

Official Ballot

Ballot # 202302

Ballot Topic: Approval of ICC.2:2023

Vote type: Section 6.2b—Super Majority of the Steering Committee

Voting Period: Two weeks—voting closes on October 12, 2023

Proposal: There will be a two-week ballot on the revision of ICC.2
.

A technical review and a patent review took place during June-September 2023

(see attached document)

ICC.2:2023	

	

	

	

International Color
Consortium®

	

	

	

	

Specification

ICC.2:2023

Image technology colour management —
Extensions to architecture, profile format, and

data structure

ICC.2:2023	

ii	 ©	ICC	2023	–	All	rights	reserved	

	

ICC.2:2023	

©	ICC	2023	–	All	rights	reserved	 iii	

Contents

	
3.1 Terms	and	definitions	..	1

3.2 Abbreviated	terms	..	2

4.1 General	...	3

4.2 Extended	basic	type	listing	..	3

4.2.1 azimuthNumber	...	3

4.2.2 float16Number	...	4

4.2.3 float64Number	...	4

4.2.4 horizontalNumber	...	4

4.2.5 interpolationHintType	..	4

4.2.6 Sparse	matrix	encodings	..	5

4.2.7 sparseMatrixEncodingType	..	7

4.2.8 spectralRange	..	7

4.2.9 tintArray	..	8

4.2.10 valueEncodingType	..	8

4.2.11 verticalNumber	..	8

4.2.12 zenithNumber	..	9

6.1 General	considerations	..	10

6.2 Extensions	to	device	colour	encoding	..	10

6.3 Extensions	to	PCSs	...	11

6.3.1 General	..	11

6.3.2 Profile	connection	conditions	..	11

6.3.3 Spectral	PCSs	..	12

6.3.4 BRDF	connection	..	14

6.3.5 Directional	viewing	connection	..	14

6.4 Multiplex	connection	spaces	..	14

6.4.1 General	..	14

6.4.2 MCS	signature	encoding	..	15

ICC.2:2023	

iv	 ©	ICC	2023	–	All	rights	reserved	

6.5 Colour	encoding	space	profiles	...	15

7.1 General	..	15

7.2 Profile	header	...	18

7.2.1 General	..	18

7.2.2 Extended	profile	header	field	definitions	...	18

7.2.3 ColourEncodingSpace	class	profile	header	field	definitions	..	19

7.2.4 Profile	size	field	(bytes	0	to	3)	..	19

7.2.5 Preferred	CMM	type	field	(bytes	4	to	7)	...	19

7.2.6 Profile	version	and	sub‐version	field	(bytes	8	to	11)	..	19

7.2.7 Profile/device	class	field	(bytes	12	to15)	..	20

7.2.8 Data	colour	space	field	(Bytes	16	to	20)	...	20

7.2.9 PCS	field	(Bytes	20	to	23)	..	21

7.2.10 Date	and	time	field	(bytes	24	to	35)	..	22

7.2.11 Profile	file	signature	field	(bytes	36	to	39)	...	22

7.2.12 Primary	platform	field	(bytes	40	to	43)	...	22

7.2.13 Profile	flags	field	(bytes	44	to	47)	...	22

7.2.14 Device	manufacturer	field	(bytes	48	to	51)	..	23

7.2.15 Device	model	field	(bytes	52	to	55)	...	23

7.2.16 Device	attributes	field	(bytes	56	to	63)	..	23

7.2.17 Rendering	intent	field	(bytes	64	to	67)	..	24

7.2.18 PCS	illuminant	field	(bytes	68	to	79)	...	24

7.2.19 Profile	creator	field	(bytes	80	to	83)	...	25

7.2.20 Profile	ID	field	(bytes	84	to	99)	..	25

7.2.21 Spectral	PCS	field	(bytes	100	to	103)	..	25

7.2.22 Spectral	PCS	range	field	(bytes	104	to	109)	...	26

7.2.23 Bi‐Spectral	PCS	range	field	(bytes	110	to	115)	...	27

7.2.24 MCS	field	(bytes	116	to	119)	...	27

7.2.25 Profile/device	sub‐class	(bytes	124	to	127)	...	28

7.2.26 Reserved	field	(bytes	124	to	127)	...	28

ICC.2:2023	

©	ICC	2023	–	All	rights	reserved	 v	

7.3 Tag	table	...	28

7.3.1 Overview	..	28

7.3.2 Tag	count	(byte	position	0	to	3)	...	29

7.3.3 Tag	signature	(byte	position	4	to	7	and	repeating)	..	29

7.3.4 Offset	to	beginning	of	tag	data	element	(byte	position	8	to	11	and	repeating)	29

7.3.5 Tag	data	element	size	(byte	position	12	to	15	and	repeating)	..	29

7.4 Tag	data	..	29

8.1 General	..	29

8.2 Common	requirements	..	30

8.3 Input	profiles	..	30

8.4 Display	profiles	..	30

8.5 Output	profiles	...	31

8.6 DeviceLink	profile	..	31

8.7 ColorEncodingSpace	profile	...	32

8.8 ColorSpace	profile	..	32

8.9 Abstract	profile	..	32

8.10 NamedColor	profile	...	33

8.11 MultiplexIdentification	profile	..	33

8.12 MultiplexLink	profile	..	33

8.13 MultiplexVisualization	profile	...	33

8.14 Precedence	order	of	tag	usage	..	34

8.14.1 General	...	34

8.14.2 Input,	display,	output	or	colour	space	profile	types	..	34

8.14.3 Abstract	profile	types	...	35

8.14.4 DeviceLink	profile	types	...	35

8.14.5 MultiplexIdentification	profile	types	...	35

8.14.6 MultiplexLink	profile	types	..	35

8.14.7 MultiplexVisualization	profile	types	..	35

8.14.8 MCS	to	parameter‐based	BRDF	profile	table	usage	...	36

ICC.2:2023	

vi	 ©	ICC	2023	–	All	rights	reserved	

8.14.9 BRDF	profile	table	usage	...	36

8.14.10 Parameter‐based	BRDF	profile	table	usage	..	37

8.14.11 Directional	profile	table	usage	...	37

9.1 General	..	38

9.2 Specific	tag	listing	...	38

9.2.1 AToB0Tag	..	38

9.2.2 AToB1Tag	..	39

9.2.3 AToB2Tag	..	39

9.2.4 AToB3Tag	..	39

9.2.5 AToM0Tag	...	39

9.2.6 brdfColorimetricParameter0Tag	...	40

9.2.7 brdfColorimetricParameter1Tag	...	40

9.2.8 brdfColorimetricParameter2Tag	...	40

9.2.9 brdfColorimetricParameter3Tag	...	41

9.2.10 brdfSpectralParameter0Tag	..	41

9.2.11 brdfSpectralParameter1Tag	..	41

9.2.12 brdfSpectralParameter2Tag	..	42

9.2.13 brdfSpectralParameter3Tag	..	42

9.2.14 brdfAToB0Tag	...	42

9.2.15 brdfAToB1Tag	...	43

9.2.16 brdfAToB2Tag	...	43

9.2.17 brdfAToB3Tag	...	43

9.2.18 brdfBToA0Tag	...	44

9.2.19 brdfBToA1Tag	...	44

9.2.20 brdfBToA2Tag	...	45

9.2.21 brdfBToA3Tag	...	45

9.2.22 brdfBToD0Tag	...	45

9.2.23 brdfBToD1Tag	...	46

9.2.24 brdfBToD2Tag	...	46

ICC.2:2023	

©	ICC	2023	–	All	rights	reserved	 vii	

9.2.25 brdfBToD3Tag	...	47

9.2.26 brdfDToB0Tag	...	47

9.2.27 brdfDToB1Tag	...	47

9.2.28 brdfDToB2Tag	...	48

9.2.29 brdfDToB3Tag	...	48

9.2.30 brdfMToB0Tag	..	48

9.2.31 brdfMToB1Tag	..	49

9.2.32 brdfMToB2Tag	..	49

9.2.33 brdfMToB3Tag	..	49

9.2.34 brdfMToS0Tag...	50

9.2.35 brdfMToS1Tag...	50

9.2.36 brdfMToS2Tag...	50

9.2.37 brdfMToS3Tag...	51

9.2.38 BToA0Tag	..	51

9.2.39 BToA1Tag	..	52

9.2.40 BToA2Tag	..	52

9.2.41 BToA3Tag	..	52

9.2.42 BToD0Tag	...	52

9.2.43 BToD1Tag	...	53

9.2.44 BToD2Tag	...	53

9.2.45 BToD3Tag	...	53

9.2.46 calibrationDateTimeTag	...	54

9.2.47 charTargetTag	...	54

9.2.48 cicpTag	...	54

9.2.49 colorEncodingParamsTag	..	55

9.2.50 colorSpaceNameTag	...	55

9.2.51 colorantOrderTag	..	55

9.2.52 colorantOrderOutTag	...	55

9.2.53 colorantInfoTag	..	55

ICC.2:2023	

viii	 ©	ICC	2023	–	All	rights	reserved	

9.2.54 colorantInfoOutTag	...	56

9.2.55 colorimetricIntentImageStateTag	...	56

9.2.56 copyrightTag	..	58

9.2.57 customToStandardPccTag	...	58

9.2.58 cxfTag	..	58

9.2.59 deviceMfgDescTag	...	58

9.2.60 deviceModelDescTag	..	58

9.2.61 directionalAToB0Tag	...	58

9.2.62 directionalAToB1Tag	...	59

9.2.63 directionalfAToB2Tag	..	60

9.2.64 directionalAToB3Tag	...	60

9.2.65 directionalBToA0Tag	...	60

9.2.66 directionalBToA1Tag	...	61

9.2.67 directionalBToA2Tag	...	61

9.2.68 directionalBToA3Tag	...	62

9.2.69 directionalBToD0Tag	...	62

9.2.70 directionalBToD1Tag	...	63

9.2.71 directionalBToD2Tag	...	63

9.2.72 directionalBToD3Tag	...	63

9.2.73 directionalDToB0Tag	...	64

9.2.74 directionalDToB1Tag	...	64

9.2.75 directionalDToB2Tag	...	64

9.2.76 directionalDToB3Tag	...	65

9.2.77 DToB0Tag	...	65

9.2.78 DToB1Tag	...	65

9.2.79 DToB2Tag	...	66

9.2.80 DToB3Tag	...	66

9.2.81 gamutBoundaryDescription0Tag	..	66

9.2.82 gamutBoundaryDescription1Tag	..	66

ICC.2:2023	

©	ICC	2023	–	All	rights	reserved	 ix	

9.2.83 gamutBoundaryDescription2Tag	..	66

9.2.84 gamutBoundaryDescription3Tag	..	66

9.2.85 HdrToSdr0Tag	...	67

9.2.86 HdrToSdr1Tag	...	67

9.2.87 HdrToSdr2Tag	...	67

9.2.88 HdrToSdr3Tag	...	68

9.2.89 multiplexDefaultValuesTag	...	68

9.2.90 multiplexTypeArrayTag	..	68

9.2.91 measurementInfoTag	...	69

9.2.92 measurementInputInfoTag	..	69

9.2.93 mediaWhitePointTag	..	69

9.2.94 metadataTag	..	69

9.2.95 MToA0Tag	...	70

9.2.96 MToB0Tag	...	70

9.2.97 MToB1Tag	...	70

9.2.98 MToB2Tag	...	71

9.2.99 MToB3Tag	...	71

9.2.100 MToS0Tag	...	71

9.2.101 MToS1Tag	...	72

9.2.102 MToS2Tag	...	72

9.2.103 MToS3Tag	...	72

9.2.104 namedColorTag	..	73

9.2.105 perceptualRenderingIntentGamutTag	..	73

9.2.106 profileDescriptionTag	..	73

9.2.107 profileSequenceInformationTag	..	73

9.2.108 referenceNameTag	..	74

9.2.109 saturationRenderingIntentGamutTag	...	74

9.2.110 sourcePccTag	...	74

9.2.111 spectralViewingConditionsTag	..	74

ICC.2:2023	

x	 ©	ICC	2023	–	All	rights	reserved	

9.2.112 spectralWhitePointTag	..	75

9.2.113 standardToCustomPccTag	...	75

9.2.114 surfaceMapTag	..	75

9.2.115 technologyTag	...	75

10.1 General	..	75

10.2 Specific	tag	type	listing	...	76

10.2.1 cicpType	...	76

10.2.2 colorantOrderType	..	77

10.2.3 curveType	...	78

10.2.4 dataType	..	78

10.2.5 dateTimeType	...	79

10.2.6 dictType	...	79

10.2.7 embeddedHeightImageType	...	81

10.2.8 embeddedNormalImageType	...	82

10.2.9 float16ArrayType	...	83

10.2.10 float32ArrayType	...	83

10.2.11 float64ArrayType	...	84

10.2.12 gamutBoundaryDescriptionType	..	84

10.2.13 lutAToBType	..	85

10.2.14 lutBToAType	..	88

10.2.15 measurementType	..	91

10.2.16 multiLocalizedUnicodeType	..	93

10.2.17 multiProcessElementsType	...	93

10.2.18 parametricCurveType	..	94

10.2.19 s15Fixed16ArrayType	...	96

10.2.20 signatureType	...	96

10.2.21 sparseMatrixArrayType	..	96

10.2.22 spectralViewingConditionsType	...	97

10.2.23 tagArrayType	...	102

ICC.2:2023	

©	ICC	2023	–	All	rights	reserved	 xi	

10.2.24 tagStructType	..	103

10.2.25 textType	...	103

10.2.26 u16Fixed16ArrayType	...	104

10.2.27 uInt16ArrayType	...	104

10.2.28 uInt32ArrayType	...	104

10.2.29 uInt64ArrayType	...	105

10.2.30 uInt8ArrayType	..	105

10.2.31 utf16Type	..	105

10.2.32 utf8Type	...	105

10.2.33 utf8ZipType	..	106

10.2.34 XYZType	...	106

10.2.35 zipXmlType	...	106

11.1 General	..	107

11.2 Specific	processing	element	listing	...	108

11.2.1 calculatorElement	..	108

Table	106	(continued)	..	124

11.2.2 curveSetElement	..	124

11.2.3 CLUTElement	...	128

11.2.4 emissionCLUTElement	..	129

11.2.5 emissionMatrixElement	..	130

11.2.6 emissionObserverElement	...	132

11.2.7 extendedCLUTElement	..	133

11.2.8 inverseEmissionMatrixElement	..	134

11.2.9 JabToXYZElement	..	136

11.2.10 matrixElement...	136

11.2.11 sparseMatrixElement	...	137

11.2.12 reflectanceCLUTElement	..	138

11.2.13 reflectanceObserverElement	..	140

11.2.14 tintArrayElement	...	141

ICC.2:2023	

xii	 ©	ICC	2023	–	All	rights	reserved	

11.2.15 toneMapElement	..	142

11.2.16 XYZToJabElement	..	143

11.2.17 “Future”	expansion	elements	..	144

12.1 General	..	145

12.2 Struct	tag	type	listing	..	145

12.2.1 brdfTransformStructure	...	145

12.2.2 colorantInfoStructure	..	151

12.2.3 colorEncodingParamsStructure	..	152

12.2.4 measurementInfoStructure	...	157

12.2.5 namedColorStructure	...	159

12.2.6 pccStructure	...	165

12.2.7 profileInfoStructure	..	167

12.2.8 tintZeroStructure	...	170

13.1 General	..	172

13.2 Tag	array	identifier	type	listing	..	172

13.2.1 namedColorArray	..	172

13.2.2 profileInfoArray	..	172

13.2.3 tagStructArray	...	172

ICC.2:2023	

©	ICC	2023	–	All	rights	reserved	 xiii	

Foreword	
ISO	(the	International	Organization	for	Standardization)	is	a	worldwide	federation	of	national	standards	
bodies	 (ISO	member	 bodies).	 The	work	 of	 preparing	 International	 Standards	 is	 normally	 carried	 out	
through	 ISO	 technical	 committees.	 Each	member	 body	 interested	 in	 a	 subject	 for	 which	 a	 technical	
committee	 has	 been	 established	 has	 the	 right	 to	 be	 represented	 on	 that	 committee.	 International	
organizations,	governmental	and	non‐governmental,	in	liaison	with	ISO,	also	take	part	in	the	work.	ISO	
collaborates	 closely	 with	 the	 International	 Electrotechnical	 Commission	 (IEC)	 on	 all	 matters	 of	
electrotechnical	standardization.		

The	 procedures	 used	 to	 develop	 this	 document	 and	 those	 intended	 for	 its	 further	 maintenance	 are	
described	in	the	ISO/IEC	Directives,	Part	1.	In	particular,	the	different	approval	criteria	needed	for	the	
different	types	of	 ISO	documents	should	be	noted.	This	document	was	drafted	in	accordance	with	the	
editorial	rules	of	the	ISO/IEC	Directives,	Part	2	(see	www.iso.org/directives).	

Attention	is	drawn	to	the	possibility	that	some	of	the	elements	of	this	document	may	be	the	subject	of	
patent	rights.	ISO	shall	not	be	held	responsible	for	identifying	any	or	all	such	patent	rights.	Details	of	any	
patent	rights	identified	during	the	development	of	the	document	will	be	in	the	Introduction	and/or	on	
the	ISO	list	of	patent	declarations	received	(see	www.iso.org/patents).	

Any	trade	name	used	in	this	document	is	information	given	for	the	convenience	of	users	and	does	not	
constitute	an	endorsement.		

For	 an	 explanation	 of	 the	 voluntary	 nature	 of	 standards,	 the	 meaning	 of	 ISO	 specific	 terms	 and	
expressions	related	to	conformity	assessment,	as	well	as	information	about	ISO's	adherence	to	the	World	
Trade	 Organization	 (WTO)	 principles	 in	 the	 Technical	 Barriers	 to	 Trade	 (TBT)	 see	
www.iso.org/iso/foreword.html.	

This	document	was	prepared	by	Technical	Committee	ISO/TC	130,	Graphic	technology,	 in	cooperation	
with	the	International	Color	Consortium	(ICC).	

Any	feedback	or	questions	on	this	document	should	be	directed	to	the	user’s	national	standards	body.	A	
complete	listing	of	these	bodies	can	be	found	at	www.iso.org/members.html.	

ICC.2:2023	

xiv	 ©	ICC	2023	–	All	rights	reserved	

Introduction	

0	General	

This	 document	 defines	 specifications	 that	 provide	 a	 platform	 for	 defining	 extended	 (iccMAX)	 colour	
management	 profiles	 and	 systems	 for	 various	 colour	 workflow	 domains.	 It	 can	 be	 thought	 of	 as	 an	
extension	to	ISO	15076‐1,	defined	by	the	International	Color	Consortium®	(ICC).	ISO	15076‐1	specifies	
a	 profile	 format	 that	 is	 intended	 to	 provide	 a	 cross‐platform	 profile	 format	 for	 the	 creation	 and	
interpretation	of	colour	data.	Central	to	ISO	15076‐1	is	the	encoding	of	colour	transforms	between	device	
colour	encodings	and	profile	connection	spaces	(PCSs)	based	upon	D50	colorimetry	with	the	CIE	1931	
Standard	 2‐degree	 observer.	 For	 many	 workflows	 ISO	15076‐1	 has	 proven	 adequate	 for	 defining	
successful	colour	management	systems.	For	other	workflows	ISO	15076‐1	has	been	found	to	be	limited	
in	the	flexibility	of	encoding	colour	transforms	as	well	as	defining	means	of	profile	colour	connection	that	
incorporate	physical	attributes	of	colour	in	addition	to	mere	colour	appearance.	

The	 intent	 of	 this	 document	 is	 to	 provide	 a	 platform	on	which	 domain‐specific	 specifications	 can	 be	
defined	that	make	use	of	these	extensions	to	the	existing	cross‐platform	profile	format	of	ISO	15076‐1.	
Thus,	there	is	greater	flexibility	for	defining	colour	transforms	and	PCSs	to	meet	needs	that	cannot	easily	
be	met	with	ISO	15076‐1.	As	such,	it	is	not	envisioned	that	all	colour	management	systems	that	use	this	
document	 will	 implement	 all	 the	 features	 or	 capabilities	 specified	 by	 this	 document.	 Specific	
requirements	related	to	what	is	necessary	to	be	implemented	and	supported	relative	to	this	document	
can	be	found	in	workflow	domain	specifications.	Additionally,	for	some	domain‐specific	workflows	it	is	
envisioned	that	there	will	be	the	need	for	simultaneous	support	for	and	interaction	between	ISO	15076‐
1	and	profiles	defined	by	this	document.	

It	is	assumed	that	the	reader	of	this	document	has	a	good	understanding	of	ISO	15076‐1	as	well	as	a	good	
understanding	of	colour	science	and	imaging,	such	as	familiarity	with	CIE,	ISO	and	IEC	colour	standards,	
general	 knowledge	 of	 device	 measurement	 and	 characterization,	 and	 familiarity	 with	 at	 least	 one	
operating	system	level	colour	management	system.	

The	following	subclauses	introduce	a	few	of	the	more	significant	differences	from	ISO	15076‐1.	

0.1	Extended	profile	connection	spaces	

0.1.1	ISO	15076‐1	PCS	encoding	

In	ISO	15076‐1	PCS	transform	results	are	encoded	relative	to	D50	with	a	2‐degree	observer.	If	and	when	
ISO	15076‐1‐based	profiles	are	used	in	conjunction	with	this	document,	the	PCS	encoding	specified	in	
ISO	15076‐1	are	used	with	necessary	conversions	as	needed.	

0.1.2	Extended	PCS	encoding	

PCS	 encoding	 is	 extended	 to	 allow	 PCS	 transform	 results	 to	 be	 relative	 to	 arbitrary	 illuminants	 and	
observers.	 Profile	 connection	 conditions	 (PCC)	 provided	 by	 either	 a	 profile	 or	 directly	 to	 the	 colour	
management	module	 (CMM)	 can	 be	 applied	 to	 convert	 between	 different	 illuminants	 and	 observers.	
Additionally,	a	profile	can	define	use	of	a	spectrally‐based	PCS	independent	of	the	colorimetric‐based	PCS	
usage,	with	 separate	 transform	 data	 between	 device	 encoding	 and	 the	 colorimetry	 and	 spectral	 PCS	
encodings.	

0.1.3	Extended‐range	High	Dymaic	Range	colorimetric	PCS	encoding	

Relative	colormetric	interoperability	is	better	enabled	for	High	Dynamic	Range	(HDR)workflows	when	
the	media	white	point	refers	to	a	graphics	white	rather	than	the	device	peak	white	point.		In	such	cases,	
colorimetic	PCS	values	used	by	the	profile	transforms	above	the	media	white	point	represent	extended	
HDR	luminance	levels	and	therefore	the	profile	is	considered	to	be	using	an	extended‐range	(HDR)	PCS.	

When	a	profile	that	connects	into	a	colorimetric	PCS	uses	an	extended	encoding	range	(for	High	Dynamic	
Range	HDR	image	content)	and	this	profile	is	connected	to	another	colorimetric	PCS	profile	transform	
without	using	an	extended‐range	(thus	having	a	Standard	Dynamic	Range	or	SDR)	 then	 the	extended	
range	colorimetry	is	likely	to	be	clipped	resulting	in	unexpected	and/or	undesirable	results.	

ICC.2:2023	

©	ICC	2023	–	All	rights	reserved	 xv	

A	 flag	 in	 the	 profile	 header	 provides	 a	 mechanism	 for	 easily	 detecting	 when	 an	 extended‐range	
colorimetric	PCS	is	being	connected	to	a	non‐extended‐range	PCS	and	injecting	an	HDR	to	SDR	transform	
encoded	in	a	rendering	intent	specific	tag	from	the	source	profile	immediately	after	the	source	transform	
to	perform	a	PCS	range	conversion.	 	No	range	conversion	transform	is	applied	if	the	profiles	have	the	
same	PCS	range	type.		This	allows	for	HDR	profiles	to	connect	without	additional	PCS	conversion	as	well	
as	providing	a	suitable	PCS	conversion	when	mixed	dynamic	range	profiles	are	connected.		As	the	PCS	
range	conversions	are	encoded	in	profile	tags,	the	CMM	is	not	responsible	for	defining	the	HDR	to	SDR	
transform	–	the	CMM	merely	selects	it	and	applies	it.			

