intellectual Property issues come to bear.

 If fixed operational and transform transorm logic is specified, the
specification needs to be changed to do things differently

 Difficult to standardize or to get implemented the same on many
platforms.

 Predictability between implementations will be difficult due to
differences in each implementation and how they are configured
based upon the opportunity for end-user control.

3. Dynamic Programmable

The CMM supports a sequence of operations that can be customized
using a plug-in architecture. The sequence can be scripted or
standardized. The color metadata contains characterization/measurement
data. Operational metatada can also potentially be used determine the
sequence of operations and plug-ins to be used.

Advantages/Observations:

 Greatest flexibility. - Any color management implementation is
possible.

 Dynamic transform generation allows for custom transforms to be
created based on knowledge of data from source and destination
as well as image

 Pre-determined transforms can be provided as plug-ins.
 If knowledge of both source and destination is used then it is not

needed until the time that dynamic transformation is generated
 Depending on implementation there can be flexibility in

metadata/profile connection
 Proprietary know how is placed in plug-ins.
 Alternative ways of doing things can be encapsulated in plug-ins
 Plug-ins can provide interfaces for end-user control of results.

Disadvantages/Concerns:

 Open solution requires an agreed upon CMM specification with all
transforms clearly defined and specified.

 Cross platform difficulties - plug-ins (in addition to CMM
implementations) should be made available for multiple platforms.

 Behavior for default plug-ins needs to be specified and
implemented on all platforms for predictability mode to be ensured.

 Workflows crossing multiple systems require that they all support
the same plug-in capabilities (where needed) and are configured
the same (where needed) based upon the opportunity for end-user
control

 10

 Predictability between implementations will be difficult due to
differences in each implementation and how they are configured
based upon the potential for end-user control.

4. Static Programmable

The CMM acts as a Color Transform Virtual Machine. Fixed operations
are defined by the metadata specification and implemented in a flexible
manner by the CMM. The color metadata provides an arbitrary sequence
of operations to be interpreted and executed by the CMM. The CMM
doesn’t interpret meaning between operations.

Advantages/Observations:

 Most of what needs to be specified is in the specification
 New Workflows and behaviors can be implemented without

changes to the CMM.
 Easy to make open and cross platform
 Flexibility in metadata/profile connection is possible if the options

are in the specification
 Predictability fairly easy to achieve between different

implementations
 Proprietary know how is encapsulated/hidden in metadata

Disadvantages/Concerns:

 Repertoire of operations place limitations of programmability
 Proprietary know how can become more exposed
 CMM specification is more of an issue than Static Fixed
 Little dynamic runtime behavior is implied
 If knowledge of both source and destination is used then it is

needed at the time metadata or a profile is created rather than
when the metadata/profile is used.

o Knowledge of an intermediary can be used if knowledge of
either the source or destination is not known.

o Use of an intermediary requires that it is well specified and
used consistently by different implementations

o Use of an intermediary is not the same as knowing both the
source and destination

 Can the programmable behavior of metadata/profiles invalidate
capabilities of Dynamic CMMs that assume fixed transform
behavior?