Use	 of	 alternate	 HDR	 to	 SDR	 conversions	 can	 be	 complished	 using	 an	 abstract	 profile	 containing	 a	
passthrough	(identity)	colorimetric	transform,	an	HDR	to	SDR	tag	transform,	and	the	use	of	extended‐
range	PCS	is	flagged	in	the	abstract	profile	header.		The	abstract	profile’s	HDR	to	SDR	transform	will	be	
applied	when	it	is	placed	between	an	extended‐range	PCS	source	profile	and	a	non‐extended	range	PCS	
profile	–	thus	allowing	overrides	of	HDR	to	SDR	transforms	to	be	performed.	

0.2	Extended	transform	encoding	

0.2.1	ISO	15076‐1	transform	encoding	

ISO	15076‐1	 defines	 transforms	 using	 integer	 encoding	 in	 AToBx	 and	 BToAx	 tags.	 Floating	 point	
transform	 encoding	 can	 additionally	 be	 specified	 in	 optional	 DToBx	 and	 BToDx	 tags	 using	 multi‐
processing	element	tags.	

Integer‐based	LUT	tags	have	specific	requirements	for	transform	data	and	order.	

The	multi‐processing	element	tag	type	allows	a	sequence	of	transform	elements	to	be	applied	in	order	to	
transform	between	device	encoding	and	PCS	encoding.	The	processing	elements	consist	of	matrices,	one‐
dimensional	curve	sets	and	n‐dimensional	lookup	tables.	

0.2.2	iccMAX	extended	transform	encoding	

Spectrally‐based	 PCS	 transforms	 are	 encoded	 using	DToBx/BToDx	 tags	when	 a	 spectral	 PCS	 is	 used.	
Colorimetric‐based	 PCS	 transforms	 are	 encoded	 in	matrix/TRC	based	 profiles	 or	AToBx/BToAx	 tags.	
Additionally,	AToBx/BToAx	tag	transforms	can	be	encoded	using	the	multi‐processing	element	tag	type.	

The	multi‐processing	 element	 tag	 type	 is	 extended	 to	 provide	 greater	 flexibility	 as	well	 as	 encoding	
brevity	 in	 defining	 transforms.	 Extended	 elements	 include	 a	 stack‐based	 programmable	 transform	
calculator,	 single‐segment	curves,	N‐D	 lookup	 tables	with	 integer	encoding,	 colour	appearance	model	
(CAM)	conversions,	sparse	matrix	processing	and	tint	arrays.	

Multi‐processing	element‐based	tags	are	used	to	define	PCC	within	a	profile.	The	CMM	applies	these	tags	
as	needed	to	perform	PCS	conversions.	

0.2.3	Late‐binding	processing	elements	

The	multi‐processing	element	tag	type	has	been	extended	to	allow	for	processing	elements	that	provide	
late‐binding	 of	 the	 observer	 and/or	 illuminant	 from	 the	 PCC	 utilized	 by	 the	 profile.	 Either	 spectral	
information	inside	select	processing	elements	is	converted	to	colorimetric	data	shortly	before	processing	
of	 colour	 transforms	 is	 to	 be	 performed,	 or	 spectral	 to	 colorimetric	 transforms	 are	 established	 for	
processing	of	colour	transformations.	This	late‐binding	of	spectral	to	colorimetric	processing	is	based	on	
the	PCC	utilized	by	the	multi‐processing	element.	The	media‐white	point	and	illuminant	colorimetry	used	
for	absolute/relative	PCS	processing	is	also	adjusted	based	upon	the	combined	profile/PCC	relationships	
when	late‐binding	processing	elements	are	used.	

0.3	Colour	encoding	space	profiles	

0.3.1	General	

In	ISO	15076‐1,	profiles	define	transforms	that	go	from	device	to	PCS.	However,	in	some	workflows	the	
essential	requirement	is	a	method	of	defining	what	the	data	are	rather	than	providing	a	transform	that	
converts	the	data	into	a	representation	of	colour.	

0.3.2	Colour	space	encoding	

ICC.2:2023	

xvi	 ©	ICC	2023	–	All	rights	reserved	

This	document	establishes	a	ColorEncodingSpace	profile	class	to	define	profiles	that	can	be	used	when	
the	content	owner	wishes	to	identify	the	colour	encoding	of	digital	colour	content	and	does	not	wish	to	
provide	a	colour	transformation	to	be	used	in	converting	or	adapting	the	digital	colour	content	from	the	
identified	current	colour	space	encoding	to	any	other	colour	space	encoding.	

0.4	Multiplex	connection	space	profiles	

0.4.1	General	

Generally,	the	data	encoding	sides	of	profile	transforms	are	not	used	to	connect	profiles	using	ISO	15076‐
1.	Connection	of	data	encoding	channels	is	only	meaningful	when	the	number,	order	and	encoding	of	the	
data	encoding	channels	are	identical.	However,	in	some	workflows,	flexibility	in	the	number	and	order	of	
the	channels	is	desirable	with	a	meaningful	way	of	identifying	the	encoding	of	the	channels.	

0.4.2	Multiplex	connection	space	encoding	

This	 document	 defines	 an	 additional	 profile	 connection	mechanism	 that	 allows	multiplex	 connection	
space	(MCS)	channels	to	be	connected.	MCS	connection	provides	a	means	of	defining	flexible	connection	
between	“device	like”	channels	of	profiles	that	are	identified	by	name.	Order	and	existence	of	channels	is	
flexible	with	the	ability	for	a	profile	to	specify	subset	requirements	on	the	MCS	channels	in	the	connected	
profile	and	default	values	specified	for	missing	channels.	The	input	profile	class	has	been	extended	to	
have	 an	 optional	 tag	 that	 connects	 to	 an	MCS.	Additionally,	MultiplexLink	 and	MultiplexVisualization	
profile	classes	have	been	defined	for	MCS	processing.	

ICC.2:2023	

©	ICC	2023	–	All	rights	reserved	 xvii	

0.5	Bidirectional	reflection	distribution	function	(BRDF)	and	directional	emission	profiles	

0.5.1	General	

ISO	15076‐1	assumes	0:45	measurement	geometry	for	reflection	prints	and	diffuse	radiance	of	displays.	
However,	in	many	conditions	colour	appearance	can	change	due	to	changes	in	lighting	or	viewing	angle.	
Such	goniochromatic	effects	cannot	be	encoded	or	communicated	using	ISO	15076‐1.	

0.5.2	Bidirectional	reflection	distribution	function	encoding	

This	 document	 provides	 the	 ability	 to	 encode	 bidirectional	 reflection	 distribution	 function	 (BRDF)	
information,	 as	 well	 as	 example	 surface	 information,	 that	 3D	 rendering	 systems	 can	 use	 to	 emulate	
goniochromatic	effects.	In	this	case	the	BRDF	information	is	provided	directly	to	the	3D	rendering	system	
without	extensive	colour	management	system	involvement.	Additionally,	BRDF	information	can	be	used	
to	define	and	communicate	goniochromatic	properties	of	named	colours.	

0.5.3	Directional	emission	function	encoding	

This	document	provides	 the	 ability	 to	 encode	directional	 emission	 information	which	 can	be	used	 to	
define	and	communicate	goniochromatic	properties	of	colours	by	viewing	angle	and	relative	position	on	
a	display.	

0.6	Rendering	intents	

In	ISO	15076‐1	four	rendering	intents	are	defined:	perceptual,	media‐relative	colorimetry,	ICC‐absolute	
colorimetry	 and	 saturation.	 For	 the	purposes	of	 supporting	 spectrally‐based	PCSs,	 the	media‐relative	
colorimetry	and	ICC‐absolute	colorimetry	intents	are	referred	to	in	this	document	as	media‐relative	and	
ICC‐absolute	intents	which	apply	to	both	colorimetric	as	well	as	spectral	conditions.	

ICC.2:2023	

©	ICC	2023	–	All	rights	reserved	 1	

Image	technology	colour	management	—	Extensions	to	
architecture,	profile	format	and	data	structure	

1 Scope	

This	 document	 is	 based	 on	 ISO	15076‐1,	 and	 describes	 an	 expanded	 profile	 specification	 and	 profile	
connections	 that	 permit	 greater	 flexibility	 and	 functionality	 than	 ISO	15076‐1.	 All	 definitions	 and	
requirements	 in	ISO	15076‐1	are	therefore	in	 force	unless	otherwise	specified	by	this	document.	This	
document	defines	minimum	structural	and	operational	requirements	for	writing	and	reading	ICC	profiles.	
Additional	 workflow	 requirements	 and	 restrictions	 are	 defined	 in	 domain‐specific	 interoperability	
conformance	specification	(ICS)	documents	approved	and	registered	by	the	ICC.	

In	this	document,	some	ISO	15076‐1	types	have	been	removed,	and	others	have	been	added.	A	colour	
management	module	(CMM)	compatible	with	profiles	conforming	to	this	document	will	have	backwards	
compatibility	with	profiles	conforming	to	ISO	15076‐1.	

Where	the	name	of	a	type	in	this	document	is	the	same	as	a	type	in	ISO	15076‐1,	the	type	definition	is	
based	on	the	 ISO	15076‐1	definition.	The	exception	 is	 the	definition	of	 the	MPE	type,	which	has	been	
expanded.	

Where	the	extensions	described	in	this	document	are	not	required	in	a	particular	workflow,	ISO	15076‐
1	is	used	as	the	basis	for	colour	management	profiles	and	architectures.	

2 Normative	references	

The	 following	 documents	 are	 referred	 to	 in	 the	 text	 in	 such	 a	way	 that	 some	 or	 all	 of	 their	 content	
constitutes	 requirements	 of	 this	 document.	 For	 dated	 references,	 only	 the	 edition	 cited	 applies.	 For	
undated	references,	the	latest	edition	of	the	referenced	document	(including	any	amendments)	applies.	

ISO	15076‐1,	Image	technology	colour	management	—	Architecture,	profile	format	and	data	structure	—	
Part	1:	Based	on	ICC.1:2010	

ISO	17972‐1,	Graphic	technology	—	Colour	data	exchange	format	—	Part	1:	Relationship	to	CxF3	(CxF/X)	

Recommendation	 ITU‐T	 H.273	 (12/2016),	 Coding‐independent	 code	 points	 for	 video	 signal	 type	
identification,	 Available	 from	 https://www.itu.int/rec/T‐REC‐H.273/en	 (also	 published	 as	 ISO/IEC	
23091‐2)	

ICC	Tag	Registry	Available	from	https://www.color.org/registry/signature/TagRegistry/	

3 Terms,	definitions	and	abbreviated	terms	

3.1 Terms	and	definitions	

For	the	purposes	of	this	document,	the	following	terms	and	definitions	apply.	

ISO	and	IEC	maintain	terminological	databases	for	use	in	standardization	at	the	following	addresses:

—	 ISO	Online	browsing	platform:	available	at	https://www.iso.org/obp	

—	 IEC	Electropedia:	available	at	http://www.electropedia.org/	

3.1.1	
high	dynamic	range	(image)	

ICC.2:2023	

2	 ©	ICC	2023	–	All	rights	reserved	

HDR	
image	that	contains	wider	variations	in	brightness,	with	a	dynamic	range	significantly	higher	than	that	of	a	standard	
dynamic	range	image	

Note	1	to	entry:	see	ISO/TS	22028‐5:2023(en)	

3.1.2	
profile	connection	conditions	
PCC	
information	used	to	define	illuminant,	observer	for	PCS	along	with	transforms	to	convert	to	and	from	
custom	colorimetry	and	standard	D50	colorimetry	for	the	standard	2°	observer		

3.1.3	
profile	connection	space	
PCS	
colour	space	used	to	connect	the	source	and	destination	profiles		

Note	1	to	entry:	See	ISO	15076‐1:2010,	Annex	D	for	a	full	description.	

3.1.4	
standard	dynamic	range	(image)	
SDR	
image	or	 image	sequence	format	conveying	typical	colour	volume	and	rendering	characteristics	similar	to	those	
specified	in	Recommendations	ITU‐R	BT.709	or	ITU‐R	BT.1886	or	IEC	61966‐2‐1	(sRGB)	

Note	1	to	entry:	see	ISO/IEC	29170‐2:2015/Amd	1:2020(en),	

3.2 Abbreviated	terms	

ANSI	 American	National	Standards	Institute	

BRDF	 bidirectional	reflectance	distribution	function	

CAM	 colour	appearance	model	

CIE	 Commission	Internationale	de	l’eclairage	(International	Commission	on	Illumination)	

CICP		 coding‐independent	code	points	for	video	signal	type	identification	

CLUT	 colour	lookup	table	(multi‐dimensional)	

CMM	 colour	management	module	

CMY	 cyan,	magenta,	yellow	

CMYK	 cyan,	magenta,	yellow,	key	(black)	

CRD	 colour	rendering	dictionary	

CRT	 cathode‐ray	tube	

EPS	 encapsulated	postscript	

ICC	 International	Color	Consortium	

ICS	 interoperability	conformance	specification	

IEC	 International	Electrotechnical	Commission	

ISO	 International	Organization	for	Standardization	

LCD	 liquid	crystal	display	

LUT	 lookup	table	

ICC.2:2023	

©	ICC	2023	–	All	rights	reserved	 3	

MCS	 multiplex	connection	space	

PCC	 profile	connection	conditions	

PCS	 profile	connection	space	

RGB	 red,	green,	blue	

TIFF	 tagged	image	file	format	

TRC	 tone	reproduction	curve	
	
	
	
	
	

4 Extended	basic	types	

4.1 General	

This	document	assumes	the	inclusion	of	all	basic	types	listed	in	ISO	15076‐1,	with	the	exception	of	7‐bit	
ASCII.	Only	extended	types	in	this	document	are	listed	below.	

4.2 Extended	basic	type	listing	

4.2.1 azimuthNumber	

An	azimuthNumber	corresponds	to	an	azimuth	angle	for	BRDF	and	directional	transformations.	It	shall	
be	encoded	as	a	floating	point	number	that	is	provided	as	input	to	a	multiProcessElementsType	in	any	of	
the	BRDF	function	tags	(brdfAToB0Tag,	brdfAToB1Tag,	brdfAToB2Tag,	brdfAToB3Tag,	brdfBToA0Tag,	
brdfBToA1Tag,	 brdfBToA2Tag,	 brdfBToA3Tag,	 brdfBToD0Tag,	 brdfBToD1Tag,	 brdfBToD2Tag,	
brdfBToD3Tag,	 brdfDToB0Tag,	 brdfDToB1Tag,	 brdfDToB2Tag,	 brdfDToB3Tag,	 directionalAToB0Tag,	
directionalAToB1Tag,	 directionalAToB2Tag,	 directionalAToB3Tag,	 directionalBToA0Tag,	
directionalBToA1Tag,	 directionalBToA2Tag,	 directionalBToA3Tag,	 directionalBToD0Tag,	
directionalBToD1Tag,	 directionalBToD2Tag,	 directionalBToD3Tag,	 directionalDToB0Tag,	
directionalDToB1Tag,	directionalDToB2Tag,	directionalDToB3Tag).	

The	azimuthNumber	encoding	range	shall	be	from	0,0	to	1,0,	with	0,0	representing	−180,0	degrees	and	
1,0	representing	+180,0	degrees.	Figure	1	shows	the	azimuth	angle	in	relation	to	the	normal	and	zenith	
angles.	

	

ICC.2:2023	

4	 ©	ICC	2023	–	All	rights	reserved	

Key	

a	 surface	normal	

b	 lighting/viewer	

c	 zenith	angle	

d	 azimuth	angle	

Figure	1	—	Normal,	zenith	and	azimuth	angles	

4.2.2 float16Number	

A	 float16Number	 shall	 be	 a	 half‐precision	 16‐bit	 floating‐point	 number	 as	 specified	 in	 IEEE	754,	
excluding	infinities	and	“not	a	number”	(NaN)	values.	

NOTE	1	 A	16‐bit	IEEE	754	floating‐point	number	has	a	5‐bit	exponent	and	a	10‐bit	mantissa.	

NOTE	2	 Although	infinities	and	NaN	values	are	not	stored	in	the	ICC	profile,	such	values	can	occur	as	a	result	of	
CMM	computations.	

4.2.3 float64Number	

A	 float64Number	 shall	 be	 a	 double‐precision	 64‐bit	 floating‐point	 number	 as	 specified	 in	 IEEE	754,	
excluding	infinities,	and	“not	a	number”	(NaN)	values.	

NOTE	1	 A	64‐bit	IEEE	754	floating‐point	number	has	an	11‐bit	exponent	and	a	52‐bit	mantissa.	

NOTE	2	 Although	infinities	and	NaN	values	are	not	stored	in	the	ICC	profile,	such	values	can	occur	as	a	result	of	
CMM	computations.	

4.2.4 horizontalNumber	

A	horizontalNumber	 corresponds	 to	 the	horizontal	 relative	position	of	 a	 viewing	 field	 for	directional	
transformations.	 It	 shall	 be	 encoded	 as	 a	 floating	 point	 number	 that	 is	 provided	 as	 input	 to	 a	
multiProcessElementsType	 in	 any	 of	 the	 directional	 function	 tags	 (directionalAToB0Tag,	
directionalAToB1Tag,	 directionalAToB2Tag,	 directionalAToB3Tag,	 directionalBToA0Tag,	
directionalBToA1Tag,	 directionalBToA2Tag,	 directionalBToA3Tag,	 directionalBToD0Tag,	
directionalBToD1Tag,	 directionalBToD2Tag,	 directionalBToD3Tag,	 directionalDToB0Tag,	
directionalDToB1Tag,	directionalDToB2Tag,	directionalDToB3Tag).	

The	horizontalNumber	 encoding	 range	 shall	 be	 from	−1,0	 to	 1,0	with	 −1,0	 representing	 the	 leftmost	
position,	0,0	representing	the	center	and	1,0	representing	the	rightmost	position.	

4.2.5 interpolationHintType	

An	 interpolationHintType	 provides	 additional	 guidance	 for	 interpolating	 multi‐dimensional	 colour	
lookup	tables	(CLUTs).		The	possible	values	for	an	interpolationHintType	are	found	in	Table	1.	

Table	1	—	intepolationHintType	values	

value	 Desired	interpolation	

0	 No	recommended	interpolation	

1	 Trilinear	interpolation	

2	 3D	tetrahedral	interpolation	

In	Table	1,	trilinear	interpolation	refers	to	any	method	whereby	the	grid	points	forming	a	hypercube	in	
the	input	colour	space	are	extracted	according	to	the	input	value	and	used	to	calculate	an	output	value,	
using	the	distance	from	the	input	value	to	the	grid	points	as	weights.	

ICC.2:2023	

©	ICC	2023	–	All	rights	reserved	 5	

Tetrahedral	interpolation	refers	to	any	method	whereby	4	grid	points	forming	a	tetrahedron	in	the	input	
colour	space	are	extracted	according	to	the	input	value	and	used	to	calculate	an	output	value,	using	the	
distance	from	the	input	value	to	the	grid	points	as	weights.	

To	ensure	 that	 the	neutral	 axis	 is	uniformly	 interpolated,	 tetrahedral	partitioning	 schemes	should	be	
based	on	the	bounding	cube	and	should	include	an	edge	which	subtends	from	the	grid	point	with	the	
lowest	LUT	index	values	within	the	bounding	cube	to	the	grid	point	with	the	highest	LUT	index	values	
within	the	bounding	cube.	

4.2.6 Sparse	matrix	encodings	

4.2.6.1 General	

Sparse	matrices	shall	be	encoded	using	compressed	row	order,	which	facilitates	efficient	multiplication	
of	column	vectors	as	well	as	the	interpolation	between	sparse	matrices.	A	sparse	matrix	shall	be	encoded	
as	a	variable	structure	with	internal	padding	within	a	fixed	size	data	block.	The	use	of	a	fixed	data	block	
size	allows	for	the	efficient	indexing	of	arrays	of	sparse	matrices.	

In	addition	to	encoding	the	number	of	rows,	number	of	columns	and	number	of	matrix	data	entries,	the	
compressed	 row	order	 encoding	 shall	 include	 three	 sub‐arrays:	 a	 padded	 array	 of	matrix	 entry	 data	
values,	 a	padded	array	of	matrix	 entry	 column	 identifiers,	 and	an	 array	of	offsets	 to	 successive	 rows	
stored	in	the	matrix	data	and	column	index	arrays.	

Successive	offset	values	in	the	row	start	offset	array	shall	be	greater	than	or	equal	to	preceding	values.	
The	number	of	matrix	data	entries	associated	with	a	row	can	therefore	be	found	by	subtracting	the	offset	
of	the	row	by	the	offset	of	the	succeeding	row.	

Successive	matrix	 entry	 column	 index	 values	 associated	with	 any	 single	 row	 shall	 be	monotonically	
increasing.	

Information	about	operations	with	sparse	matrices	can	be	found	in	Annex	E.	

Multiple	sparse	matrix	encodings	are	permitted,	but	shall	differ	in	the	encoding	of	the	matrix	entry	data	
values	as	follows:	

—	 The	sparseMatrixUInt8	encoding	shall	use	uInt8Numbers	to	encode	matrix	data	values	(Table	1).	The	
internal	representation	of	the	values	0	to	255	shall	represent	matrix	values	0,0	to	1,0.	

—	 The	sparseMatrixUInt16	encoding	shall	use	uInt16Numbers	to	encode	matrix	data	values	(Table	2).	
The	internal	representation	of	the	values	0	to	65	535	shall	represent	matrix	values	0,0	to	1,0.	

—	 The	sparseMatrixFloat16	encoding	shall	use	float16Numbers	to	encode	matrix	values	(Table	3).	

—	 The	sparseMatrixFloat32	encoding	shall	use	float32Numbers	to	encode	matrix	values	(Table	4).	

Table	1	—	sparseMatrixUInt8	encoding	

Byte	position	 Field	
length	
(bytes)	

Content	 Encoded	as…	

0…1	 2	 Rows	(R)	 uInt16Number	

2…3	 2	 Columns	(C)	 uInt16Number	

4…3+R*2	 R*2	 Row	start	offset	array	 uInt16Number[R]	

4+R*2…5+R*2	 2	 Number	of	matrix	entries	(N)	 uInt16Number	

6+R*2…5+R*2	+	N*2	 N*2	 Matrix	entry	column	index	array	 uInt16Number[N]	

6+R*2+N*2…O‐1	 		 Index	padding,	shall	be	0	 		

O…O+N‐1	 N	 Matrix	entry	data	array	 uInt8Number[N]	

O+N…end	 		 Data	padding,	shall	be	0	 		

ICC.2:2023	

6	 ©	ICC	2023	–	All	rights	reserved	

Table	2	—	sparseMatrixUInt16	encoding	

Byte	position	 Field	
length	
(bytes)	

Content	 Encoded	as…	

0…1	 2	 Rows	(R)	 uInt16Number	

2…3	 2	 Columns(C)	 uInt16Number	

4…3+R*2	 R*2	 Row	start	offset	array	 uInt16Number[R]	

4+R*2…5+R*2	 2	 Number	matrix	entries	(N)	 uInt16Number	

6+R*2…5+R*2	+	N*2	 N*2	 Matrix	entry	column	indices	 uInt16Number[N]	

6+R*2+N*2…O‐1	 		 Index	padding,	shall	be	0	 		

O…O+N*2‐1	 N*2	 Matrix	entry	data	values	 uInt16Number[N]	

O+N*2…end	 		 Data	padding,	shall	be	0	 		

Table	3	—	sparseMatrixFloat16	encoding	

Byte	position	 Field	
length	
(bytes)	

Content	 Encoded	as…	

0…1	 2	 Rows	(R)	 uInt16Number	

2…3	 2	 Columns	(C)	 uInt16Number	

4…3+R*2	 R*2	 Row	start	offset	array	 uInt16Number[R]	

4+R*2…5+R*2	 2	 Number	matrix	entries	(N)	 uInt16Number	

6+R*2…5+R*2	+	N*2	 N*2	 Matrix	entry	column	indices	 uInt16Number[N]	

6+R*2+N*2…O‐1	 		 Index	padding,	shall	be	0	 		

O…O+N*2‐1	 N*2	 Matrix	entry	data	values	 float16Number[N]	

O+N*2…end	 		 Data	padding,	shall	be	0	 		

Table	4	—	sparseMatrixFloat32	encoding	

Byte	position	 Field	
length	
(bytes)	

Content	 Encoded	as…	

0…1	 2	 Rows	(R)	 uInt16Number	

2…3	 2	 Columns	(C)	 uInt16Number	

4…3+R*2	 R*2	 Row	start	offset	array	 uInt16Number[R]	

4+R*2…5+R*2	 2	 Number	matrix	entries	(N)	 uInt16Number	

Table	4	(continued)	

Byte	position	 Field	
length	
(bytes)	

Content	 Encoded	as…	

6+R*2…5+R*2	+	N*2	 N*2	 Matrix	entry	column	indices	 uInt16Number[N]	

6+R*2+N*2…O‐1	 		 Index	padding,	shall	be	0	 		

O…O+N*4‐1	 N*4	 Matrix	entry	data	values	 float32Number[N]	

O+N*4…end	 		 Data	padding,	shall	be	0	 		

4.2.6.2 Compact	padding	

When	sparse	matrices	are	encoded	in	a	profile	they	shall	be	compacted	so	that	the	index	and	data	padding	
result	in	the	matrix	entry	data	values	and	the	end	of	the	sparse	matrix	being	aligned	on	a	4	byte	boundary.	

ICC.2:2023	

©	ICC	2023	–	All	rights	reserved	 7	

NOTE	 Compact	padding	can	result	 in	variability	 in	the	size	of	 individual	sparse	matrices	 in	a	sparse	matrix	
array	or	sparse	matrix	LUT.	

4.2.6.3 Fixed	block	size	padding	

When	a	colour	space	uses	sparse	matrix	encoding	it	is	useful	for	the	internal	encoding	to	use	a	fixed	block	
size	determined	by	the	number	of	samples	associated	with	the	colour	space.	

NOTE	 One	method	of	internally	encoding	Sparse	Matrices	within	a	CMM	adjusts	the	index	and	data	padding	to	
allow	the	number	of	matrix	entries	to	vary	without	the	size	of	the	encoded	data	block	size	changing.	The	block	size	
therefore	determines	a	fixed	upper	limit	to	the	number	of	entries	that	can	be	encoded.	

When	fixed	block	size	padding	is	used,	the	maximum	number	of	matrix	entries	(M)	that	can	be	encoded	
for	each	of	the	sparse	matrix	encodings	is	determined	by	the	fixed	data	block	size	(B)	used	to	store	the	
sparse	matrix,	 the	number	of	rows	(R)	and	the	byte	size	(S)	of	a	matrix	entry	data	value	as	shown	in	
Formula	(1):	

M	=	floor	((B	–	8	–	2*R	–	(S	−	1)]/(S	+	2))		 (1)	

When	fixed	block	size	padding	is	used	for	each	of	the	sparse	matrix	encodings	in	Table	1	to	Table	4	the	
offset	of	 the	matrix	entry	data	array	(O)	 is	determined	by	 the	number	of	 rows	(R)	and	 the	maximum	
number	of	matrix	entries	(M),	as	well	as	the	byte	size	(S)	of	a	matrix	entry	data	value	as	shown	in	Formula	
(2):	

O	=	floor	((8	+	2*R	+	2*M	+	(S	−	1))/S)	*S	 (2)	

4.2.7 sparseMatrixEncodingType	

When	 encoding	 sparse	 matrices	 the	 exact	 data	 encoding	 type	 used	 shall	 be	 specified	 using	 a	
sparseMatrixEncodingType	parameter.	Where	used,	values	for	a	sparseMatrixEncodingType	parameter	
shall	be	encoded	as	defined	in	Table	5.	

Table	5	—	sparseMatrixEncodingType	selection	of	sparse	matrix	encoding	in	SparseMatrixLut	

sparseMatrixEncodingType	 Sparse	matrix	encoding	

1	 sparsematrixUInt8	

2	 sparseMatrixUInt16	

3	 sparseMatrixFloat16	

4	 sparseMatrixFloat32	

4.2.8 spectralRange	

The	spectralRange	data	type	shall	be	used	to	specify	spectral	ranges.	This	data	type	shall	be	made	up	of	
two	 float16Number	 values	 and	 a	 uInt16Number	 value	 that	 define	 the	 starting	 wavelength,	 ending	
wavelength	and	total	number	of	steps	in	the	range.	The	encoding	of	a	spectralRange	data	type	is	shown	
in	Table	6.	

Table	6	—	spectralRange	encoding	

Byte	
position	

Field	length	
(bytes)	

Field	contents	 Encoded	as…	

0	to	1	 2	 Start	wavelength	 float16Number	

2	to	3	 2	 End	wavelength	 float16Number	

4	to	5	 2	 Steps	in	wavelength	range	 uInt16Number	

ICC.2:2023	

8	 ©	ICC	2023	–	All	rights	reserved	

4.2.9 tintArray	

A	tintArray	defines	 the	relationship	between	a	single	 input	value	(tint)	and	multiple	output	values.	A	
tintArray	 is	 used	 by	 both	 the	 multiprocessing	 element	 tintArrayElement	 (11.2.14)	 as	 well	 as	 the	
namedColorStructure	(12.2.5).	Any	of	the	numeric	array	types	(e.g.	uInt8ArrayType)	are	permitted	in	a	
tintArray.	The	relationship	between	N	tints	(each	made	up	of	M	samples	per	tint)	in	a	tintArray	is	depicted	
in	Table	7.	

Table	7	—	tintArray	sample	index	assignments	

Tint	index	 Sample	1	 Sample	2	 ...	 Sample	M‐1	 Sample	M	

0	 0	 1	 ...	 M‐2	 M‐1	

1	 M	 M+1	 ...	 2M‐2	 2M‐1	

...		

N‐2	 (N‐2)M	 (N‐2)M+1	 ...	 (N‐1)M‐2	 (N‐1)M‐1	

N‐1	 (N‐1)M	 (N‐1)M+1	 ...	 NM‐2	 NM‐1	

A	tint	array	shall	have	N	×	M	entries	in	the	array.	

NOTE	 Assignment	of	tint	values	ranging	from	0,0	to	1,0	to	tint	indices	can	vary	and	is	specific	to	the	use	case	
in	which	a	tint	array	is	used.	

4.2.10 valueEncodingType	

When	encoding	values	in	sampled	curves	and	colour	lookup	tables	(CLUTs)	the	exact	data	encoding	type	
used	shall	be	specified	using	a	valueEncodingType	parameter.	Values	for	a	valueEncodingType	parameter	
shall	 be	 as	defined	 in	Table	8.	Encoded	values	 for	 the	 float32Number	and	 float16Number	 types	 shall	
represent	the	actual	encoding	number.	Encoded	values	for	the	uInt16Number	and	uInt8Number	types	
shall	represent	an	encoding	between	the	range	of	0,0	to	1,0.	

Table	8	—	valueEncodingType	values	

valueType	 value	Encoding	

0	 float32Number	

1	 float16Number	

2	 uInt16Number	

3	 uInt8Number	

Values	for	a	valueEncodingType	may	be	encoded	as	either	a	uInt16Number	or	a	uInt32Number.	

4.2.11 verticalNumber	

A	 verticalNumber	 corresponds	 to	 the	 vertical	 relative	 position	 of	 a	 viewing	 field	 for	 directional	
transformations.	For	example,	the	viewing	field	of	a	display	represents	the	physical	limits	of	the	display.	
A	 verticalNumber	 shall	 be	 encoded	 as	 a	 floating	 point	 number	 that	 is	 provided	 as	 input	 to	 a	
multiProcessElementsType	 in	 any	 of	 the	 directional	 function	 tags	 (directionalAToB0Tag,	
directionalAToB1Tag,	 directionalAToB2Tag,	 directionalAToB3Tag,	 directionalBToA0Tag,	
directionalBToA1Tag,	 directionalBToA2Tag,	 directionalBToA3Tag,	 directionalBToD0Tag,	
directionalBToD1Tag,	 directionalBToD2Tag,	 directionalBToD3Tag,	 directionalDToB0Tag,	
directionalDToB1Tag,	directionalDToB2Tag,	directionalDToB3Tag).	

The	verticalNumber	encoding	range	shall	be	from	−1,0	to	1,0	with	−1,0	representing	the	topmost	position,	
0,0	representing	the	center	and	1,0	representing	the	bottommost	position.	

ICC.2:2023	

©	ICC	2023	–	All	rights	reserved	 9	

4.2.12 zenithNumber	

A	zenithNumber	can	be	used	to	specify	to	a	zenith	angle	θ	for	BRDF	and	directional	transformations	or	
to	define	geometry	of	measurement.	It	shall	be	encoded	as	a	floating	point	number	that	is	provided	as	
input	to	a	multiProcessElementsType	in	any	of	the	BRDF	function	tags	(brdfAToB0Tag,	brdfAToB1Tag,	
brdfAToB2Tag,	 brdfAToB3Tag,	 brdfBToA0Tag,	 brdfBToA1Tag,	 brdfBToA2Tag,	 brdfBToA3Tag,	
brdfBToD0Tag,	 brdfBToD1Tag,	 brdfBToD2Tag,	 brdfBToD3Tag,	 brdfDToB0Tag,	 brdfDToB1Tag,	
brdfDToB2Tag,	 brdfDToB3Tag,	 directionalAToB0Tag,	 directionalAToB1Tag,	 directionalAToB2Tag,	
directionalAToB3Tag,	 directionalBToA0Tag,	 directionalBToA1Tag,	 directionalBToA2Tag,	
directionalBToA3Tag,	 directionalBToD0Tag,	 directionalBToD1Tag,	 directionalBToD2Tag,	
directionalBToD3Tag,	 directionaDToB0Tag,	 directionalDToB1Tag,	 directionalDToB2Tag,	
directionalDToB3Tag).	

The	 zenithNumber	 encoding	 range	 shall	 be	 from	 0,0	 to	 1,0,	 with	 0,0	 representing	 0,0	degrees	 and	
1,0	representing	90,0	degrees.	Figure	2	shows	 the	zenith	angle	 in	relation	 to	 the	normal	and	azimuth	
angles.	

	
Key	

a	 surface	normal	

b	 lighting/viewer	

c	 zenith	angle	

d	 azimuth	angle	

Figure	2	—	Normal,	zenith	and	azimuth	angles	

5 Conformance	

Any	colour	management	system,	application,	utility	or	device	driver	that	claims	full	conformance	with	
this	document	shall	have	the	ability	to	read	the	profiles	as	they	are	defined	in	this	document,	including	
all	 specified	 tags	 and	 types.	 Any	 profile‐generating	 software	 and/or	 hardware	 that	 claims	 full	
conformance	with	 this	 document	 shall	 have	 the	 ability	 to	 create	 profiles	 as	 they	 are	 defined	 in	 this	
document,	including	all	specified	tags	and	types.	

In	addition,	software	or	hardware	may	claim	partial	conformance	with	this	document	by	reading	and/or	
creating	 profiles	 that	 contain	 a	 subset	 of	 the	 tags	 and	 types	 listed	 in	 a	 separate	 domain‐specific	 ICS	
approved	and	registered	by	the	ICC.	

Software	 conforming	 to	 this	 document	 shall	 use	 the	 ICC	 profiles	 generated	 in	 accordance	 with	 this	
document,	or	with	an	approved	ICS.	

ICC.2:2023	

10	 ©	ICC	2023	–	All	rights	reserved	

Unambiguous	operation	of	profiles	in	workflow	scenarios	identified	in	an	ICS	is	provided	by	the	use	of	
CMM	processing	control	options.	For	more	information	about	workflow	scenarios	and	CMM	processing	
options	see	Annex	K.	

A	colour	management	system,	profile‐generating	software	and/or	hardware	application,	utility	or	device	
driver	that	claims	full	or	partial	conformance	with	this	document	shall	also	conform	with	all	definitions	
and	 requirements	 in	 ISO	15076‐1	 unless	 otherwise	 specified	 by	 this	 document,	 and	 shall	 register	 all	
signatures	for	CMM	type,	device	manufacturer,	device	model,	profile	tags	and	profile	tag	types	with	the	
ICC	to	ensure	that	all	profile	data	are	uniquely	defined.	Domain‐specific	specification	documents	(ICSs)	
shall	also	be	registered.	The	registration	authority	for	all	of	these	is	the	ICC	Technical	Secretary.	

NOTE	 See	the	ICC	website	(http://www.color.org)	for	contact	information.	

6 Expanded	PCSs,	rendering	intents	and	device	encoding	

6.1 General	considerations	

This	document	describes	extensions	to	profiles	and	their	connections	that	permit	a	greater	flexibility	and	
functionality	than	ISO	15076‐1.	Where	such	extensions	are	not	needed	in	a	particular	workflow,	users	
should	continue	to	use	ISO	15076‐1	as	the	basis	for	colour	management	profiles	and	architectures.	

6.2 Extensions	to	device	colour	encoding	

The	number	of	channels	associated	with	a	colour	space	is	determined	from	the	colour	space	signature.	
Extensions	that	allow	for	processing	elements	to	utilize	up	to	65	535	channels	require	uniquely	defined	
colour	space	signatures	associated	with	up	to	65	535	channels.	This	is	accomplished	by	extending	the	
signature	definition	to	use	the	binary	representation	of	the	actual	number	of	channels	within	the	32‐bit	
signature.	The	16	most	significant	bits	(corresponding	to	textual	digits)	shall	match	an	extended	colour	
space	type	(signature	identifier),	and	the	16	least	significant	bits	shall	define	a	binary	representation	of	
the	number	of	channels	(signature	channels).	This	results	in	a	colour	space	signature	containing	32	bits	
that	cannot	be	represented	as	four	text	characters.	

A	six‐character	text	string	shall	be	used	for	cases	when	a	textual	representation	of	these	extended	colour	
space	signatures	is	desired	with	the	first	two	characters	corresponding	to	the	signature	identifier	and	the	
last	four	digits	corresponding	to	a	hexadecimal	representation	of	the	signature	channels.	(Thus:	“nc0014”	
corresponds	to	the	32‐bit	hexadecimal	extended	colour	space	signature	encoding	(6e630014h)	used	in	
the	profile	which	represents	N‐channel	data	with	twenty	device	channels.)	Having	a	six‐character	text	
representation	of	an	extended	colour	space	signature	is	for	convenience	purposes	only	for	describing	the	
signature	value	(as	colour	signatures	are	only	encoded	as	binary	32‐bit	values	within	profiles).	Extended	
N	channel	device	data	colour	space	signature	encoding	is	provided	in	Table	9.	

	

	

	

Table	9	—	Extended	data	colour	space	signatures	

Spectral	colour	space	type	 Signature	
identifier	

Signature	
channels	

Combined	
hex	encoding	

Signature	
representation	

N	channel	device	data	
’nc’	
(6e63h)	

1	…	65	
535	
(0001h	…	
FFFFh)	

6e630001h	…	
6e63FFFFh	

“nc0001”	…	
“ncFFFF”	

None	(PCS	defined	by	PCS	header	field)	 0	 0	 00000000h	 0	

ICC.2:2023	

©	ICC	2023	–	All	rights	reserved	 11	

6.3 Extensions	to	PCSs	

6.3.1 General	

ISO	15076‐1	defines	PCSs	in	terms	of	D50	colorimetry	with	the	CIE	1931	standard	2‐degree	observer.	
The	resulting	transform	data	are	therefore	encoded	relative	to	this	illuminant	and	observer.	Use	of	the	
chromatic	adaptation	tag	in	ISO	15076‐1	provides	a	means	of	converting	encoded	PCS	transform	results	
for	 the	 media	 white	 point	 to	 and	 from	 actual	 illuminant/observer	 colorimetry.	 A	 CMM	 that	 is	 in	
conformance	with	this	document	shall	always	provide	transforms	to	and	from	D50/2‐degree	colorimetry	
that	 can	be	used	when	 connecting	profiles.	 Such	 transforms	 shall	make	use	of	 the	profile	 connection	
condition	tags	defined	in	this	document	rather	than	the	chromatic	adaptation	tag	defined	in	ISO	15076‐
1.	This	document	extends	profile	connection	to	allow	direct	encoding	of	colour	data	in	transforms	with	
arbitrary	 illuminants	 and	 observers.	 This	 results	 in	 the	 CMM	 performing	 conversions	 between	 PCS	
observer	 and	 illuminant	 colorimetry	 as	 needed	 using	 profile	 connection	 conditions	 (PCC).	 The	 PCC	
defines	 information	 about	 the	 observer	 and	 illuminant	 as	 well	 as	 transforms	 between	 custom	
observer/illuminant	conditions	and	the	standard	D50/2‐degree	observer	colorimetry.	Where	PCC	are	
used	to	connect	profiles,	the	CMM	shall	either	use	the	PCC	from	within	a	profile	or	a	PCC	provided	by	the	
CMM.	Profiles	based	on	colorimetry	using	an	illuminant	other	than	CIE	D50	or	a	colorimetric	observer	
other	 than	 the	 CIE	1931	 standard	 observer	 (known	 as	 the	 2‐degree	 observer)	 shall	 encode	 profile	
connection	condition	tags	(see	6.3.2).	

Additional	 PCSs	 can	 be	 specified	 that	 are	 based	 upon	 spectral	 representation	 of	 colour	 rather	 than	
colorimetry.	A	spectral	PCS	use	is	defined	and	encoded	separately	from	colorimetric	PCS	use	within	a	
profile.	Therefore	both	colorimetric	and	spectral	PCS	transforms	can	simultaneously	exist	 in	a	profile.	
Profile	connection	condition	tags	shall	also	be	encoded	within	a	profile	whenever	a	spectral	PCS	is	used	
within	a	profile.	

Additional	 tags	can	be	provided	in	a	profile	that	can	define	surface	characteristics	such	as	gloss,	with	
relationships	between	lighting	and	viewing	angle	defined.	These	tags	provide	an	additional	connection	
interface	 separate	 from	 the	 PCS.	 These	 BRDF	 transforms	 provide	 information	 for	 three‐dimensional	
rendering	systems	that	are	capable	of	rendering	light	interactions	based	upon	the	surface	characteristics.	
The	measurement	angle	tag	also	allows	the	profile	generator	to	identify	the	measurement	geometry	used	
to	generate	the	PCS	data	in	the	profile.	

Lastly,	 a	multiplex‐based	connection	method	 is	 introduced	 that	allows	profiles	 to	be	 connected	using	
named	multiplex	channels.	This	can	be	considered	as	an	extension	of	device‐channel‐based	connection	
with	flexibility	and	channel	matching	rules.	

6.3.2 Profile	connection	conditions	

The	standard	PCS	shall	be	defined	to	use	the	2‐degree	observer	under	D50	illumination.	Whenever	either	
a	non‐standard	PCS	or	a	spectral	PCS	is	used,	three	tags	shall	be	encoded	in	a	profile	and	shall	be	used	to	
define	 default	 PCC	 for	 a	 profile.	 In	 cases	 of	 spectral	 PCS	 use	 or	 late‐binding	 colorimetric	 processing	
elements,	a	CMM	may	optionally	be	provided	or	use	external	PCC,	thus	overriding	the	defaults	provided	
by	the	profile.	

The	spectralViewingConditions	tag	shall	define	the	spectral	power	distribution	of	the	illuminant,	colour	
matching	 functions	 (CMFs)	 of	 the	 observer	 and	 the	 lighting	 levels	 of	 the	 surround.	 If	 the	
spectralViewingConditions	are	different	from	the	standard	PCS	viewing	conditions	then	two	tags	are	used	
to	convert	between	custom	and	standard	connection	conditions	(see	9.2.105).	

The	customToStandardPCC	tag	shall	define	a	transform	that	converts	from	the	custom	viewing	condition	
colorimetry	to	standard	viewing	condition	colorimetry	(see	9.2.56).	

The	standardToCustomPCC	tag	shall	define	a	transform	that	converts	from	standard	viewing	condition	
colorimetry	to	the	custom	viewing	condition	(see	9.2.107).	

Apart	from	the	spectral	tables,	all	other	tables,	both	forward	and	inverse,	shall	convert	colours	between	
the	colour	space	of	the	PCS	and	coding	values	of	the	colour	reproduction	device,	taking	into	account	the	
reference	and	actual	viewing	conditions.	

ICC.2:2023	

12	 ©	ICC	2023	–	All	rights	reserved	

6.3.3 Spectral	PCSs	

6.3.3.1 General	

This	document	allows	for	a	spectrally‐based	PCS	to	be	defined	for	DToBx/BToDx	tags	using	a	spectralPCS	
signature	field	in	the	profile	header.	The	use	of	DToBx/BToDx	tags	for	colorimetric	processing	has	been	
deprecated	in	this	document.	Additional	header	fields	are	also	added	to	allow	specification	of	spectral	
information	used	by	the	profile.	

A	distinction	 is	made	between	self‐emitting	colours	and	non	self‐emitting	colours,	here	referred	to	as	
luminous	 colours	 and	 object	 colours.	 Luminous	 colours	 are	 characterized	 by	 their	 emission	 spectra,	
whereas	for	object	colours	reflectance	or	transmission	spectra	are	used.	These	three	types	of	spectra	are	
referred	to	as	object	characterization	spectra.	

Reflectance	spectra	are	specified	 in	relation	to	the	perfect	reflector	whereas	transmission	spectra	are	
related	to	a	perfect	transmitter.	Therefore,	both	types	of	spectra	can	be	seen	as	relative	data.	For	emission	
spectra,	Y	tristimulus	values	correspond	to	luminance	values,	and	hence	these	are	regarded	as	absolute	
data.	

Different	types	of	spectral	data	can	be	defined.	In	normal	circumstances,	only	reflectance,	transmission	
or	emission	spectra	are	used	but	in	other	circumstances	additional	data	shall	be	provided	according	to	
the	processing	to	be	carried	out.	To	represent	bi‐spectral	data,	a	Donaldson	matrix	is	used	and	is	specified	
by	bi‐spectral	data	fields	in	the	header.	

6.3.3.2 Encoding	spectral	data	

To	define	the	use	of	a	spectrally‐based	PCS,	one	of	the	spectral	colour	space	signatures	in	Table	10	shall	
be	used	to	encode	the	colour	space	implied	by	the	spectralPCS	field	of	the	profile	header.	These	colour	
space	signatures	define	both	the	colour	space	type	and	the	number	of	channels	associated	with	the	colour	
space.	 Therefore,	 the	 number	 of	 signature	 channels	 associated	 with	 the	 spectralPCS	 colour	 space	
signature	 shall	 match	 the	 number	 of	 channels	 indicated	 by	 the	 steps	 field(s)	 of	 the	 corresponding	
spectralRange	structures	in	the	profile	header.	

Table	10—	Spectral	colour	space	signatures	

Spectral	colour	space	type	
Signature	
identifier	

Signature	
channels	

Combined	
hex	encoding	

Signature	
representation	

None	(PCS	defined	by	PCS	header	field)	 0	 0	 00000000h	 0	

Reflectance	spectra	with	N	channels	
’rs’	

(7273h)	

1	…	65	
535	

(0001h	…	
FFFFh)	

72730001h	…	

7273FFFFh	
“rs0001”	…	
“rsFFFF”	

Transmission	spectra	with	N	channels	
’ts’	

(7473h)	

1	…	65	
535	

(0001h	…	
FFFFh)	

74730001h	…	

7473FFFFh	

“ts0001”	…	

“tsFFFF”	

Table	10	(continued)	

Radiant	(emission)	spectra	with	N	
channels	

’es’	

(6573h)	

1	…	65	
535	

(0001h	…	
FFFFh)	

65730001h	…	

6573FFFFh	
“es0001”	…	
“esFFFF”	

Bi‐spectral	reflectance	spectra	with	N	
total	channels	

‘bs’	

(6273h)	

1	to	65	
535	

(0001h	…	
FFFFh)	

62730001h	…	

6273FFFFh	
“bs0001”	…	
“bsFFFF”	

ICC.2:2023	

©	ICC	2023	–	All	rights	reserved	 13	

Bi‐spectral	reflectance	using	sparse	
matrix	with	N	equivalent	output	channels	

’sm’	

(736d)	

1	to	65	
535	

(0001h	…	
FFFFh)	

736D0001h	…	

736DFFFFh	
“sm0001”	…	
“smFFFF”	

NOTE	 Spectral	colour	space	signatures	use	the	same	32‐bit	binary	encoding	mechanism	as	N	colour	device	data	
signatures	(see	6.2.1),	with	each	having	a	six‐character	signature	representation.	

Spectra	 are	 normally	 represented	 according	 to	 their	 canonical	 basis,	 i.e.	 the	 spectrum	 is	 sampled	
uniformly	along	the	wavelength	axis.	The	wavelength	range	is	represented	by	a	start	wavelength	(S),	end	
wavelength	 (E)	 and	number	of	 steps	 (n).	The	wavelength	 interval	between	 steps	 (I)	 is	 then	 given	by	
Formula	(3).	

I	=	(E	−	S)/(n	−	1)	 (3)	

6.3.3.3 Spectral	consistency	of	tags	in	profiles	

Apart	 from	measurement	files	embedded	in	profiles,	spectral	data	in	all	other	tags	are	assumed	to	be	
sampled	at	uniform	intervals,	with	a	given	start,	end	wavelength	and	number	of	steps.	The	dimensions	
and	range	of	the	spectra	in	the	different	tags	have	to	be	defined	consistently.	For	normal	spectra,	it	means	
that	 the	 spectral	 dimension	 of	 object	 characterization	 spectra	 have	 to	 be	 the	 same.	 If	 the	 object	
characterization	spectra	are	defined	by	the	Donaldson	matrix,	the	Donaldson	matrix	has	to	be	an	nXm	
matrix	with	m	defined	internally	in	the	corresponding	colour	table.	For	multiple	spectra,	suppose	k,	the	
object	 characterization	 spectra	 are	 a	 column	 vector	 with	 length	 kXn	 in	 the	 colour	 tables,	 but	 after	
processing	also	n	dimensional	spectra	are	obtained.	

The	spectral	type	of	the	object	characterization	spectra	is	defined	in	the	profile	header.	

Tags	containing	measurement	files	are	seen	as	separate	entities	and	hence	the	previous	conditions	do	
not	have	to	be	fulfilled.	

6.3.3.4 Spectral	fluorescence	connection	spaces	

The	 characterization	 of	 the	 interaction	 of	 light	 with	 a	 diffuse	 surface	 can	 be	 accomplished	 using	 a	
Donaldson	matrix.	The	multiplication	of	such	a	matrix	by	a	vector	representing	the	illumination	results	
in	a	vector	representing	the	light	reflected	off	the	surface.	Columns	of	a	Donaldson	matrix	correspond	to	
incident	wavelengths	of	 light	and	rows	of	a	Donaldson	matrix	correspond	to	reflected	wavelengths	of	
light.	Diagonal	entries	(where	incident	and	reflected	wavelengths	are	the	same)	correspond	to	spectral	
reflectance.	 Off	 diagonal	 entries	 (below	 the	 diagonal)	 represent	 the	 contribution	 of	 a	 change	 in	 the	
reflected	light’s	wavelength	(typically	due	to	fluorescence).	Fluorescence	occurs	when	light	is	absorbed	
and	then	re‐emitted	at	a	 longer	wavelength.	Using	Donaldson	matrices	to	represent	colours	 in	an	ICC	
profile	 allows	 for	 a	 more	 complete	 description	 of	 colour	 to	 be	 encoded	 than	 using	 only	 spectral	
reflectance	or	simple	colorimetry.	Examples	of	various	spectral	calculations	can	be	found	in	Annex	A.	

However,	 directly	 encoding	 a	 Donaldson	 matrix	 in	 a	 profile	 can	 be	 inefficient.	 For	 example,	 if	
41	wavelengths	are	used	to	represent	an	illuminant	(300	nm	to	700	nm	with	a	10	nm	interval)	and	31	
wavelengths	are	used	to	represent	the	reflected	light	(400	nm	to	700	nm	with	a	10	nm	interval)	then	a	
corresponding	Donaldson	matrix	 encodes	 31	×	41	=	1	271	entries.	 	However,	most	 of	 the	 off‐diagonal	
entries	are	zero	with	the	only	entries	with	non‐zero	data	for	fluorescent	terms.	By	using	a	sparse	matrix	
encoding	 (which	 only	 encodes	 non‐zero	 entries	 of	 a	matrix),	 large	 profile	 files	 can	 be	 avoided	while	
simultaneously	reducing	processing	overhead	because	fewer	computations	need	to	be	performed.	This	
results	in	a	compression	of	information	and	requires	that	interpolation	and	application	of	the	matrices	
be	carried	out	correctly.	

When	using	Donaldson	matrices	to	represent	colour	values	in	a	colour	LUT,	intermediate	matrices	shall	
be	determined	(using	interpolation)	to	establish	the	intermediate	“colour”.	However,	since	a	Donaldson	
matrix	 is	 associated	with	a	 single	 combination	of	device	 code	values,	 interpolation	between	matrices	
associated	with	different	device	code	values	needs	to	be	performed	to	estimate	a	Donaldson	matrix	for	
intermediate	device	code	values.	

ICC.2:2023	

14	 ©	ICC	2023	–	All	rights	reserved	

The	use	of	a	single	sparse	matrix	LUT	encoding	can	be	used	in	two	contexts.	The	first	is	in	a	tag	containing	
a	single	dimensional	array	of	sparse	matrices	representing	different	tint	values	of	a	single	colour	(used	
by	NamedColors).	The	second	is	a	multi‐dimensional	table	of	sparse	matrices	in	the	context	of	a	multi‐
process	element	which	is	useful	for	characterizing	a	device	using	Donaldson	matrices	for	each	possible	
input	combination.	

Normally	 colour	 lookup	 tables	 (CLUTs)	 define	multiple	 output	 samples	 for	 each	 input	 coordinate	 in	
lookup	table.	A	sparse	matrix	expands	the	meaning	of	the	output	colour	samples	being	passed	around	in	
a	CMM.	When	sparse	matrices	are	implied	by	a	colour	space	the	array	of	colour	samples	should	instead	
be	 interpreted	as	using	a	 sparse	matrix	encoding.	The	number	of	 samples	defined	 in	a	 sparse	matrix	
colour	 space	 establishes	 the	 upper	 limit	 to	 the	 number	 of	 matrix	 entries	 that	 can	 be	 encoded.	 A	
compressed	row	order	encoding	of	sparse	matrices	is	utilized.	This	encoding	format	allows	for	efficient	
interpolation	of	matrices	as	well	as	efficient	multiplication	of	vectors	by	sparse	matrices.	

6.3.4 BRDF	connection	

None	of	the	transforms	defined	by	ISO	15076‐1	support	BRDF	as	an	input	to	a	transform.	It	is	possible	
for	a	CMM	to	transform	BRDF	values	to	connection	space	values	that	are	needed.	

Extended	information	about	using	BRDF	with	tags	encoded	in	profiles	defined	by	this	document	can	be	
found	in	Annex	G.	

6.3.5 Directional	viewing	connection	

None	of	the	transforms	defined	by	ISO	15076‐1	support	directional	or	positional	information	as	input	to	
a	 transform.	 It	 is	 possible	 for	 a	 CMM	 to	 transform	 both	 directional	 angles	 and	 relative	 positional	
information	to	determine	connection	space	values	that	are	needed	in	order	to	compute	device	values.	
Reverse	transforms	are	also	possible	to	determine	device	values	that	achieve	connection	space	values.	

Extended	information	about	using	directional	tags	encoded	in	profiles	defined	by	this	document	can	be	
found	in	Annex	H.	

6.4 Multiplex	connection	spaces	

6.4.1 General	

This	 document	 allows	 for	 a	 connection	 space	 defined	 by	 multiplex	 channel	 identification	 for	
AToM0/MToA0/MToB0/MToS0	 tags	 using	 a	multiplex	 connection	 space	 (MCS)	 signature	 field	 in	 the	
profile	header.	If	this	field	is	zero,	then	multiplex	connection	is	not	defined.	

MCS	 connection	 is	 performed	 by	 passing	 values	 for	 multiplex	 channels	 between	 profiles	 that	 have	
identical	multiplex	channel	type	values	(defined	in	the	multiplexTypeArrayTag	of	both	profiles).	The	MCS	
subset	requirements	shall	be	met	before	profiles	can	be	linked	(see	7.2.13).	Once	these	requirements	are	
met	the	channels	with	a	multiplex	channel	type	in	the	source	profile	that	are	not	in	the	destination	profile	
are	ignored,	and	channels	with	multiplex	channel	types	in	the	destination	profile	that	are	not	in	the	source	
profile	are	processed	with	the	multiplex	channel	value	defined	for	the	channel	in	the		

	

multiplexDefaultValuesTag	or	zero	if	this	tag	is	not	present.	Figures	3	and	4	show	examples	of	MCS	profile	
connection.	

	

Figure	3	—	Workflow	connecting	a	MultiplexIdentification	(MID)/input	profile,	a	
MultiplexVisualization	(MVIS)	profile	and	an	output	profile	

ICC.2:2023	

©	ICC	2023	–	All	rights	reserved	 15	

	

Figure	4	—	Workflow	connecting	a	MultiplexIdentification	(MID)/input	profile	with	a	
MultiplexLink	(MLNK)	profile	

Examples	of	MCS	workflows	and	connection	scenarios	can	be	found	in	Annex	I.	

6.4.2 MCS	signature	encoding	

To	define	the	use	of	MCS	connection	with	multiplex	channel	identification	the	signatures	in	Table	11	shall	
be	used	to	encode	the	MCS	field	of	the	profile	header.	These	colour	space	signatures	define	both	the	colour	
space	type	and	the	number	of	channels	associated	with	the	colour	space.	

Table	11	—Multiplex	colour	space	signatures	

Multiplex	colour	space	type	
Signature	
identifier	

Signature	
channels	

Combined	
hex	encoding	

Signature	
representation	

None	(no	MCS	is	used)	 0	 0	 0	 0	

Multiplex	channel	values	with	N	channels	
’mc’	

(6d63h)	

1	…	65	535	

(0001h	…	
FFFFh)	

6d630001h	…	

6d63FFFFh	
“mc0001”	…	
“mcFFFF”	

NOTE	 Multiplex	colour	space	signatures	use	the	same	32‐bit	binary	encoding	mechanism	as	N	colour	device	
data	signatures	(see	6.2.1),	with	each	having	a	six‐character	signature	representation.	

6.5 Colour	encoding	space	profiles	

This	document	provides	a	means	of	defining	a	colour	encoding	relative	to	a	named	reference	encoding.	
Therefore	it	defines	what	the	data	are	(not	how	they	are	transformed).	The	reference	shall	be	a	registered	
colour	encoding	in	the	ICC	three‐component	colour	encoding	registry.	

Because	 the	 transform	 is	 not	 defined	 by	 the	 profile,	 the	 CMM	 is	 responsible	 for	 determining	 what	
transform	to	use.	

The	intent	of	ColorEncodingSpace	profiles	is	to	allow	for	profile	files	that	have	a	minimum	data	structure	
that	can	be	embedded	in	images	with	clear,	concise	and	non‐redundant	(canonical)	information	relative	
to	a	“named”	reference	provided	to	the	CMM	for	determining	the	actual	transforms	to	apply.	

Minimally,	a	ColorEncodingSpace	profile	shall	have	a	header,	a	tag	directory	and	a	referenceNameTag	
(see	9.2.103)	which	defines	the	named	reference	encoding	associated	with	the	colour	encoding	space.		

	

	

Various	 modes	 of	 operation	 are	 defined	 for	 ColorEncodingSpace	 profiles	 in	 8.7.	 Brief	 guidelines	 for	
transform	determination	by	the	CMM	can	be	found	in	Annex	J.	

NOTE	 It	is	envisioned	that	the	set	of	required	and	optional	named	colour	encoding	spaces	will	be	defined	by	
ICSs	external	to	this	document.	

7 Profile	requirements	

7.1 General	

An	ICC	profile	shall	include	the	following	elements,	in	the	order	shown,	as	a	single	file:	

a)	 a	128‐byte	profile	header	as	defined	in	7.2;	

ICC.2:2023	

16	 ©	ICC	2023	–	All	rights	reserved	

b)	 a	profile	tag	table	as	defined	in	7.3;	

c)	 profile	tagged	element	data	as	defined	in	7.4.	

This	is	illustrated	in	Figure	5.	

The	required	tags	for	each	profile	type	are	tabulated	in	Clause	8.	The	definition	of	all	publicly	available	
tags	and	their	signatures	is	contained	in	Clause	9	along	with	the	permitted	tag	types	for	each	tag.	Tag	
types	 are	 defined	 in	 Clause	10.	 Extended	 ICC	 profiles	 may	 support	 tags	 defined	 as	 using	 either	 the	
multiProcessElementsType	or	the	tagStructType.	Multiple	processing	elements	are	defined	in	Clause	11.	
Tag	structure	types	are	defined	in	Clause	12.	Tag	array	types	are	defined	in	Clause	13.	

ICC.2:2023	

©	ICC	2023	–	All	rights	reserved	 17	

	

	

Figure	5	—	Profile	structure	

Within	the	profile	structure:	

a)	 all	profile	data	shall	be	encoded	as	big‐endian;	

b)	 the	first	set	of	tagged	element	data	shall	immediately	follow	the	tag	table;	

c)	 all	tagged	element	data,	including	the	last,	shall	be	padded	by	no	more	than	three	following	pad	bytes	
to	reach	a	4‐byte	boundary;	

d)	 all	pad	bytes	shall	be	NULL	(ISO	646,	character	0/0).	

NOTE	1	 This	implies	that	the	length	of	the	file	is	a	multiple	of	four.	

NOTE	2	 The	above	restrictions	result	in	two	key	benefits.	First,	the	likelihood	of	two	profiles	which	contain	the	
same	tag	data,	yet	have	different	checksum	values,	is	reduced.	Second,	all	profiles	are	reduced	to	a	minimum	size.	

ICC.2:2023	

18	 ©	ICC	2023	–	All	rights	reserved	

7.2 Profile	header	

7.2.1 General	

ISO	15076‐1	defines	a	single	header	specification	for	defining	ICC	profiles.	ISO	20677	extends	the	use	of	
the	 ICC	 header	 in	 two	 ways.	 For	 spectral	 PCS	 support	 additional	 entries	 have	 been	 defined.	 For	
ColorEncodingSpace	profile	device	class	profiles	a	minimal	subset	of	header	field	entries	is	defined.	

7.2.2 Extended	profile	header	field	definitions	

The	encoding	of	the	profile	header	with	spectral	PCS	support	shall	be	as	shown	in	Table	12.	

Table	12	—	Profile	header	fields	

Byte	position	
Field	length	
(bytes)	 Field	contents	 Encoded	as…	

0	to	3	 4	 Profile	size	
uInt32Number;
See	7.2.4	

4	to	7	 4	 Preferred	CMM	type	
4‐byte	signature;	see	
7.2.5	

8	to	11	 4	 Profile	version	and	sub‐version	number	
uInt32Number;	see	
7.2.6	

12	to	15	 4	 Profile/device	class	 4‐byte	signature;	see	
7.2.7	

16	to	19	 4	 Colour	space	of	data	(possibly	a	derived	space)	
4‐byte	signature;	see	
7.2.8	

20	to	23	 4	 PCS	
4‐byte	signature;	see	
7.2.9	

24	to	35	 12	 Date	and	time	this	profile	was	first	created	 dateTimeNumber;
see	7.2.10	

36	to	39	 4	 ‘acsp’	(61637370h)	profile	file	signature	
4‐byte	signature;	see	
7.2.11	

40	to	43	 4	 Primary	platform	signature	
4‐byte	signature;	see	
7.2.12	

44	to	47	 4	
Profile	flags	to	indicate	various	options	for	the	
CMM	such	as	distributed	processing	and	caching	
options	

uInt32Number;	see	
7.2.13	

48	to	51	 4	
Device	manufacturer	of	the	device	for	which	this	
profile	is	created	

4‐byte	signature;	see	
7.2.14	

52	to	55	 4	
Device	model	of	the	device	for	which	this	profile	
is	created	

4‐byte	signature;	see	
7.2.15	

56	to	63	 8	 Device	attributes	unique	to	the	particular	device	
setup	such	as	media	type	

uInt64Number	see	
7.2.16	

64	to	67	 4	 Rendering	Intent	
uInt32Number;	see	
7.2.17	

68	to	79	 12	 The	nCIEXYZ	values	of	the	PCS	illuminant,	
computed	with	the	PCS	observer	

XYZNumber;	see	7.2.18	

80	to	83	 4	 Profile	creator	signature	
4‐byte	signature;	see	
7.2.19	

84	to	99	 16	 Profile	ID	 uInt64Number[2];	see	
7.2.20	

100	to	103	 4	 Spectral	PCS	
4‐byte	signature;	see	
7.2.21	

104	to	109	 6	 Spectral	PCS	wavelength	range	
spectralRange;	
See	7.2.22	

ICC.2:2023	

©	ICC	2023	–	All	rights	reserved	 19	

110	to	115	 6	 Bi‐spectral	PCS	wavelength	range	
spectralRange;	
see	7.2.23	

116	to	119	 4	 MCS	signature	
uInt32Number;	see	
7.2.24	

120	to	123	 4	 Profile/device	sub‐class	 4‐byte	signature;	see	
7.2.25	

124	to	127	 4	 Reserved	bytes	shall	be	zero	(00h)	 uInt32Number;	see	
7.2.26	

A	spectral‐only	profile	shall	be	defined	by	setting	the	PCS	header	field	to	zero,	setting	the	spectral	PCS	
field	to	the	desired	spectral	colour	space,	and	only	providing	spectral	DToBx	and	BToDx	tables	 in	the	
profile.	

7.2.3 ColourEncodingSpace	class	profile	header	field	definitions	

A	ColourEncodingSpace	class	profile	shall	use	only	 the	 ICC	header	 fields	defined	 in	Table	13	with	 the	
other	fields	either	set	according	to	ISO	15076‐1	or	optionally	zero	filled.	

Table	13	—	ColourEncodingSpace	profile	header	fields	

Byte	
position	

Field	
length	
bytes	

Field	contents	 Encoded	as…	

0	to	3	 4	 Profile	size	 uInt32Number	

4	to	7	 4	 Reserved	bytes	shall	be	zero	(00h)	 		

8	to	11	 4	 Profile	version	number	 5,0	or	higher	

12	to	15	 4	 'cenc'	(63656E63h)	profile	device	class	 		

16	to	19	 4	 Colour	space	of	data	(possibly	a	derived	space)	 ‘RGB	’	(52474220h)	or	

'YCbr'	(59436272h)	

20	to	35	 16	 Reserved	bytes	shall	be	zero	(00h)	 		

36	to	39	 4	 ‘acsp’	(61637370h)	profile	file	signature	 See	7.2.11	

40	to	
127	

88	 Reserved	bytes	shall	be	zero	(00h)	 		

7.2.4 Profile	size	field	(bytes	0	to	3)	

The	value	in	the	profile	size	field	shall	be	the	exact	size	obtained	by	combining	the	profile	header,	the	tag	
table	and	the	tagged	element	data,	including	any	pad	bytes.	It	shall	be	encoded	as	a	uInt32Number.	

7.2.5 Preferred	CMM	type	field	(bytes	4	to	7)	

This	 field	may	be	used	 to	 identify	 the	preferred	CMM	 to	be	 used.	 If	 used,	 it	 shall	match	 a	CMM	 type	
signature	registered	in	the	ICC	CMM	registry.	If	no	preferred	CMM	is	identified,	this	field	shall	be	zero	
(00000000h).	

7.2.6 Profile	version	and	sub‐version	field	(bytes	8	to	11)	

The	profile	version	with	which	 the	profile	 conforms	shall	be	encoded	as	binary‐coded	decimal	 in	 the	
profile	version	field.	The	first	byte	(byte	8)	shall	identify	the	major	version	and	byte	9	shall	identify	the	
minor	version	and	bug	fix	version	in	each	4‐bit	half	of	the	byte.	Bytes	10	and	11	shall	be	used	to	identify	
the	profile	sub‐class	version	where	byte	10	shall	be	used	to	identify	the	sub‐class	major	version	and	byte	
11	shall	be	used	to	identify	the	sub‐class	minor	version.	When	a	sub‐class	is	not	associated	with	a	profile	
(when	the	profile/device	sub‐class	field	is	zero)	then	bytes	10	and	11	shall	be	zero.	The	major	and	minor	
versions	 are	 set	 by	 the	 International	 Color	 Consortium	 (ICC).	 Profile	 sub‐class	 versions	 shall	 be	

ICC.2:2023	

20	 ©	ICC	2023	–	All	rights	reserved	

established	by	profile	sub‐class	specification	documents.	The	profile	version	and	sub‐version	number	
consistent	with	this	specification	is	"5.0.0.0"	(encoded	as	05000000h).	

NOTE	 A	major	version	number	change	occurs	only	when	changes	made	to	this	document	require	that	both	
CMMs	and	profile	generating	software	be	upgraded	in	order	to	correctly	produce	or	use	profiles	conforming	to	the	
revised	specification.	A	minor	version	number	change	occurs	when	profiles	conforming	to	the	revised	specification	
can	be	processed	by	existing	CMMs.	For	example,	adding	a	new	required	tag	would	necessitate	a	major	revision	to	
the	specification,	whereas	adding	an	optional	tag	would	only	require	a	minor	revision.	

7.2.7 Profile/device	class	field	(bytes	12	to15)	

This	field	shall	contain	one	of	the	profile	class	signatures	shown	in	Table	14.	

There	are	three	basic	classes	of	device	profiles:	Input,	Display	and	Output	profiles.	In	addition	to	the	three	
basic	device	profile	classes,	eight	additional	colour	processing	profiles	are	defined.	These	profiles	provide	
a	standard	implementation	for	use	by	the	CMM	in	general	colour	processing,	or	for	the	convenience	of	
CMMs	which	may	use	these	types	to	store	calculated	transforms.	These	eight	additional	profile	classes	
are	 DeviceLink,	 ColorSpace,	 ColorEncodingSpace,	 Abstract,	 NamedColor,	 MultiplexIdentification,	
MultiplexLink	and	MultiplexVisualization.	

Table	14	—	Profile	classes	

Profile	class	 Signature	 Hexadecimal	
encoding	

Input	Device	profile	 ‘scnr’	 73636E72h	

Display	Device	profile	 ‘mntr’	 6D6E7472h	

Output	Device	profile	 ‘prtr’	 70727472h	

DeviceLink	profile	 ‘link’	 6C696E6Bh	

ColorSpace	profile	 ‘spac’	 73706163h	

Abstract	profile	 ‘abst’	 61627374h	

NamedColor	profile	 ‘nmcl’	 6E6D636Ch	

ColorEncodingSpace	profile	 ‘cenc‘	 63656E63h	

MultiplexIdentification	profile	 ‘mid	’	 6D696420h	

MultiplexLink	profile	 ‘mlnk’	 6d6c6e6bh	

MultiplexVisualization	profile	 ‘mvis’	 6d766973h	

7.2.8 Data	colour	space	field	(Bytes	16	to	20)	

This	 field	 shall	 contain	 the	 signature	 of	 the	 data	 colour	 space	 expected	 on	 the	 A	 side	 of	 the	 profile	
transforms.	

The	names	and	signatures	of	the	permitted	data	colour	spaces	shall	be	as	shown	in	Table	15.	

Table	15	—	Data	colour	space	signatures	

Colour	space	type	 Signature	
Hexadecimal	
encoding	

nCIEXYZ	or	PCSXYZa	 ‘XYZ	’	 58595A20h	

CIELAB	or	PCSLABb	 ‘Lab	’	 4C616220h	

CIELUV	 ‘Luv	’	 4C757620h	

YCbCr	 ‘YCbr’	 59436272h	

CIEYxy	 ‘Yxy	’	 59787920h	

ICC.2:2023	

©	ICC	2023	–	All	rights	reserved	 21	

LMS	 ‘LMS	‘	 4C4D5320h	

RGB	 ‘RGB	’	 52474220h	

Gray	 ‘GRAY’	 47524159h	

HSV	 ‘HSV	’	 48535620h	

HLS	 ‘HLS	’	 484C5320h	

CMYK	 ‘CMYK’	 434D594Bh	

CMY	 ‘CMY	’	 434D5920h	

1	colour	 ‘1CLR’	 31434C52h	

2	colour	 ‘2CLR’	 32434C52h	

3	colour	(other	than	those	listed	above)	 ‘3CLR’	 33434C52h	

4	colour	(other	than	CMYK)	 ‘4CLR’	 34434C52h	

5	colour	 ‘5CLR’	 35434C52h	

6	colour	 ‘6CLR’	 36434C52h	

7	colour	 ‘7CLR’	 37434C52h	

8	colour	 ‘8CLR’	 38434C52h	

9	colour	 ‘9CLR’	 39434C52h	

10	colour	 ‘ACLR’	 41434C52h	

11	colour	 ‘BCLR’	 42434C52h	

12	colour	 ‘CCLR’	 43434C52h	

13	colour	 ‘DCLR’	 44434C52h	

14	colour	 ‘ECLR’	 45434C52h	

15	colour	 ‘FCLR’	 46434C52h	

N	channel	device	data	
Represented	as
“nc0001”	–	“ncFFFF”	

6e630001h	–	
6e63FFFFh	

None	 0	 00000000h	
a	The	signature	'XYZ	'	refers	to	nCIEXYZ	or	PCSXYZ, depending	upon	the	context.
b	The	signature	'Lab'	refers	to	CIELAB	or	PCSLAB,	depending	upon	the	context.

NOTE	 Extended	“N	channel	device	data”	signatures	use	a	32‐bit	binary	encoding	(see	6.2.1)	with	a	six‐character	
signature	representation.	

Channel	 encoding	 order	 shall	 be	 associated	with	 the	 order	 that	 channel	 names	 are	 identified	 in	 the	
signature	(for	example	given	signature	 ‘RGB’	the	channel	order	shall	be	channel	1	–	R,	channel	2	–	G,	
channel	3	–	B)	with	the	following	exceptions:	for	the	signature	 ‘GRAY’	there	is	only	1	channel;	 for	the	
signature	‘YCbr’	the	channel	order	shall	be	channel	1	–	Y,	channel	2	–	Cb,	channel	3	–	Cr;	for	xCLR	and	N	
channel	data	the	order	shall	be	the	same	as	the	incoming	device	channel	order.	

For	abstract	profiles	the	data	colour	space	signature	shall	one	of	the	signatures	in	Table	15.	If	set	to	zero	
the	spectral	PCS	signature	and	spectral	range	fields	shall	be	used	to	define	the	A	side	of	the	transform.	

For	MultiplexLink	and	MultiplexVisualization	profiles	the	data	colour	space	signature	shall	be	zero.	

7.2.9 PCS	field	(Bytes	20	to	23)	

For	all	profile	classes	(see	Table	14),	other	than	a	DeviceLink	or	MultiplexLink	profile,	the	PCS	encoding	
shall	be	one	of	the	signatures	as	defined	in	Table	16.	When	the	profile/device	class	is	a	DeviceLink	profile	
or	MultiplexLink,	the	value	of	the	PCS	shall	be	the	appropriate	data	colour	space	from	Table	15.	The	field	
represents	the	colour	space	on	the	B‐side	of	the	transform.	

ICC.2:2023	

22	 ©	ICC	2023	–	All	rights	reserved	

When	the	profile/device	class	is	an	Abstract	profile	and	the	value	of	the	PCS	field	is	zero,	the	data	field	is	
non‐zero,	and	the	spectral	PCS	signature	is	non‐zero	then	the	abstract	transform	shall	be	defined	by	the	
DToB0	tag	with	the	D	side	of	the	transform	defined	by	the	colorimetric	colour	space	defined	by	the	data	
field	(see	7.2.8)	and	the	B	side	of	the	transform	defined	by	the	spectral	PCS	signature	and	spectral	range	
fields.		Thus,	the	transform	in	the	DToB0	tag	shall	define	a	conversion	from	the	source	colorimetric	PCS	
to	the	destination	spectral	PCS.	

The	PCS	for	AToBx/BToAx	tags	shall	always	be	defined	by	the	PCS	field.	

To	define	the	use	of	a	colorimetric‐based	PCS	one	of	the	non‐spectral	colour	space	signatures	in	Table	16	
shall	be	used	to	encode	the	colour	space	implied	by	the	PCS	field	of	the	profile	header.	These	colour	space	
signatures	define	both	the	colour	space	type	and	the	number	of	channels	associated	with	the	colour	space.	

Table	16	—	Non‐spectral	PCS	colour	space	signatures	

Colour	space	type	 Signature	
Hexadecimal	
encoding	

nCIEXYZ	or	PCSXYZa	 ‘XYZ	’	 58595A20h	

CIELAB	or	PCSLABb	 ‘Lab	’	 4C616220h	

None	(spectral	PCS	defined	by	spectral	PCS	
header	field)	

0	 00000000h	

a	The	signature	'XYZ	'	refers	to	nCIEXYZ	or	PCSXYZ,	depending	upon	the	context.	
b	The	signature	'Lab'	refers	to	CIELAB	or	PCSLAB,	depending	upon	the	context.	

Channel	 encoding	 order	 shall	 be	 associated	with	 the	 order	 that	 channel	 names	 are	 identified	 in	 the	
signature.	

7.2.10 Date	and	time	field	(bytes	24	to	35)	

This	 header	 field	 shall	 contain	 the	 date	 and	 time	 that	 the	 profile	 was	 first	 created,	 encoded	 as	 a	
dateTimeNumber.	

7.2.11 Profile	file	signature	field	(bytes	36	to	39)	

The	profile	file	signature	field	shall	contain	the	value	‘acsp’	(61637379h)	as	a	profile	file	signature.	

7.2.12 Primary	platform	field	(bytes	40	to	43)	

This	 field	may	 be	 used	 to	 identify	 the	 primary	 platform/operating	 system	 framework	 for	which	 the	
profile	was	created.	The	primary	platforms	that	have	been	identified	and	the	signatures	that	shall	be	used	
are	shown	in	Table	17.	If	no	primary	platform	is	identified,	this	field	shall	be	zero	(00000000h).	

Table	17	—	Primary	platforms	

Primary	platform	 Signature	
Hexadecimal	
encoding	

Apple	Computer,	Inc.	 ‘APPL’	 4150504Ch	

Microsoft	Corporation	 ‘MSFT’	 4D534654h	

Silicon	Graphics,	Inc.	 ‘SGI	’	 53474920h	

Sun	Microsystems,	Inc.	 ‘SUNW’	 53554E57h	

7.2.13 Profile	flags	field	(bytes	44	to	47)	

The	 profile	 flags	 field	 shall	 contain	 flags	 to	 indicate	 various	 hints	 for	 the	 CMM	 such	 as	 distributed	
processing	and	caching	options.	The	least‐significant	16	bits	are	reserved	for	the	ICC.	Flags	in	bit	positions	
0,	1,	2	and	4	shall	be	used	as	indicated	in	Table	18.	

ICC.2:2023	

©	ICC	2023	–	All	rights	reserved	 23	

	

	

	

	

	

Table	18	—	Profile	flags	

Bit	

position	

Field	

length	
(bits)	

Field	contents	

0	 1	 Embedded	profile	(0	if	not	embedded,	1	if	embedded	in	file)	

1	 1	
Profile	cannot	be	used	independently	of	the	embedded	colour	
data	(set	to	1	if	true,	0	if	false)	

2	 1	
MCS	channels	in	this	profile	shall	be	a	subset	of	the	MCS	
channels	in	the	profile	it	is	connected	to	(set	to	1	if	true,	0	if	
false)	

3	 1	
Indicates	that	the	colorimetric	PCS	uses	an	extended	(HDR)	
encoding	range	(with	media	relative	Y	values	larger	than	1.0)	

Bit	2	shall	define	MCS	subset	requirements	for	connecting	profiles.	When	bit	2	is	set	the	CMM	shall	be	
instructed	 to	 fail	 the	 linking	 of	 the	 profile	 containing	 this	 bit	 (containing	 profile)	 to	 another	 profile	
(second	profile)	using	an	MCS	based	connection	if	the	second	profile	does	not	contain	all	the	channels	in	
its	MCS	(defined	in	second	profile’s	multiplexTypeArrayTag,	see	9.2.85)	that	the	containing	profile	has	in	
its	MCS	(defined	in	the	containing	profile’s	multiplexTypeArrayTag,	see	9.2.85).	

Bit	3	shall	define	that	the	PCS	uses	an	extended	(HDR)	encoding	range.		When	connecting	profiles	using	
a	colorimetric	PCS,	the	CMM	shall	use	this	bit	field	from	the	source	and	destination	profiles	to	determine	
whether	the	connection	represents	an	extended	range	to	non‐extended	range	connection.		This	shall	be	
indicated	when	bit	3	is	set	in	the	source	profile	header	and	bit	3	is	not	set	in	destination	profile	header.		
When	 extended	 range	 to	 non‐extended	 range	 connection	 is	 indicated	 and	 the	 CMM	 is	 configured	 to	
perform	extended	range	to	non‐extended	range	PCS	conversion	then	the	transform	from	the	rendering	
intent	appropriate	HdrToSdrXTag	of	the	source	profile	(if	it	exists)	shall	be	applied	immediately	after	the	
colorimetric	transform	of	the	source	profile	before	additional	PCS	processing	is	performed.	

7.2.14 Device	manufacturer	field	(bytes	48	to	51)	

This	field	may	be	used	to	identify	a	device	manufacturer.	If	used,	the	signature	shall	match	the	signature	
contained	in	the	appropriate	section	of	the	ICC	signature	registry	at	http://www.color.org	(see	Clause	5).	
If	not	used,	this	field	shall	be	zero	(00000000h).	

7.2.15 Device	model	field	(bytes	52	to	55)	

This	 field	 may	 be	 used	 to	 identify	 a	 device	 model.	 If	 used,	 the	 signature	 shall	 match	 the	 signature	
contained	in	the	appropriate	section	of	the	ICC	signature	registry	at	http://www.color.org		(see	Clause	5).	
If	not	used,	this	field	shall	be	zero	(00000000h).	

7.2.16 Device	attributes	field	(bytes	56	to	63)	

The	device	attributes	field	shall	contain	flags	used	to	identify	attributes	unique	to	the	particular	device	
setup	for	which	the	profile	is	applicable.	The	least‐significant	32	bits	of	this	64‐bit	value	are	defined	by	
the	ICC.	Bit	usage	shall	be	used	as	shown	in	Table	19.	

Table	19	—	Device	attributes	

Bit	position	 Field	length	
(bits)	

Attribute	

ICC.2:2023	

24	 ©	ICC	2023	–	All	rights	reserved	

0	 1	 Reflective	(0)	or	transparency	(1)	

1	 1	 Glossy	(0)	or	matte	(1)	

2	 1	 Media	polarity,	positive	(0)	or	negative	(1)	

3	 1	 Colour	media	(0),	black	and	white	media	(1)	

4	 1	 Paper/paperboard	(0),	non‐paper‐based	(1)	

5	 1	 Non‐textured	(0),	textured	(1)	

6	 1	 Isotropic	(0),	non‐isotropic	(1)	

7	 1	 Non	self‐luminous	(0)	or	self‐luminous	(1)	

8	to	31	 24	 Reserved	(set	to	binary	zero)	

32	to	63	 32	 Use	not	defined	by	ICC	(vendor	specific)	

NOTE	 Notice	that	bit	0	to	bit	6	describe	the	media,	not	the	device.	For	example,	a	profile	for	a	colour	scanner	
that	has	been	loaded	with	black	and	white	film	has	bit	3	set	on,	regardless	of	the	value	in	the	data	colour	space	field	
(see	7.2.8).	If	the	media	is	not	inherently	"colour"	or	"black	and	white"	(such	as	the	paper	in	an	inkjet	printer),	the	
reproduction	takes	on	the	property	of	the	device.	Thus,	an	inkjet	printer	loaded	with	a	colour	ink	cartridge	can	be	
thought	to	have	"colour"	media.	

7.2.17 Rendering	intent	field	(bytes	64	to	67)	

The	 rendering	 intent	 field	 shall	 specify	 the	 rendering	 intent	 that	 should	be	used	 (or,	 in	 the	 case	of	 a	
DeviceLink	profile,	was	used)	when	this	profile	is	(was)	combined	with	another	profile.	In	a	sequence	of	
more	than	two	profiles,	it	applies	to	the	combination	of	this	profile	and	the	next	profile	in	the	sequence	
and	not	to	the	entire	sequence.	Typically,	the	user	or	application	selects	the	rendering	intent	dynamically	
at	runtime	or	embedding	time.	Therefore,	this	flag	may	not	have	any	meaning	until	the	profile	is	used	in	
some	context,	for	example	in	a	DeviceLink	or	an	embedded	source	profile.	

The	field	is	a	uInt32Number	in	which	the	least‐significant	16	bits	shall	be	used	to	encode	the	rendering	
intent.	The	most	significant	16	bits	shall	be	zero	(0000h).	

The	defined	rendering	intents	are	perceptual,	media‐relative	colorimetric,	saturation	and	ICC‐absolute	
colorimetric.	These	shall	be	identified	using	the	values	shown	in	Table	20.	

Table	20	—	Rendering	intents	

Rendering	intent	 Value	

Perceptual	 0	

Media‐relative	colorimetric	 1	

Saturation	 2	

ICC‐absolute	colorimetric	 3	

7.2.18 PCS	illuminant	field	(bytes	68	to	79)	

The	PCS	illuminant	field	shall	contain	the	nCIEXYZ	values	of	the	PCS	illuminant.	If	the	PCS	illuminant	is	
D50,	 the	 values	 shall	 be	 X	=	0,964	2,	 Y	=	1,0	 and	 Z	=	0,824	9	 encoded	 as	 an	 XYZNumber.	 If	 the	 PCS	
illuminant	is	not	D50,	the	values	shall	correspond	to	the	colorimetry	of	the	illuminant	as	computed	using	
the	 illuminant	 and	 observer	 values	 specified	 in	 the	 spectralViewingConditions	 tag,	 as	 described	 in	
9.2.105.	

See	Annex	A	for	further	details.	

NOTE	 These	values	are	the	nCIEXYZ	values	of	CIE	illuminant	D50.	

ICC.2:2023	

©	ICC	2023	–	All	rights	reserved	 25	

The	 precise	 value	 of	 the	 PCS	 illuminant	 depends	 on	 the	 precision	 and	 method	 of	 computation.	 CIE	
Publication	15[11]	gives	a	different	value	for	Z,	which	corresponds	to	an	nCIEXYZ	value	of	0,825	1.	Such	
close	approximations	should	be	considered	as	D50.	

7.2.19 Profile	creator	field	(bytes	80	to	83)	

This	 field	may	 be	 used	 to	 identify	 the	 creator	 of	 the	 profile.	 If	 used,	 the	 signature	 should	match	 the	
signature	 contained	 in	 the	 device	 manufacturer	 section	 of	 the	 ICC	 signature	 registry	 at	
http://www.color.org.	If	not	used,	this	field	shall	be	zero	(00000000h).	

7.2.20 Profile	ID	field	(bytes	84	to	99)	

This	 field,	 if	not	zero	(00h),	shall	hold	the	profile	ID.	The	profile	ID	shall	be	calculated	using	the	MD5	
fingerprinting	method	as	defined	in	Internet	RFC	1321[12].	The	entire	profile,	whose	length	is	given	by	the	
size	field	in	the	header,	with	the	profile	flags	field	(bytes	44	to	47,	see	7.2.13),	rendering	intent	field	(bytes	
64	to	67,	see	7.2.14),	and	profile	ID	field	(bytes	84	to	99)	in	the	profile	header	temporarily	set	to	zeros	
(00h),	shall	be	used	to	calculate	the	ID.	A	profile	ID	field	value	of	zero	(00h)	shall	indicate	that	a	profile	
ID	has	not	been	calculated.	

It	is	recommended	that	profile	creators	compute	and	record	a	profile	ID.	

	

7.2.21 Spectral	PCS	field	(bytes	100	to	103)	

This	field,	when	non‐zero,	defines	the	meaning	of	spectrally‐based	PCS	data	in	a	profile.	

If	DToBx/BToDx	or	brdfDToBx/brdfBToDx	or	directionalDToBx/directionalBToDx	tags	are	present	and	
this	 field	 is	 non‐zero,	 then	 the	 use	 of	 a	 spectrally‐based	 PCS	 shall	 be	 defined	 for	 DToBx/BToDx	 or	
brdfDToBx/brdfBToDx	or	directionalDToBx/directionalBToDx	tags.	If	this	 field	is	zero	then	the	use	of	
DToBx/BToDx	or	brdfDToBx/brdfBToDx	or	directionalDToBx/directionalBToDx	is	not	defined.	

Spectral	data	shall	be	assumed	to	be	sampled	at	equal	intervals,	with	a	given	start,	end	wavelength	and	
number	of	steps.	Unless	otherwise	specified,	the	type,	dimensions	and	range	of	the	spectra	in	the	different	
tags	shall	be	defined	by	the	spectral	PCS	field	in	addition	to	the	spectral	PCS	range	and	bi‐spectral	PCS	
range	fields.	

For	normal	 spectra	 (i.e.	 spectra	 containing	no	 fluorescent	emission	component),	 this	 implies	 that	 the	
spectral	dimension	of	object	 characterization	spectra	shall	be	 the	same.	 If	 the	object	 characterization	
spectra	are	defined	by	the	Donaldson	matrix,	the	Donaldson	matrix	shall	be	an	nXm	matrix	with	m	defined	
internally	in	the	corresponding	colour	table.	

A	distinction	is	made	between	self‐emitting	colours	and	reflective	colours,	here	referred	to	as	luminous	
colours	and	object	colours.	Luminous	colours	are	characterized	by	their	emission	spectra,	whereas	for	
object	colours	reflectance	or	transmission	spectra	are	used.	These	three	types	of	spectra	are	referred	to	
as	object	characterization	spectra.	

Reflectance	spectra	are	specified	 in	relation	to	the	perfect	reflector	whereas	transmission	spectra	are	
related	to	a	perfect	transmitter.	Therefore,	both	types	of	spectra	can	be	seen	as	relative	data.	For	emission	
spectra,	luminance	values	are	used,	hence	these	are	regarded	as	absolute	data.	

To	define	the	use	of	a	spectrally‐based	PCS,	one	of	the	spectral	colour	space	signatures	in	Table	21	shall	
be	used	to	encode	the	colour	space	implied	by	the	spectralPCS	field	of	the	profile	header.	These	colour	
space	signatures	define	both	the	colour	space	type	and	the	number	of	channels	associated	with	the	colour	
space.	Therefore,	the	number	of	channels	implied	by	the	spectralPCS	colour	space	signature	shall	match	
the	number	of	channels	 indicated	by	 the	steps	 field(s)	of	 the	corresponding	spectralRange	structures	
(7.2.22	and	7.2.23)	in	the	profile	header.	

Table	21	—	BToDx/DToBx	or	brdfBToDx/brdfDToBx	or	directionalBToDx/directionalDToBx	
spectral	colour	space	signatures	

ICC.2:2023	

26	 ©	ICC	2023	–	All	rights	reserved	

Spectral	colour	space	type	 Signature	
identifier	

Signature	
channels	

Combined	
hexadecimal	
encoding	

Signature	
representation	

None	(PCS	defined	by	PCS	header	field)	 0	 0	 00000000h	 0	

Reflectance	spectra	with	N	channels	
’rs’	

(7273h)	

1	…	65	
535	

(0001h	…	
FFFFh)	

72730001h	…	

7273FFFFh	
“rs0001”	…	
“rsFFFF”	

Transmission	spectra	with	N	channels	
’ts’	

(7473h)	

1	…	65	
535	

(0001h	to	
FFFFh)	

74730001h	…	

7473FFFFh	

“ts0001”	…	

“tsFFFF”	

	

	

	

	

Radiant	(emission)	spectra	with	N	
channels	

’es’	

(6573h)	

1	…	65	
535	

(0001h	…	
FFFFh)	

65730001h	…	

6573FFFFh	
“es0001”	…	
“esFFFF”	

Bi‐spectral	reflectance	spectra	with	N	
total	channels	

‘bs’	

(6273h)	

1	to	65	
535	

(0001h	…	
FFFFh)	

62730001h	…	

6273FFFFh	
“bs0001”	…	
“bsFFFF”	

Bi‐spectral	reflectance	using	sparse	
matrix	with	N	equivalent	output	channels	

’sm’	

(736d)	

1	to	65	
535	

(0001h	…	
FFFFh)	

736D0001h	…	

736DFFFFh	
“sm0001”	…	
“smFFFF”	

NOTE	 Spectral	colour	space	signatures	use	the	same	32‐bit	binary	encoding	mechanism	as	N	colour	device	data	
signatures	(see	6.2.1),	with	each	having	a	six‐character	signature	representation.	

Different	types	of	spectral	data	can	be	defined.	In	most	circumstances,	only	reflectance,	transmission	or	
emission	spectra	are	used,	but	in	other	circumstances	additional	data	shall	be	provided	according	to	the	
processing	to	be	carried	out.	The	range	of	normal	spectra	shall	be	indicated	by	the	spectral	PCS	range	
field	in	the	header	(7.2.22).	To	represent	bi‐spectral	data,	a	form	of	Donaldson	matrix	is	used	and	the	
incident	wavelengths	corresponding	to	the	columns	of	the	matrix	shall	be	specified	by	the	bi‐spectral	PCS	
range	field	in	the	header	(7.2.23).	

7.2.22 Spectral	PCS	range	field	(bytes	104	to	109)	

This	field	shall	specify	the	spectral	range	used	for	a	spectrally‐based	PCS	when	the	spectralPCS	signature	
field	in	the	profile	header	is	non‐zero.	If	the	spectralPCS	field	is	zero	then	this	field	shall	be	zero.	

Spectra	are	normally	represented	according	to	their	canonical	basis,	i.e.	the	spectrum	is	sampled	at	equal	
intervals	along	the	wavelength	axis.	The	wavelength	range	is	represented	by	a	start	wavelength	(S),	end	
wavelength	(E)	and	number	of	steps	(n).	The	wavelength	interval	between	steps	is	given	by	Formula	(4).	

I	=	(E	−	S)/(n	−	1)	 (4)	

ICC.2:2023	

©	ICC	2023	–	All	rights	reserved	 27	

Unless	otherwise	specified,	spectral	data	in	all	tags	shall	be	uniformly	sampled,	with	a	given	start,	end	
wavelength	and	number	of	steps	as	defined	by	this	field.	The	dimensions	and	range	of	the	spectra	in	the	
different	tags	shall	be	defined	consistently.	For	normal	spectra,	this	means	that	the	spectral	dimension	of	
object	characterization	spectra	shall	be	the	same.	

7.2.23 Bi‐Spectral	PCS	range	field	(bytes	110	to	115)	

This	field	shall	specify	the	spectral	range	of	the	incident	light	used	for	a	spectrally‐based	PCS	when	the	
spectralPCS	signature	field	in	the	profile	header	indicates	the	use	of	Bi‐spectral	reflectance.	Otherwise	
this	field	shall	be	zero.	

Bi‐spectral	reflectance	characterizes	of	the	interaction	of	light	with	a	diffuse	surface	using	a	Donaldson	
matrix.	The	multiplication	of	such	a	matrix	by	a	vector	representing	the	illumination	results	in	a	vector	
representing	the	light	reflected	off	the	surface.	Columns	of	a	Donaldson	matrix	correspond	to	incident	
wavelengths	of	light	and	rows	of	a	Donaldson	matrix	correspond	to	reflected	wavelengths	of	light.	

Diagonal	 entries	 (where	 incident	 and	 reflected	 wavelengths	 are	 the	 same)	 correspond	 to	 spectral	
reflectance.	 Off	 diagonal	 entries	 (below	 the	 diagonal)	 represent	 the	 contribution	 of	 a	 change	 in	 the	
reflected	light’s	wavelength	(typically	due	to	fluorescence).	Fluorescence	occurs	when	light	is	absorbed	
and	then	re‐emitted	at	a	longer	wavelength.		Using	Donaldson	matrices	to	represent	colours	in	an	ICC	
profile	 allows	 for	 a	 more	 complete	 description	 of	 colour	 to	 be	 encoded	 than	 using	 only	 spectral	
reflectance	or	simple	colorimetry.	

7.2.24 MCS	field	(bytes	116	to	119)	

The	MCS	 for	AToM0/MToA0/MToB0/MToS0	 tags	 shall	 always	be	defined	by	 the	MCS	 field.	The	 field	
represents	the	colour	space	on	the	M‐side	of	 the	transform.	When	this	 field	 is	non‐zero	the	multiplex	
channel	identification	shall	be	encoded	by	a	multiplexTypeArrayTag	(see	9.2.85).	

For	 the	 MultiplexIdentification	 and	 MultiplexVisualization	 profile	 classes	 (see	 Table	14),	 the	 MCS	
encoding	shall	be	one	of	the	signatures	as	defined	in	Table	22.	

NOTE	 Multiplex	colour	space	signatures	use	the	same	32‐bit	binary	encoding	mechanism	as	N	colour	device	
data	signatures	(see	6.2.1),	with	each	having	a	six‐character	signature	representation.	

Table	22	—AToM0/MToA0/MToB0/MToS0	MCS	signatures	

Multiplex	colour	space	type	
Signature	
identifier	

Signature	
channels	

Combined	
hexadecimal	
encoding	

Signature	
representation	

Multiplex	channel	values	with	N	channels	
’mc’	

(6d63h)	

1	…	65	535	

(0001h	…	
FFFFh)	

6d630001h	…	

6d63FFFFh	
“mc0001”	…	
“mcFFFF”	

For	 the	 input	 profile	 class	 (Table	14)	 the	MCS	 encoding	 shall	 be	 one	 of	 the	 signatures	 as	 defined	 in	
Table	23.	

Table	23	—AToM0/MToA0/MToB0/MToS0	MCS	signatures	

Multiplex	colour	space	type	
Signature	
identifier	

Signature	
channels	

Combined	
hexadecimal	
encoding	

Signature	
representation	

None	(no	MCS	is	used)	 0	 0	 0	 0	

Multiplex	channel	values	with	N	channels	
’mc’	

(6d63h)	

1	…	65	535	

(0001h	…	
FFFFh)	

6d630001h	…	

6d63FFFFh	
“mc0001”	…	
“mcFFFF”	

For	all	other	profile	classes	(Table	14)	the	MCS	encoding	shall	be	zero.	

ICC.2:2023	

28	 ©	ICC	2023	–	All	rights	reserved	

7.2.25 Profile/device	sub‐class	(bytes	124	to	127)	

This	 field	 allows	 for	 a	 profile/device	 subclass	 signature	 associated	with	 the	 profile	 class.	 This	 field’s	
purpose	 is	 to	provide	a	connection	with	 ICS	documents	 that	provide	specifications	 for	specific	colour	
management	workflows.	If	this	field	is	zero	then	no	profile/device	subclass	shall	be	associated	with	the	
profile	 type.	 When	 this	 field	 is	 set	 then	 the	 profile	 sub‐version	 field	 shall	 also	 identify	 the	 version	
associated	with	the	profile/device	sub‐class	that	can	be	referenced	with	an	ICS	document.	

7.2.26 Reserved	field	(bytes	124	to	127)	

This	field	of	the	profile	header	is	reserved	for	future	ICC	definition	and	shall	be	zero.	

7.3 Tag	table	

7.3.1 Overview	

The	tag	table	acts	as	a	table	of	contents	for	the	tags	and	an	index	into	the	tag	data	element	in	the	profiles.	
It	shall	consist	of	a	4‐byte	entry	that	contains	a	count	of	the	number	of	tags	in	the	table	followed	by	a	
series	of	12‐byte	entries	with	one	entry	for	each	tag.	The	tag	table	therefore	contains	4	+	12n	bytes	where	
n	is	the	number	of	tags	contained	in	the	profile.	The	entries	for	the	tags	within	the	table	are	not	required	
to	be	in	any	particular	order	nor	are	they	required	to	match	the	sequence	of	tag	data	element	within	the	
profile.	

Each	12‐byte	tag	entry	following	the	tag	count	shall	consist	of	a	4‐byte	tag	signature,	a	4‐byte	offset	to	
define	 the	beginning	of	 the	 tag	data	element	and	a	4‐byte	entry	 identifying	 the	 length	of	 the	 tag	data	
element	in	bytes.	Table	24	illustrates	the	structure	for	this	tag	table.	Clauses	7.3.2	to	7.3.5	specify	the	
position	and	content	of	the	entries	composing	the	tag	table.	

The	tag	table	shall	define	a	contiguous	sequence	of	unique	tag	elements,	with	no	gaps	between	the	last	
byte	of	any	tag	data	element	referenced	from	the	tag	table	(inclusive	of	any	necessary	additional	pad	
bytes	required	to	reach	a	four‐byte	boundary)	and	the	byte	offset	of	the	following	tag	element,	or	the	end	
of	the	file.	Duplicate	tag	signatures	shall	not	be	included	in	the	tag	table.	

Tag	data	elements	shall	not	partially	overlap,	so	there	shall	be	no	part	of	any	tag	data	element	that	falls	
within	the	range	defined	for	another	tag	in	the	tag	table.	

The	tag	table	may	contain	multiple	tags	signatures	that	all	reference	the	same	tag	data	element	offset,	
allowing	 efficient	 reuse	 of	 tag	 data	 elements.	 In	 such	 cases,	 both	 the	 offset	 and	 size	 of	 the	 tag	 data	
elements	in	the	tag	table	shall	be	the	same.	

A	profile	should	only	include	tags	whose	signatures	have	been	registered	with	ICC	and	appear	in	the	ICC	
Tag	Registry.	This	includes	both	public	and	private	tags.	

Table	24	—	Tag	table	structure	

Byte	offset	
Field	
length	
(bytes)	

Content	 Encoded	as…	

0	to	3	 4	 Tag	count	(n)	 		

4	to	7	 4	 Tag	signature	 		

8	to	11	 4	 Offset	to	beginning	of	tag	data	element	 uInt32Number	

12	to	15	 4	 Size	of	tag	data	element	 uInt32Number	

16	to	
(12n+3)	

12(n−1)	
Signature,	offset	and	size	respectively	of	

subsequent	n−1	tags	
		

ICC.2:2023	

©	ICC	2023	–	All	rights	reserved	 29	

Key	

n:	Number	of	tags	contained	in	the	profile	

NOTE	 The	byte	offset	shown	in	Table	24	is	with	respect	to	the	128‐byte	header.	Thus	the	tag	table	starts	at	
byte	position	128.	

7.3.2 Tag	count	(byte	position	0	to	3)	

Byte	 positions	 0	 to	 3	 shall	 specify	 the	 number	 of	 tags	 contained	 in	 the	 tag	 table,	 encoded	 as	 a	
uInt32Number.	

7.3.3 Tag	signature	(byte	position	4	to	7	and	repeating)	

Byte	positions	4	 to	7	(and	repeating	at	12‐byte	 intervals)	shall	specify	 the	signature	of	a	 tag	 listed	 in	
Clause	9,	 or	 of	 a	 private	 tag.	 Signatures	of	 private	 tags	 shall	 be	 registered	with	 the	 ICC	 as	defined	 in	
Clause	5.	

7.3.4 Offset	to	beginning	of	tag	data	element	(byte	position	8	to	11	and	repeating)	

Byte	positions	8	to	11	(and	repeating	at	12‐byte	intervals)	shall	specify	the	address	of	the	beginning	of	
the	tag	data	element,	with	respect	to	the	beginning	of	the	profile	data	stream	(which	has	an	address	of	
zero),	encoded	as	a	uInt32Number.	

NOTE	 For	profiles	that	are	not	embedded,	the	number	specified	is	the	same	as	the	file	offset.	

All	tag	data	elements	shall	start	on	a	4‐byte	boundary	(relative	to	the	start	of	the	profile	data	stream)	and	
the	two	least‐significant	bits	of	each	tag	data	offset	shall	be	zero.	This	means	that	a	tag	starting	with	a	32‐
bit	value	is	properly	aligned	without	the	tag	handler	needing	to	know	the	contents	of	the	tag.	

7.3.5 Tag	data	element	size	(byte	position	12	to	15	and	repeating)	

The	 tag	 data	 element	 size	 shall	 be	 the	 number	 of	 bytes	 in	 the	 tag	 data	 element	 encoded	 as	 a	
uInt32Number.	The	value	of	the	tag	data	element	size	shall	be	the	number	of	actual	data	bytes	and	shall	
not	include	any	padding	at	the	end	of	the	tag	data	element.	

7.4 Tag	data	

The	first	set	of	tag	data	elements	shall	immediately	follow	the	tag	table	and	all	tag	data	elements,	including	
the	last	tag	data	element,	shall	be	padded	by	no	more	than	three	following	pad	bytes	to	reach	a	4‐byte	
boundary.	

The	size	of	individual	tag	data	elements	and	the	accumulated	size	of	all	tag	data	elements	shall	only	be	
restricted	by	the	limits	imposed	by	the	32‐bit	tag	data	offset	value	and	the	32‐bit	tag	data	element	size	
value.	

8 Required	tags	

8.1 General	

8.2	to	8.10	identify	the	tags	that	are	required,	in	addition	to	the	header	defined	in	7.2,	for	each	profile	
type.	

NOTE	 Profiles	can	include	additional	tags	beyond	those	listed	as	required.		

The	 intent	 of	 requiring	 certain	 tags	 with	 each	 type	 of	 profile	 is	 to	 provide	 a	 common	 base	 level	 of	
functionality.	If	a	custom	CMM	is	not	present,	then	the	required	tags	have	enough	information	to	allow	
the	default	CMM	to	perform	the	requested	colour	transformations.	The	particular	models	are	identified	
for	each	profile	type	and	described	in	detail	 in	Annex	A.	While	the	data	provided	by	the	required	tags	
might	not	provide	the	level	of	quality	obtainable	with	optional	tags	and	private	data,	the	data	provided	is	
adequate	for	sophisticated	device	modelling.	

ICC.2:2023	

30	 ©	ICC	2023	–	All	rights	reserved	

8.2 Common	requirements	

With	 the	 exception	 of	 ColorEncodingSpace,	 DeviceLink,	 MultiplexIdentification	 and	 MultiplexLink	
profiles,	all	profiles	shall	contain	the	following	tags:	

—	 profileDescriptionTag	(see	9.2.101);	

—	 copyrightTag	(see	9.2.55);	

—	 mediaWhitePointTag	(see	9.2.88)	if	the	PCS	field	in	header	is	non‐zero;	

—	 spectralWhitePointTag	(see	9.2.106)	if	the	spectralPCS	field	in	profile	header	is	non‐zero.	

NOTE	1	 A	 ColorEncodingSpace	 profile	 is	 not	 required	 to	 have	 either	 a	 profileDescriptionTag,	 copyrightTag,	
mediaWhitePointTag	or	spectralWhitePointTag.	

NOTE	2	 A	 DeviceLink,	 MultiplexIdentification	 or	 MultiplexLink	 profile	 is	 not	 required	 to	 have	 a	
mediaWhitePointTag	or	spectralWhitePointTag.	

8.3 Input	profiles	

Input	profiles	are	generally	used	with	devices	such	as	scanners	and	digital	cameras.	

In	addition	to	the	tags	listed	in	8.2	an	input	profile	shall	contain	one	or	more	of	the	following:	AToB0Tag	
(see	9.2.1),	AToB1Tag	(see	9.2.2),	AToB2Tag	(see	9.2.3),	AToB3Tag	(see	9.2.4),	DToB0Tag	(see	9.2.76),	
DToB1Tag	(see	9.2.77),	DToB2Tag	(see	9.2.78),	DToB3Tag	(see	9.2.79).	

The	 colorantInfoTag	 (9.2.53)	 should	 be	 used	 for	 colour	 spaces	 with	 either	 an	 ‘xCLR’	 signature	 or	 a	
signature	represented	by	 “ncXXXX”.	 It	enables	 the	names	and	optionally	colorimetric	and/or	spectral	
values	 of	 the	 colorants	 to	 be	 specified	 for	 these	 colour	 spaces	 (Table	15),	 as	 these	 names	 are	 not	
otherwise	implicit	in	the	choice	of	the	colour	space.	

The	 BToA0Tag	 (see	 9.2.30),	 BToA1Tag	 (see	 9.2.39),	 BToA2Tag	 (see	 9.2.40),	 BToA3Tag	 (see	 9.2.41),	
BToD0Tag	(see	9.2.42),	BToD1Tag	(see	9.2.43),	BToD2Tag	(see	9.2.44)	and	BToD3Tag	(see	9.2.45)	may	
also	be	included	in	an	N‐component	LUT‐based	input	profile.	If	these	are	present,	their	usage	shall	be	as	
defined	in	Table	25	(see	9.2.1).	

The	 gamutBoundaryDescriptor0Tag	 (see	 9.2.80),	 gamutBoundaryDescriptor1Tag	 (see	 9.2.81),	
gamutBoundaryDescriptor2Tag	(see	9.2.82)	and/or	gamutBoundaryDescriptor3Tag	(see	9.2.83)	may	be	
included.	

MCS	connection	may	be	included	in	addition	to	PCS	based	tags.	When	the	MCS	header	field	is	non‐zero	
the	input	class	shall	also	include	an	AToM0Tag	(see	9.2.5)	and	a	multiplexTypeArrayTag	(see	9.2.85).	

8.4 Display	profiles	

This	class	of	profiles	represents	display	devices	such	as	monitors	and	projectors.	

In	addition	to	the	tags	listed	in	8.2	a	display	profile	shall	contain	the	following	tags:	

—	 one	or	more	of	 the	 following:	AToB0Tag	(see	9.2.1),	AToB1Tag	(see	9.2.2),	AToB2Tag	(see	9.2.3),	
AToB3Tag	 (see	 9.2.4),	 DToB0Tag	 (see	 9.2.76),	 DToB1Tag	 (see	 9.2.77),	 DToB2Tag	 (see	 9.2.78),	
DToB3Tag	(see	9.2.79);	

—	 one	or	more	of	the	following:	BToA0Tag	(see	9.2.38),	BToA1Tag	(see	9.2.39),	BToA2Tag	(see	9.2.40),	
BToA3Tag	 (see	 9.2.41),	 BToD0Tag	 (see	 9.2.42),	 BToD1Tag	 (see	 9.2.43),	 BToD2Tag	 (see	 9.2.44),	
BToD3Tag	(see	9.2.45).	

The	colorantInfoTag	(9.2.52)	is	a	recommended	tag	for	colour	spaces	with	either	an	‘xCLR’	signature	or	
a	signature	represented	by	“ncXXXX”.	It	enables	the	names	and	optionally	colorimetric	and/or	spectral	

ICC.2:2023	

©	ICC	2023	–	All	rights	reserved	 31	

values	 of	 the	 colorants	 to	 be	 specified	 for	 these	 colour	 spaces	 (Table	15),	 as	 these	 names	 are	 not	
otherwise	implicit	in	the	choice	of	the	colour	space.	

The	 gamutBoundaryDescriptor0Tag	 (see	 9.2.80),	 gamutBoundaryDescriptor1Tag	 (see	 9.2.81),	
gamutBoundaryDescriptor2Tag	(see	9.2.82),	and/or	gamutBoundaryDescriptor3Tag	(see	9.2.83)	may	be	
included.	

8.5 Output	profiles	

Output	profiles	are	used	 to	support	devices	such	as	printers	and	 film	recorders.	The	types	of	profiles	
available	for	use	as	output	profiles	are	N‐component	LUT‐based	and	Monochrome.	

In	addition	to	the	tags	listed	in	8.2	an	output	profile	shall	contain	the	following	tags:	

—	 one	or	more	of	 the	 following:	AToB0Tag	(see	9.2.1),	AToB1Tag	(see	9.2.2),	AToB2Tag	(see	9.2.3),	
AToB3Tag	 (see	 9.2.4),	 DToB0Tag	 (see	 9.2.76),	 DToB1Tag	 (see	 9.2.76),	 DToB2Tag	 (see	 9.2.76),	
DToB3Tag	(see	9.2.76);	

—	 one	or	more	of	the	following:	BToA0Tag	(see	9.2.38),	BToA1Tag	(see	9.2.39),	BToA2Tag	(see	9.2.40),	
BToA3Tag	 (see	 9.2.41),	 BToD0Tag	 (see	 9.2.42),	 BToD1Tag	 (see	 9.2.43),	 BToD2Tag	 (see	 9.2.44),	
BToD3Tag	(see	9.2.45).	

The	colorantInfoTag	(9.2.52)	is	a	recommended	tag	for	colour	spaces	with	either	an	‘xCLR’	signature	or	
a	signature	represented	by	“ncXXXX”.	It	enables	the	names	and	optionally	colorimetric	and/or	spectral	
values	 of	 the	 colorants	 to	 be	 specified	 for	 these	 colour	 spaces	 (Table	15),	 as	 these	 names	 are	 not	
otherwise	implicit	in	the	choice	of	the	colour	space.	

The	 gamutBoundaryDescriptor0Tag	 (see	 9.2.80),	 gamutBoundaryDescriptor1Tag	 (see	 9.2.81),	
gamutBoundaryDescriptor2Tag	(see	9.2.82)	and/or	gamutBoundaryDescriptor3Tag	(see	9.2.83)	may	be	
included.	

8.6 DeviceLink	profile	

A	device	link	profile	shall	contain	the	following	tags:	

—	 profileDescriptionTag	(see	9.2.101);	

—	 copyrightTag	(see	9.2.55);	

—	 one	or	more	of	the	following:	AToB0Tag	(see	9.2.1),	DToB0Tag	(see	9.2.76).	

A	profileSequenceInformationTag	(see	9.2.102)	may	be	included.	

This	profile	contains	a	pre‐evaluated	transform	that	cannot	be	undone,	which	represents	a	one‐way	link	
or	 connection	between	devices.	 It	 does	not	 represent	 any	device	model	nor	 can	 it	 be	 embedded	 into	
images.	

The	single	AToB0Tag	may	contain	data	for	any	one	of	the	four	possible	rendering	intents.	The	rendering	
intent	used	is	indicated	in	the	header	of	the	profile.	

The	data	colour	space	field	(see	7.2.8)	in	the	DeviceLink	profile	shall	be	the	same	as	the	data	colour	space	
field	of	the	first	profile	in	the	sequence	used	to	construct	the	device	link.	The	PCS	field	(see	7.2.9)	shall	be	
the	same	as	the	data	colour	space	field	of	the	last	profile	in	the	sequence.	

If	the	data	colour	space	field	is	set	to	xCLR,	where	x	is	hexadecimal	1	to	F	or	has	a	signature	representation	
of	“ncXXXX”	where	XXXX	is	hexadecimal	0001	to	FFFF,	the	colorantInfoTag	(9.2.52)	is	a	recommended	
tag	 to	 specify	 the	 names	 and	 optionally	 colorimetric	 and/or	 spectral	 values	 of	 the	 input	 colorants	
(Table	15),	as	these	names	are	not	otherwise	implicit	in	the	choice	of	the	colour	space.	These	colorants	
represent	the	input	values	of	the	profile.	

ICC.2:2023	

32	 ©	ICC	2023	–	All	rights	reserved	

Correspondingly,	 if	 the	 PCS	 field	 is	 set	 to	 xCLR	 where	 x	 is	 hexadecimal	 1	 to	 F	 or	 has	 a	 signature	
representation	of	“ncXXXX”	where	XXXX	is	hexadecimal	0001	to	FFFF,	the	colorantInfoOutTag	(9.2.53)	is	
a	recommended	tag	to	specify	the	names	and	optionally	colorimetric	and/or	spectral	values	of	the	output	
colorants	(Table	15),	as	these	names	are	not	otherwise	implicit	in	the	choice	of	the	colour	space.	These	
colorants	represent	the	output	values	of	the	profile.	

NOTE	 The	 colorantOrderTag	 ‘clro’	 specifies	 the	 laydown	 order	 of	 the	 input	 colorants,	 and	 the	
colorantoOrderOutTag	specifies	the	laydown	order	of	the	output	colorants.	

8.7 ColorEncodingSpace	profile	

A	 ColorSpaceEncoding	 profile	 [signature	 ‘cenc’	 (63656e63h)]	 shall	 contain	 the	 following	 tag:	
referenceNameTag	(see	9.2.103).	

A	ColorSpaceEncoding	profile	may	also	contain	a	colorEncodingParamsTag	and	a	colorSpaceNameTag	
defined	by	the	following	criteria.	

In	 the	 first	mode	 of	 operation	 the	 referenceNameTag	 solely	 contains	 the	 text	 “ISO	22028‐1”	 (quotes	
excluded)	and	the	elements	in	the	colorEncodingParamsTag	shall	uniquely	determine	the	colour	space	
encoding	parameters	and	the	colorSpaceNameTag	shall	define	the	name	associated	with	the	colour	space	
encoding.	

In	the	second	mode	of	operation	the	referenceNameTag	contains	any	text	besides	“ISO	22028‐1”	(quotes	
excluded).	 In	 this	 case	 the	 colorSpaceNameTag	 defines	 the	 colour	 space	 name	 and	 a	
colorEncodingParamsTag	may	 optionally	 be	 present.	 If	 the	 colorEncodingParamsTag	 exists	 then	 any	
elements	in	the	colorEncodingParamsTag	shall	provide	overrides	to	the	assumed	default	values	for	the	
encoding	 space.	Any	elements	not	 in	 the	 colorEncodingParamsTag	shall	 have	assumed	default	values	
associated	with	the	colour	space	encoding.	

	

8.8 ColorSpace	profile	

In	addition	to	the	tags	listed	in	8.2	a	ColorSpace	profile	shall	contain	the	following	tags:	

—	 one	or	more	of	 the	 following:	AToB0Tag	(see	9.2.1),	AToB1Tag	(see	9.2.2),	AToB2Tag	(see	9.2.3),	
AToB3Tag	 (see	 9.2.4),	DToB0Tag	 (see	 9.2.76),	DToB1Tag	 (see	 9.2.77),	DToB2Tag	 (see	 9.2.78)	 or	
DToB3Tag	(see	9.2.79);	

—	 one	or	more	of	the	following:	BToA0Tag	(see	9.2.38),	BToA1Tag	(see	9.2.39),	BToA2Tag	(see	9.2.40),	
BToA3Tag	(see	9.2.41),	BToD0Tag	(see	9.2.42),	BToD1Tag	(see	9.2.43),	BToD2Tag	(see	9.2.44)	or	
BToD3Tag	(see	9.2.45).	

This	profile	provides	the	relevant	information	to	perform	a	transformation	between	colour	encodings	
and	 the	 PCS.	 This	 type	 of	 profile	 is	 based	 on	 modelling	 rather	 than	 device	 measurement	 or	
characterization	data.	ColorSpace	profiles	may	be	embedded	in	images.	

For	ColorSpace	profiles,	the	device	profile	dependent	fields	are	set	to	zero	if	irrelevant.	

The	 gamutBoundaryDescriptor0Tag	 (see	 9.2.80),	 gamutBoundaryDescriptor1Tag	 (see	 9.2.81),	
gamutBoundaryDescriptor2Tag	(see	9.2.82)	and/or	gamutBoundaryDescriptor3Tag	(see	9.2.83)	may	be	
included.	

8.9 Abstract	profile	

In	addition	to	the	tags	listed	in	8.2	an	abstract	profile	shall	contain	one	or	more	of	the	following	tags:	
AToB0Tag	(see	9.2.1),	DToB0Tag	(see	9.2.76).	

This	 profile	 represents	 an	 abstract	 transform	 and	 does	 not	 represent	 any	 device	 model.	 Colour	
transformations	 using	 abstract	 profiles	 are	 performed	 from	 PCS	 to	 PCS.	 Abstract	 profiles	 cannot	 be	
embedded	in	images.	

ICC.2:2023	

©	ICC	2023	–	All	rights	reserved	 33	

If	an	abstract	profile	contains	a	sourcePccTag	(see	9.2.105)	then	this	tag	shall	provide	profile	connection	
condition	members	with	data	and	transforms	used	for	default	source	PCS	operations	involving	profile	
connection	conditions.	

8.10 NamedColor	profile	

In	addition	to	the	tags	listed	in	8.2	a	NamedColor	profile	shall	contain	the	following	tag:	namedColorTag	
(see	9.2.99).	

NamedColor	profiles	can	be	thought	of	as	sibling	profiles	to	device	profiles.	For	a	given	device	there	would	
be	one	or	more	device	profiles	 to	handle	process	 colour	 conversions	and	one	or	more	named	colour	
profiles	to	handle	named	colours.	

The	namedColorTag	provides	a	combination	of	PCS,	spectral	PCS	and	optional	device	representation	for	
each	named	colour	in	a	list	of	named	colours.	NamedColor	profiles	can	be	device	specific	in	that	their	data	
are	shaped	for	a	particular	device.	There	might	be	multiple	NamedColor	profiles	to	account	for	different	
consumables	or	multiple	named	colour	vendors.	The	PCS	and	spectral	PCS	representations	are	provided	
to	 support	 general	 colour	management	 functionality,	 and	are	useful	 for	display	 and	 emulation	of	 the	
named	colours.	

When	using	a	NamedColor	profile	with	the	device	for	which	it	is	intended,	the	device	representation	of	
the	colour	specifies	the	exact	device	coordinates	for	each	named	colour,	if	available.	The	PCS	and	spectral	
PCS	 representations	 in	 conjunction	with	 the	device’s	 output	 profile	 can	provide	 an	 approximation	of	
these	exact	coordinates.	The	exactness	of	this	approximation	is	a	function	of	the	accuracy	of	the	output	
profile	and	the	colour	management	system	performing	the	transformations.	

The	combination	of	the	PCS,	spectral	PCS	and	device	representations	provides	for	flexibility	with	respect	
to	accuracy	and	portability.	

Additional	information	about	NamedColor	profiles	can	be	found	in	Annex	D.	

8.11 MultiplexIdentification	profile	

In	addition	to	the	tags	listed	in	8.2,	a	MultiplexIdentification	profile	shall	contain	the	following	tags:	

—	 AToM0Tag	(see	9.2.6);	

—	 multiplexTypeArrayTag	(see	9.2.85).	

This	profile	converts	device	values	into	independent	multiplex	channel	values.	

8.12 MultiplexLink	profile	

In	addition	to	the	tags	listed	in	8.2,	a	MultiplexIdentification	profile	shall	contain	the	following	tags:	

—	 MToA0Tag	(see	9.2.90);	

—	 multiplexTypeArrayTag	(see	9.2.85).	

Profiles	of	this	class	can	optionally	provide	the	following	tag:	multiplexDefaultValuesTag	(see	9.2.84).	

This	 profile	 converts	 multiplex	 channel	 values	 to	 device	 values.	 MultiplexLink	 profiles	 shall	 not	 be	
embedded	in	images.	

8.13 MultiplexVisualization	profile	

In	addition	to	the	tags	listed	in	8.2	a	MultiplexVisualization	profile	shall	contain	the	following	tags:	

ICC.2:2023	

34	 ©	ICC	2023	–	All	rights	reserved	

—	 one	 or	 more	 of	 the	 following:	 MToB0Tag	 (see	 9.2.91),	 MToB1Tag	 (see	 9.2.92),	 MToB2Tag	 (see	
9.2.93),	MToB3Tag	 (see	 9.2.94),	MToS0Tag	 (see	 9.2.95),	MToS1Tag	 (see	 9.2.96),	MToS2Tag	 (see	
9.2.97),	or	MToS3Tag	(see	9.2.98);	

—	 multiplexTypeArrayTag	(see	9.2.85).	

Profiles	of	this	class	can	optionally	provide	the	following	tag:	multiplexDefaultValuesTag	(see	9.2.84).	

This	profile	 represents	a	visualization	of	multiplex	channel	values	and	does	not	represent	any	device	
model.	Colour	transformations	using	abstract	profiles	are	performed	from	either	MCS	to	device	or	MCS	
to	PCS.	MultiplexVisualization	profiles	shall	not	be	embedded	in	images.	

8.14 Precedence	order	of	tag	usage	

8.14.1 General	

There	are	several	methods	of	colour	transformation	that	can	function	within	a	single	CMM.	If	data	for	
more	than	one	method	are	included	in	the	same	profile,	the	following	selection	algorithm	shall	be	used	
by	the	software	implementation.	

8.14.2 Input,	display,	output	or	colour	space	profile	types	

For	input,	display,	output	or	colour	space	profile	types,	the	precedence	order	of	the	tag	usage	for	PCSXYZ	
or	PCSLAB	connection	for	a	designated	rendering	intent	shall	be:	

a)	 use	the	BToA0Tag,	BToA1Tag,	BToA2Tag,	BToA3,	AToB0Tag,	AToB1Tag,	AToB2Tag,	or	AToB3Tag	
designated	for	the	rendering	intent	if	present;	

b)	 use	the	BToA0Tag	or	AToB0Tag	if	present,	when	the	tags	in	1	are	not	used;	

c)	 use	the	BToA1Tag	or	AToB1Tag	if	present,	when	the	tags	in	1	and	2	are	not	used;	

d)	 use	the	BToA3Tag	or	AToB3Tag	if	present,	when	the	tags	in	1	to	3	are	not	used.	

See	Table	25.	

When	spectrally‐based	PCS	connection	is	used	and	the	spectralPCS	header	field	is	non‐zero,	for	input,	
display,	 output	 or	 colour	 space	profile	 types,	 the	precedence	order	of	 the	 tag	usage	 for	 a	designated	
rendering	intent	shall	be:	

1)	 use	 the	 BToD0Tag,	 BToD1Tag,	 BToD2Tag,	 BToD3Tag,	 DToB0Tag,	 DToB1Tag,	 DToB2Tag	 or	
DToB3Tag	designated	for	the	rendering	intent	if	the	tag	is	present;	

2)	 use	the	BToD0Tag	or	DToB0Tag	if	present,	when	the	tags	in	1	are	not	used;	

3)	 use	the	BToD1Tag	or	DToB1Tag	if	present,	when	the	tags	in	1	and	2	are	not	used;	

4)	 use	the	BToD3Tag	or	DToB3Tag	if	present,	when	the	tags	in	1	to	3	are	not	used.	

See	Table	25.	

When	 MCS	 connection	 is	 used	 for	 input	 profile	 types,	 the	 precedence	 order	 of	 the	 tag	 usage	 for	 a	
designated	rendering	intent	shall	be:	use	the	AToM0Tag.	

When	 extended	 range	 to	 non‐extended	 range	 PCS	 conversion	 is	 selected	 in	 conjunction	 with	 the	
transform	for	input,	display,	output,	or	colour	space	profile	types,	the	precedence	order	of	the	tag	usage	
for	PCS	range	conversion	for	a	designated	rendering	intent	shall	be:	

1)	 Use	 the	 HdrToSdr0Tag,	 HdrToSdr1Tag,	 HdrToSdr2Tag,	 or	 HdrToSdr3Tag	 designated	 for	 the	
rendering	intent	if	present;	

ICC.2:2023	

©	ICC	2023	–	All	rights	reserved	 35	

2)	 Use	the	HdrToSdr0Tag	if	present,	when	the	tags	in	1	are	not	used;		

3)	 Use	the	HdrToSdr1Tag	if	present,	when	the	tags	in	1	and	2	are	not	used;	

4)	 Use	the	HdrToSdr3Tag	if	present,	when	the	tags	in	1	through	3	are	not	used;	

8.14.3 Abstract	profile	types	

For	abstract	profile	types	when	PCSXYZ	or	PCSLAB	connection	is	used,	the	precedence	order	of	the	tag	
usage	shall	be:	use	the	AToB0Tag.	

For	abstract	profile	types	when	a	spectrally‐based	PCS	is	used,	the	precedence	order	of	the	tag	usage	shall	
be:	use	the	DToB0Tag.	

When	 extended	 range	 to	 non‐extended	 range	 PCS	 conversion	 is	 selected	 in	 conjunction	 with	 the	
transform	for	an	abstract	profile,	the	HdrToSdr0Tag	shall	be	used	if	present.	

8.14.4 DeviceLink	profile	types	

For	the	DeviceLink	profile	type,	the	precedence	order	of	the	tag	usage	shall	be:	use	the	AToB0Tag.	

8.14.5 MultiplexIdentification	profile	types	

For	 the	 MultiplexIdentification	 profile	 type,	 the	 precedence	 order	 of	 the	 tag	 usage	 shall	 be:	 use	 the	
AToM0Tag.	

8.14.6 MultiplexLink	profile	types	

For	either	the	MultiplexIdentification	profile	type	or	the	input	type	when	a	device	to	multiplex	channel	
transform	is	desired,	the	precedence	order	of	the	tag	usage	shall	be:	use	the	MToA0Tag.	

8.14.7 MultiplexVisualization	profile	types	

For	the	MultiplexVisualization	profile	type,	when	a	multiplex	channel	to	colorimetric	PCS	transform	is	
desired	with	PCSXYZ	or	PCSLAB	connection	for	a	designated	rendering	intent,	the	precedence	order	of	
the	tag	usage	shall	be:	

a)	 use	the	MToB0Tag,	MToB1Tag,	MToB2Tag,	MToB3Tag	designated	for	the	rendering	intent	if	present;	

b)	 use	the	MToB0Tag	if	present,	when	the	tags	in	1	are	not	used;	

c)	 use	the	MToB1Tag	if	present,	when	the	tags	in	1	and	2	are	not	used;	

d)	 use	the	MToB3Tag	if	present,	when	the	tags	in	1	to	3	are	not	used.	

For	the	MultiplexVisualization	profile	type,	when	a	multiplex	channel	to	spectral	PCS	transform	is	desired	
using	a	spectrally‐based	PCS	connection	for	a	designated	rendering	intent	and	the	spectralPCS	header	
field	is	non‐zero,	the	precedence	order	of	the	tag	usage	shall	be:	

1)	 use	the	MToS0Tag,	MToS1Tag,	MToS2Tag,	MToS3Tag	designated	for	the	rendering	intent	if	present;	

2)	 use	the	MToS0Tag	if	present,	when	the	tags	in	1	are	not	used;	

3)	 use	the	MToS1Tag	if	present,	when	the	tags	in	1	and	2	are	not	used;	

4)	 use	the	MToS3Tag	if	present,	when	the	tags	in	1	to	3	are	not	used.	

When	 extended	 range	 to	 non‐extended	 range	 PCS	 conversion	 is	 selected	 in	 conjunction	 with	 the	
transform	for	a	MaterialVisualization	profile	type,	the	precedence	order	of	the	tag	usage	for	PCS	range	
conversion	for	a	designated	rendering	intent	shall	be:	

1)	 Use	 the	 HdrToSdr0Tag,	 HdrToSdr1Tag,	 HdrToSdr2Tag,	 or	 HdrToSdr3Tag	 designated	 for	 the	
rendering	intent	if	present;	

ICC.2:2023	

36	 ©	ICC	2023	–	All	rights	reserved	

2)	 Use	the	HdrToSdr0Tag	if	present,	when	the	tags	in	1	are	not	used;		

3)	 Use	the	HdrToSdr1Tag	if	present,	when	the	tags	in	1	and	2	are	not	used;	

4)	 Use	the	HdrToSdr3Tag	if	present,	when	the	tags	in	1	through	3	are	not	used	

8.14.8 MCS	to	parameter‐based	BRDF	profile	table	usage	

For	the	MultiplexVisualization	profile	type,	when	a	MCS	to	parameter‐based	BRDF	colorimetric	transform	
is	desired	with	PCSXYZ	or	PCSLAB	connection	for	a	designated	rendering	intent,	the	precedence	order	of	
the	tag	usage	shall	be:	

a)	 use	 the	 brdfMToB0Tag,	 brdfMToB1Tag,	 brdfMToB2Tag	 or	 brdfMToB3Tag	 designated	 for	 the	
rendering	intent	if	present;	

b)	 use	the	brdfMToB0Tag	if	present,	when	the	tags	in	1	are	not	used;	

c)	 use	the	brdfMToB1Tag	if	present,	when	the	tags	in	1	and	2	are	not	used;	

d)	 use	the	brdfMToB3Tag	if	present,	when	the	tags	in	1	to	3	are	not	used.	

For	the	MultiplexVisualization	profile	type,	when	a	MCS	to	parameter‐based	BRDF	spectral	transform	is	
desired	with	a	spectrally‐based	PCS	connection	for	a	designated	rendering	intent	and	the	spectralPCS	
header	field	is	non‐zero,	the	precedence	order	of	the	tag	shall	be:	

1)	 use	 the	 brdfMToS0Tag,	 brdfMToS1Tag,	 brdfMToS2Tag	 or	 brdfMToS3Tag	 designated	 for	 the	
rendering	intent	if	the	tag	is	present;	

2)	 use	the	brdfMToS0Tag	when	the	tags	in	1	are	not	used;	

3)	 use	the	brdfMToS1Tag	when	the	tags	in	1	and	2	are	not	used;	

4)	 use	the	brdfMToS3Tag	if	present,	when	the	tags	in	1	to	3	are	not	used.	

8.14.9 BRDF	profile	table	usage	

For	input,	display,	output	or	colour	space	profile	types	that	provide	BRDF	function	tags	which	are	desired	
to	be	used,	 the	precedence	order	of	 the	 tag	usage	 for	PCSXYZ	or	PCSLAB	connection	 for	a	designated	
rendering	intent	shall	be:	

a)	 use	the	brdfBToA0Tag,	brdfBToA1Tag,	brdfBToA2Tag,	brdfBToA3,	brdfAToB0Tag,	brdfAToB1Tag,	
brdfAToB2Tag	or	brdfAToB3Tag	designated	for	the	rendering	intent	if	present;	

b)	 use	the	brdfBToA0Tag	or	brdfAToB0Tag	if	present,	when	the	tags	in	1	are	not	used;	

c)	 use	the	brdfBToA1Tag	or	brdfAToB1Tag	if	present,	when	the	tags	in	1	and	2	are	not	used;	

d)	 use	the	brdfBToA3Tag	or	brdfAToB3Tag	if	present,	when	the	tags	in	1	to	3	are	not	used.	

When	spectrally‐based	PCS	connection	is	used	and	the	spectralPCS	header	field	is	non‐zero,	for	input,	
display,	output	or	colour	space	profile	types	that	provide	BRDF	tags	which	are	desired	to	be	used,	the	
precedence	order	of	the	tag	usage	for	a	designated	rendering	intent	shall	be:	

1)	 use	 the	 brdfBToD0Tag,	 brdfBToD1Tag,	 brdfBToD2Tag,	 brdfBToD3Tag,	 brdfDToB0Tag,	
brdfDToB1Tag,	 brdfDToB2Tag	or	brdfDToB3Tag	designated	 for	 the	 rendering	 intent	 if	 the	 tag	 is	
present;	

2)	 use	the	brdfBToD0Tag	or	brdfDToB0Tag	when	the	tags	in	1	are	not	used;	

3)	 use	the	brdf	BToD1Tag	or	brdfDToB1Tag	when	the	tags	in	1	and	2	are	not	used;	

4)	 use	the	brdfBToA3Tag	or	brdfDToB3Tag	if	present,	when	the	tags	in	1	to	3	are	not	used.	

ICC.2:2023	

©	ICC	2023	–	All	rights	reserved	 37	

8.14.10 Parameter‐based	BRDF	profile	table	usage	

For	input,	display,	output	or	colour	space	profile	types	that	provide	colorimetric	parameter‐based	BRDF	
tags	which	are	desired	to	be	used,	the	precedence	order	of	the	tag	usage	for	a	designated	rendering	intent	
shall	be:	

a)	 use	 the	 brdfColorimetricParameter0Tag,	 brdfColorimetricParameter1Tag,	
brdfColorimetricParameter2Tag,	 brdfColorimetricParameter3Tag,	 designated	 for	 the	 rendering	
intent	if	present;	

b)	 use	the	brdfColorimetricParameter0Tag	if	present,	when	the	tags	in	1	are	not	used;	

c)	 use	the	brdfColorimetricParameter1Tag	if	present,	when	the	tags	in	1	and	2	are	not	used;	

d)	 use	the	brdfColorimetricParameter3Tag	if	present,	when	the	tags	in	1	to	3	are	not	used.	

For	input,	display,	output	or	colour	space	profile	types	that	provide	spectral	parameter‐based	BRDF	tags	
which	are	desired	to	be	used	and	the	spectralPCS	header	field	is	non‐zero,	the	precedence	order	of	the	
tag	usage	for	a	designated	rendering	intent	shall	be:	

1)	 use	 the	 brdfSpectralParameter0Tag,	 brdfSpectralParameter1Tag,	 brdfSpectralParameter2Tag,	
brdfSpectralParameter3Tag	designated	for	the	rendering	intent	if	the	tag	is	present;	

2)	 use	the	brdfSpectralParameter0Tag	when	the	tags	in	1	are	not	used;	

3)	 use	the	brdfSpectralParameter1Tag	when	the	tags	in	1	and	2	are	not	used;	

4)	 use	the	brdfSpectralParameter3Tag	if	present,	when	the	tags	in	1	to	3	are	not	used.	

8.14.11 Directional	profile	table	usage	

For	input,	display,	output	or	colour	space	profile	types	that	provide	directional	tags	which	are	desired	to	
be	 used,	 the	 precedence	 order	 of	 the	 tag	 usage	 for	 PCSXYZ	 or	 PCSLAB	 connection	 for	 a	 designated	
rendering	intent	shall	be:	

a)	 use	 the	 directionalBToA0Tag,	 directionalBToA1Tag,	 directionalBToA2Tag,	 directionalBToA3,	
directionalAToB0Tag,	 directionalAToB1Tag,	 directionalAToB2Tag	 or	 directionalAToB3Tag	
designated	for	the	rendering	intent	if	present;	

b)	 use	the	directionalBToA0Tag	or	directionalAToB0Tag	if	present,	when	the	tags	in	1	are	not	used;	

c)	 use	the	directionalBToA1Tag	or	directionalAToB1Tag	if	present,	when	the	tags	in	1	and	2	are	not	
used;	

d)	 use	the	directionalBToA3Tag	or	directionalAToB3Tag	if	present,	when	the	tags	in	1	to	3	are	not	used.	

When	spectrally‐based	PCS	connection	is	used	and	the	spectralPCS	header	field	is	non‐zero,	for	input,	
display,	output	or	colour	space	profile	types	that	provide	BRDF	tags	which	are	desired	to	be	used,	the	
precedence	order	of	the	tag	usage	for	a	designated	rendering	intent	shall	be:	

1)	 use	 the	 directionalBToD0Tag,	 directionalBToD1Tag,	 directionalBToD2Tag,	 directionalBToD3Tag,	
directionalDToB0Tag,	 directionalDToB1Tag,	 directionalDToB2Tag	 or	 directionalDToB3Tag	
designated	for	the	rendering	intent	if	the	tag	is	present;	

2)	 use	the	directionalBToD0Tag	or	directionalDToB0Tag	when	the	tags	in	1	are	not	used;	

3)	 use	the	directional	BToD1Tag	or	directionalDToB1Tag	when	the	tags	in	1	and	2	are	not	used;	

4)	 use	the	directionalBToD3Tag	or	directionalDToB3Tag	if	present,	when	the	tags	in	1	to	3	are	not	used.	

ICC.2:2023	

38	 ©	ICC	2023	–	All	rights	reserved	

9 Tag	definitions	

9.1 General	

The	 public	 tags	 defined	 by	 extended	 ICC	 profiles	 conforming	 to	 this	 document	 are	 listed	 in	 9.2	 in	
alphabetical	order.	All	tags,	including	private	tags,	have	as	their	first	four	bytes	a	tag	signature	to	identify	
to	 profile	 readers	 what	 kind	 of	 data	 are	 contained	 within	 a	 tag.	 Each	 entry	 in	 9.2	 contains	 the	 tag	
signatures	that	shall	be	used	for	that	tag,	the	permitted	tag	types	for	each	tag	(see	Clause	10)	and	a	brief	
description	of	the	purpose	of	each	tag.	

These	individual	tags	are	used	to	create	all	possible	profiles.	The	tag	signature	indicates	only	the	type	of	
data	and	does	not	 imply	anything	about	the	use	or	purpose	for	which	the	data	are	intended.	Clause	8	
specifies	the	tags	that	shall	be	included	for	each	type	of	profile.	Any	other	tag	in	9.2	may	be	used	as	an	
optional	tag	as	long	as	they	are	not	specifically	excluded	in	the	definition	of	a	profile	class.	

The	interpretation	of	some	tags	is	context	dependent.	This	dependency	is	described	in	Table	25	which	
provides	a	summary	of	the	rendering	intent	associated	with	each	of	the	main	profile	classes	and	models.	
The	term	"undefined"	means	that	the	use	of	the	tag	in	that	situation	is	not	specified	by	the	ICC.	The	ICC	
recommends	that	such	tags	not	be	included	in	profiles.	 If	 the	tag	is	present,	 its	use	is	 implementation	
dependent.	In	general,	the	BToAxTags	represent	the	inverse	operation	of	the	AToBxTags,	and	DToAxTags	
represent	the	inverse	of	AToDxTags.	

9.2 Specific	tag	listing	

9.2.1 AToB0Tag	

Tag	signature:	‘A2B0’	(41324230h).	

Permitted	tag	types:	lutAToBType	or	multiProcessElementsType.	

This	tag	defines	a	colour	transform	from	Device,	Colour	Encoding	or	colorimetric	PCS,	to	colorimetric	
PCS,	or	a	 colour	 transform	 from	Device	1	 to	Device	2,	using	 lookup	 table	 tag	element	 structures	or	a	
multiProcessElementsType	 transform.	 For	 most	 profile	 classes	 it	 defines	 the	 transform	 to	 achieve	
colorimetric‐based	perceptual	 rendering	(see	Table	25).	The	processing	mechanisms	are	described	 in	
lutAToBType	or	multiProcessElementsType	(see	10.2.12	and	10.2.16).	

Table	25	—	Profile	classes	and	defined	AToBx	rendering	intents	

Profile	class	 AToB0Tag	 AToB1Tag	 AToB2Tag	 AToB3Tag	

Input	 Device	to	
colorimetric	PCS:	
perceptual	

Device	to	
colorimetric	PCS:	
media	relative	

Device	to	
colorimetric	PCS:	
saturation	

Device	to	
colorimetric	PCS:	
absolute	

Display	 Device	to	
colorimetric	PCS:	
perceptual	

Device	to	
colorimetric	PCS:	
media	relative	

Device	to	
colorimetric	PCS:	
saturation	

Device	to	
colorimetric	PCS:	
absolute	

Output	 Device	to	
colorimetric	PCS:	
perceptual	

Device	to	
colorimetric	PCS:	
media	relative	

Device	to	
colorimetric	PCS:	
saturation	

Device	to	
colorimetric	PCS:	
absolute	

ColorSpace	 Colour	encoding	
to	colorimetric	
PCS:	perceptual	

Colour	encoding	
to	colorimetric	
PCS:	media	
relative	

Colour	encoding	
to	colorimetric	
PCS:	saturation	

Colour	encoding	
to	colorimetric	
PCS:	absolute	

Abstract	 Colorimetric	PCS	
to	colorimetric	
PCS	

Undefined	 Undefined	 Undefined	

DeviceLink	 Device	1	to	
Device2	

Undefined	 Undefined	 Undefined	

ICC.2:2023	

©	ICC	2023	–	All	rights	reserved	 39	

Table	25	(continued)	

Profile	class	 AToB0Tag	 AToB1Tag	 AToB2Tag	 AToB3Tag	

NamedColor	 Undefined	 Undefined	 Undefined	 Undefined	

ColorEncodingSpace	 Undefined	 Undefined	 Undefined	 Undefined	

MultiplexIdentification	 Undefined	 Undefined	 Undefined	 Undefined	

MultiplexLink	 Undefined	 Undefined	 Undefined	 Undefined	

MultiplexVisualization	 Undefined	 Undefined	 Undefined	 Undefined	

9.2.2 AToB1Tag	

Tag	signature:	‘A2B1’	(41324231h).	

Permitted	tag	types:	lutAToBType	or	multiProcessElementsType.	

This	tag	describes	the	colour	transform	from	Device	or	Colour	Encoding	to	colorimetric‐based	PCS	using	
lookup	 table	 tag	 element	 structures.	 For	 most	 profile	 classes,	 it	 defines	 the	 transform	 to	 achieve	
colorimetric	 rendering	 (see	 Table	25).	 The	 processing	mechanisms	 are	 described	 in	 lutAToBType	 or	
multiProcessElementsType	(see	10.2.12	and	10.2.16).	

If	this	tag	is	not	present	then	relative	colorimetric	processing	shall	be	performed	by	using	the	absolute	
colorimetric	AToB3Tag	and	then	adjusting	the	colorimetric	PCS	values	by	the	media	white	point.	

9.2.3 AToB2Tag	

Tag	signature:	‘A2B2’	(41324232h).	

Permitted	tag	types:	lutAToBType	or	multiProcessElementsType.	

This	tag	describes	the	colour	transform	from	Device	or	Colour	Encoding	to	colorimetric‐based	PCS	using	
lookup	 table	 tag	 element	 structures.	 For	 most	 profile	 classes,	 it	 defines	 the	 transform	 to	 achieve	
saturation	 rendering	 (see	 Table	25).	 The	 processing	 mechanisms	 are	 described	 in	 lutAToBType	 or	
multiProcessElementsType	(see	10.13	and	10.17).	

9.2.4 AToB3Tag	

Tag	signature:	‘A2B3’	(41324233h).	

Permitted	tag	types:	lutAToBType	or	multiProcessElementsType.	

This	tag	describes	the	colour	transform	from	Device	or	Colour	Encoding	to	colorimetric‐based	PCS	using	
lookup	table	tag	element	structures.	For	most	profile	classes,	it	defines	the	transform	to	achieve	absolute	
colorimetric	 rendering	 (see	 Table	25).	 The	 processing	mechanisms	 are	 described	 in	 lutAToBType	 or	
multiProcessElementsType	(see	10.2.12	and	10.2.16).	

If	this	tag	is	not	present	then	absolute	colorimetric	processing	shall	be	performed	by	using	the	relative	
colorimetric	AToB1Tag	and	then	adjusting	the	colorimetric	PCS	values	by	the	media	white	point.	

9.2.5 AToM0Tag	

Tag	signature:	‘A2M0’	(41324d30h).	

Permitted	tag	type:	multiProcessElementsType.	

This	tag	provides	a	transformation	using	a	multiProcessElementsType	(see	Clause	11)	tag	that	converts	
from	device	channel	values	to	multiplex	channel	values.	

The	number	of	data	channels	provided	to	the	transform	shall	match	the	number	of	channels	defined	by	
the	deviceColor	field	in	the	Profile	header.	

ICC.2:2023	

40	 ©	ICC	2023	–	All	rights	reserved	

The	number	of	data	channels	resulting	from	the	transform	shall	match	the	number	of	channels	associated	
with	 the	MCS	 field	 in	 the	Profile	 header.	MCS	 connection	 shall	 result	 in	multiplex	 channel	 values	 for	
channels	with	matching	multiplex	channel	identifications	(see	9.2.85)	being	passed	to	the	appropriate	
MCS	transform	in	the	connecting	profile.	

Channels	in	an	AToM0Tag	that	have	no	match	in	the	connecting	profile	MCS	shall	be	ignored.	

9.2.6 brdfColorimetricParameter0Tag	

Tag	signature:	‘bcp0’	(62637030h).	

Permitted	tag	types:	tagStructType	of	type	brdfTransformStructure.	

This	tag	defines	a	BRDF	model	and	its	parameters	for	perceptual	rendering.	Specifically,	it	describes	a	
BRDF	 model	 that	 transforms	 viewing	 angle,	 lighting	 angle,	 and	 Device	 or	 Colour	 Encoding	 to	 the	
colorimetric‐based	PCS	specified	by	the	PCS	field	in	the	profile	header.	

For	the	transform	subtag	of	this	structure,	the	number	of	input	channels	shall	be	the	same	as	the	number	
of	channels	implied	by	the	colorSpace	signature	in	the	profile	header.	

The	 number	 of	 output	 channels	 of	 the	 transform	 subtag	 depends	 on	 the	 type	 of	 BRDF	 model.	 For	
monochrome	type	models	the	output	of	the	transform	subtag	shall	be	the	number	of	parameters	defined	
by	the	BRDF	model	type.	For	chromatic	type	models	the	number	of	output	values	shall	be	the	number	of	
parameters	defined	by	the	BRDF	model	type	multiplied	by	the	number	of	channels	implied	by	the	PCS	
signature	in	the	profile	header.	

9.2.7 brdfColorimetricParameter1Tag	

Tag	signature:	‘bcp1’	(62637031h).	

Permitted	tag	types:	tagStructType	of	type	brdfTransformStructure.	

This	 tag	 defines	 a	 BRDF	model	 and	 its	 parameters	 for	 media‐relative	 colorimetric	 intent	 rendering.	
Specifically,	it	describes	a	BRDF	model	that	transforms	viewing	angle,	lighting	angle,	and	Device	or	Colour	
Encoding	to	the	colorimetric‐based	PCS	specified	by	the	PCS	field	in	the	profile	header.	

For	the	transform	subtag	of	this	structure,	the	number	of	input	channels	shall	be	the	same	as	the	number	
of	channels	implied	by	the	colorSpace	signature	in	the	profile	header.	

The	 number	 of	 output	 channels	 of	 the	 transform	 subtag	 depends	 on	 the	 type	 of	 BRDF	 model.	 For	
monochrome	type	models	the	output	of	the	transform	subtag	shall	be	the	number	of	parameters	defined	
by	the	BRDF	model	type.	For	chromatic	type	models	the	number	of	output	values	shall	be	the	number	of	
parameters	defined	by	the	BRDF	model	type	multiplied	by	the	number	of	channels	implied	by	the	PCS	
signature	in	the	profile	header.	

9.2.8 brdfColorimetricParameter2Tag	

Tag	signature:	‘bcp2’	(62637032h).	

Permitted	tag	types:	tagStructType	of	type	brdfTransformStructure.	

This	 tag	 defines	 a	 BRDF	 model	 and	 its	 parameters	 for	 colorimetric	 saturation	 intent	 rendering.	
Specifically,	it	describes	a	BRDF	model	that	transforms	viewing	angle,	lighting	angle,	and	Device	or	Colour	
Encoding	to	the	colorimetric‐based	PCS	specified	by	the	PCS	field	in	the	profile	header.	

For	the	transform	subtag	of	this	structure,	the	number	of	input	channels	shall	be	the	same	as	the	number	
of	channels	implied	by	the	colorSpace	signature	in	the	profile	header.	

The	 number	 of	 output	 channels	 of	 the	 transform	 subtag	 depends	 on	 the	 type	 of	 BRDF	 model.	 For	
monochrome		type		models		the		output		of		the		transform		subtag		shall		be	the		number		of		parameters	
defined		by		the		BRDF		model		type.		For	chromatic	type	models	the	number	of	output	values	shall	be	the		

ICC.2:2023	

©	ICC	2023	–	All	rights	reserved	 41	

number	of	parameters	defined	by	the	BRDF	model	type	multiplied	by	the	number	of	channels	implied	by	
the	PCS	signature	in	the	profile	header.	

9.2.9 brdfColorimetricParameter3Tag	

Tag	signature:	‘bcp3’	(62637033h).	

Permitted	tag	types:	tagStructType	of	type	brdfTransformStructure.	

This	tag	defines	a	BRDF	model	and	its	parameters	for	absolute	intent	rendering.	Specifically,	it	describes	
a	 BRDF	 model	 that	 transforms	 viewing	 angle,	 lighting	 angle,	 and	 Device	 or	 Colour	 Encoding	 to	 the	
colorimetric‐based	PCS	specified	by	the	PCS	field	in	the	profile	header.	

For	the	transform	subtag	of	this	structure,	the	number	of	input	channels	shall	be	the	same	as	the	number	
of	channels	implied	by	the	colorSpace	signature	in	the	profile	header.	

The	 number	 of	 output	 channels	 of	 the	 transform	 subtag	 depends	 on	 the	 type	 of	 BRDF	 model.	 For	
monochrome	type	models	the	output	of	the	transform	subtag	shall	be	the	number	of	parameters	defined	
by	the	BRDF	model	type.	For	chromatic	type	models	the	number	of	output	values	shall	be	the	number	of	
parameters	defined	by	the	BRDF	model	type	multiplied	by	the	number	of	channels	implied	by	the	PCS	
signature	in	the	profile	header.	

9.2.10 brdfSpectralParameter0Tag	

Tag	signature:	‘bsp0’	(62737030h).	

Permitted	tag	types:	tagStructType	of	type	brdfTransformStructure.	

This	tag	defines	a	BRDF	model	and	its	parameters	for	perceptual	rendering.	Specifically,	it	describes	a	
BRDF	model	that	transforms	viewing	angle,	lighting	angle,	and	Device	or	Colour	Encoding	to	the	spectral‐
based	PCS	specified	by	the	PCS	field	in	the	profile	header.	

For	the	transform	subtag	of	this	structure,	the	number	of	input	channels	shall	be	the	same	as	the	number	
of	channels	implied	by	the	colorSpace	signature	in	the	profile	header.	

The	 number	 of	 output	 channels	 of	 the	 subtag	 transform	 depends	 on	 the	 type	 of	 BRDF	 model.	 For	
monochrome	type	models	the	output	of	the	transform	subtag	shall	be	the	number	of	parameters	defined	
by	the	BRDF	model	type.	For	chromatic	type	models	the	number	of	output	values	shall	be	the	number	of	
parameters	defined	by	the	BRDF	model	type	multiplied	by	the	number	of	channels	implied	by	the	spectral	
PCS	signature	in	the	profile	header.	

9.2.11 brdfSpectralParameter1Tag	

Tag	signature:	‘bsp1’	(62737031h).	

Permitted	tag	types:	tagStructType	of	type	brdfTransformStructure.	

This	 tag	defines	a	BRDF	model	and	 its	parameters	 for	media‐relative	 intent	 rendering.	 Specifically,	 it	
describes	a	BRDF	model	that	transforms	viewing	angle,	lighting	angle,	and	Device	or	Colour	Encoding	to	
the	spectral‐based	PCS	specified	by	the	PCS	field	in	the	profile	header.	

For	the	transform	subtag	of	this	structure,	the	number	of	input	channels	shall	be	the	same	as	the	number	
of	channels	implied	by	the	colorSpace	signature	in	the	profile	header.	

The	 number	 of	 output	 channels	 of	 the	 subtag	 transform	 depends	 on	 the	 type	 of	 BRDF	 model.	 For	
monochrome	type	models	the	output	of	the	transform	subtag	shall	be	the	number	of	parameters	defined	
by	the	BRDF	model	type.	For	chromatic	type	models	the	number	of	output	values	shall	be	the	number	of	
parameters	defined	by	the	BRDF	model	type	multiplied	by	the	number	of	channels	implied	by	the	spectral	
PCS	signature	in	the	profile	header.	

	

ICC.2:2023	

42	 ©	ICC	2023	–	All	rights	reserved	

9.2.12 brdfSpectralParameter2Tag	

Tag	signature:	‘bsp2’	(62737032h).	

Permitted	tag	types:	tagStructType	of	type	brdfTransformStructure.	

This	tag	defines	a	BRDF	model	and	its	parameters	for	saturation	intent	rendering.	Specifically,	it	describes	
a	 BRDF	 model	 that	 transforms	 viewing	 angle,	 lighting	 angle,	 and	 Device	 or	 Colour	 Encoding	 to	 the	
spectral‐based	PCS	specified	by	the	PCS	field	in	the	profile	header.	

For	the	transform	subtag	of	this	structure,	the	number	of	input	channels	shall	be	the	same	as	the	number	
of	channels	implied	by	the	colorSpace	signature	in	the	profile	header.	

The	 number	 of	 output	 channels	 of	 the	 subtag	 transform	 depends	 on	 the	 type	 of	 BRDF	 model.	 For	
monochrome	type	models	the	output	of	the	transform	subtag	shall	be	the	number	of	parameters	defined	
by	the	BRDF	model	type.	For	chromatic	type	models	the	number	of	output	values	shall	be	the	number	of	
parameters	defined	by	the	BRDF	model	type	multiplied	by	the	number	of	channels	implied	by	the	spectral	
PCS	signature	in	the	profile	header.	

9.2.13 brdfSpectralParameter3Tag	

Tag	signature:	‘bsp3’	(62737033h).	

Permitted	tag	types:	tagStructType	of	type	brdfTransformStructure.	

For	the	transform	subtag	of	this	structure,	the	number	of	input	channels	shall	be	the	same	as	the	number	
of	channels	implied	by	the	colorSpace	signature	in	the	profile	header.	

The	 number	 of	 output	 channels	 of	 the	 subtag	 transform	 depends	 on	 the	 type	 of	 BRDF	 model.	 For	
monochrome	type	models	the	output	of	the	transform	subtag	shall	be	the	number	of	parameters	defined	
by	the	BRDF	model	type.	For	chromatic	type	models	the	number	of	output	values	shall	be	the	number	of	
parameters	defined	by	the	BRDF	model	type	multiplied	by	the	number	of	channels	implied	by	the	spectral	
PCS	signature	in	the	profile	header.	

9.2.14 brdfAToB0Tag	

Tag	signature:	‘bAB0’	(62414230	h).	

Permitted	tag	types:	multiProcessElementsType.	

This	tag	defines	the	transform	to	achieve	perceptual	intent	rendering	in	relation	to	viewing	and	lighting	
angles.	Specifically,	it	describes	the	colour	transform	from	viewing	angle,	lighting	angle,	and	Device	or	
Colour	Encoding	to	the	colorimetric‐based	PCS	specified	by	the	PCS	field	in	the	profile	header.	

The	number	of	input	channels	to	the	multiProcessElementsType‐based	tag	shall	be	four	plus	the	number	
of	channels	implied	by	the	colorSpace	signature	in	the	profile	header.	The	order	and	encoding	of	the	BRDF	
and	device	channels	provided	to	the	multiProcessElementsType	are	shown	in	Table	26.	

Table	26	—	BRDF	device	channel	encoding	

Input	
channel	
index	

Channel	identification	 Encoding	type	

0	 Viewing	azimuth	angle	Φr	 azimuthNumber	

1	 Viewing	zenith	angle	θr	 zenithNumber	

2	 Lighting	azimuth	angle	Φi	 azimuthNumber	

3	 Lighting	zenith	angle	θi	 zenithNumber	

	

ICC.2:2023	

©	ICC	2023	–	All	rights	reserved	 43	

Table	26	(continued)	

4	 Device	channel	0	 		

…	 …	 		

4+N	 Device	channel	N‐1	 		

The	output	channels	are	defined	by	the	encoding	implied	by	the	PCS	field	in	the	profile	header.	

9.2.15 brdfAToB1Tag	

Tag	signature:	‘bAB1’	(62414231h).	

Permitted	tag	types:	multiProcessElementsType.	

This	 tag	 defines	 the	 transform	 to	 achieve	media‐relative	 colorimetric	 intent	 rendering	 in	 relation	 to	
viewing	and	lighting	angles.	Specifically,	it	describes	the	colour	transform	from	viewing	angle,	lighting	
angle,	 and	Device	 or	Colour	Encoding	 to	 the	 colorimetric‐based	PCS	 specified	by	 the	PCS	 field	 in	 the	
profile	header.	

The	number	of	input	channels	to	the	multiProcessElementsType‐based	tag	shall	be	four	plus	the	number	
of	channels	implied	by	the	colorSpace	signature	in	the	profile	header.	The	order	and	encoding	of	the	BRDF	
and	device	channels	provided	to	the	multiProcessElementsType	are	shown	in	Table	26.	

The	output	channels	are	defined	by	the	encoding	implied	by	the	PCS	field	in	the	profile	header.	

If	this	tag	is	not	present	then	relative	BRDF‐based	colorimetric	processing	shall	be	performed	by	using	
the	absolute	colorimetric	brdfAToB3Tag	and	then	adjusting	the	colorimetric	PCS	values	by	the	media	
white	point.	

9.2.16 brdfAToB2Tag	

Tag	signature:	‘bAB2’	(62414232h).	

Permitted	tag	types:	multiProcessElementsType.	

This	tag	defines	the	transform	to	achieve	saturation	intent	rendering	in	relation	to	viewing	and	lighting	
angles.	Specifically,	it	describes	the	colour	transform	from	viewing	angle,	lighting	angle,	and	Device	or	
Colour	Encoding	to	the	colorimetric‐based	PCS	specified	by	the	PCS	field	in	the	profile	header.	

The	number	of	input	channels	to	the	multiProcessElementsType‐based	tag	shall	be	four	plus	the	number	
of	channels	implied	by	the	colorSpace	signature	in	the	profile	header.	The	order	and	encoding	of	the	BRDF	
and	device	channels	provided	to	the	multiProcessElementsType	are	shown	in	Table	26.	

The	output	channels	are	defined	by	the	encoding	implied	by	the	PCS	field	in	the	profile	header.	

9.2.17 brdfAToB3Tag	

Tag	signature:	‘bAB3’	(62414233h).	

Permitted	tag	types:	multiProcessElementsType.	

This	tag	defines	the	transform	to	achieve	absolute	intent	rendering	in	relation	to	viewing	and	lighting	
angles.	Specifically,	it	describes	the	colour	transform	from	viewing	angle,	lighting	angle,	and	Device	or	
Colour	Encoding	to	the	colorimetric‐based	PCS	specified	by	the	PCS	field	in	the	profile	header.	

The	number	of	input	channels	to	this	multiProcessElementsType‐based	tag	shall	be	four	plus	the	number	
of	channels	implied	by	the	colorSpace	signature	in	the	profile	header.	The	order	and	encoding	of	the	BRDF	
and	device	channels	provided	to	the	multiProcessElementsType	are	shown	in	Table	26.	

	

	

ICC.2:2023	

44	 ©	ICC	2023	–	All	rights	reserved	

The	output	channels	are	defined	by	the	encoding	implied	by	the	PCS	field	in	the	profile	header.	

If	this	tag	is	not	present	then	relative	BRDF‐based	colorimetric	processing	shall	be	performed	by	using	
the	 relative	 colorimetric	 brdfAToB1Tag	 and	 then	 adjusting	 the	 colorimetric	PCS	 values	by	 the	media	
white	point.	

9.2.18 brdfBToA0Tag	

Tag	signature:	‘bBA0’	(62424130	h).	

Permitted	tag	types:	multiProcessElementsType.	

This	tag	defines	the	transform	to	achieve	perceptual	intent	rendering	in	relation	to	viewing	and	lighting	
angles.	Specifically,	it	describes	the	colour	transform	from	viewing	angle,	lighting	angle,	and	colorimetric‐
based	PCS	specified	by	the	PCS	field	in	the	profile	header	to	Device	or	Colour	Encoding.	

This	use	of	this	tag	is	not	defined	when	the	PCS	field	in	the	profile	header	is	set	to	zero.	

The	number	of	input	channels	to	the	multiProcessElementsType‐based	tag	shall	be	four	plus	the	number	
of	channels	defined	by	the	encoding	implied	by	the	PCS	field	in	the	profile	header.	The	order	and	encoding	
of	the	BRDF	and	device	channels	provided	to	the	multiProcessElementsType	are	shown	in	Table	27.	

Table	27	—	BRDF	colorimetric	encoding	

Input	
channel	
index	

Channel	identification	 Encoding	type	

0	 Viewing	azimuth	angle	Φr	 azimuthNumber	

1	 Viewing	zenith	angle	θr	 zenithNumber	

2	 Lighting	azimuth	angle	Φi	 azimuthNumber	

3	 Lighting	zenith	angle	θi	 zenithNumber	

4	 PCS	channel	0	 		

…	 …	 		

4+N	 PCS	channel	N‐1	 		

The	 number	 of	 output	 channels	 shall	 be	 the	 number	 of	 device	 channels	 defined	 by	 the	 colorSpace	
signature	in	the	profile	header.	

9.2.19 brdfBToA1Tag	

Tag	signature:	‘bBA1’	(62424131h).	

Permitted	tag	types:	multiProcessElementsType.	

This	 tag	 defines	 the	 transform	 to	 achieve	media‐relative	 colorimetric	 intent	 rendering	 in	 relation	 to	
viewing	and	lighting	angles.	Specifically,	it	describes	the	colour	transform	from	viewing	angle,	lighting	
angle,	and	colorimetric‐based	PCS	specified	by	the	PCS	 field	 in	 the	profile	header	 to	Device	or	Colour	
Encoding.	

This	use	of	this	tag	is	not	defined	when	the	PCS	field	in	the	profile	header	is	set	to	zero.	

The	number	of	input	channels	to	the	multiProcessElementsType‐based	tag	shall	be	four	plus	the	number	
of	channels	defined	by	the	encoding	implied	by	the	PCS	field	in	the	profile	header.	The	order	and	encoding	
of	the	BRDF	and	device	channels	provided	to	the	multiProcessElementsType	are	shown	in	Table	27.	

The	output	channels	shall	be	the	number	of	device	channels	defined	by	the	colorSpace	signature	in	the	
profile	header.	

ICC.2:2023	

©	ICC	2023	–	All	rights	reserved	 45	

If	this	tag	is	not	present	then	relative	BRDF‐based	colorimetric	processing	shall	be	performed	by	first	
adjusting	the	colorimetric	PCS	values	by	the	media	white	point	and	then	using	the	absolute	colorimetric	
brdfBToA3Tag.	

9.2.20 brdfBToA2Tag	

Tag	signature:	‘bBA2’	(62424132h).	

Permitted	tag	types:	multiProcessElementsType.	

This	tag	defines	the	transform	to	achieve	saturation	intent	rendering	in	relation	to	viewing	and	lighting	
angles.	Specifically,	it	describes	the	colour	transform	from	viewing	angle,	lighting	angle,	and	colorimetric‐
based	PCS	specified	by	the	PCS	field	in	the	profile	header	to	Device	or	Colour	Encoding.	

This	use	of	this	tag	is	not	defined	when	the	PCS	field	in	the	profile	header	is	set	to	zero.	

The	number	of	input	channels	to	the	multiProcessElementsType‐based	tag	shall	be	four	plus	the	number	
of	channels	defined	by	the	encoding	implied	by	the	PCS	field	in	the	profile	header.	The	order	and	encoding	
of	the	BRDF	and	device	channels	provided	to	the	multiProcessElementsType	are	shown	in	Table	27.	

The	output	channels	shall	be	the	number	of	device	channels	defined	by	the	colorSpace	signature	in	the	
profile	header.	

9.2.21 brdfBToA3Tag	

Tag	signature:	‘bBA3’	(62424133h).	

Permitted	tag	types:	multiProcessElementsType.	

This	tag	defines	the	transform	to	achieve	absolute	intent	rendering	in	relation	to	viewing	and	lighting	
angles.	Specifically,	it	describes	the	colour	transform	from	viewing	angle,	lighting	angle,	and	colorimetric‐
based	PCS	specified	by	the	PCS	field	in	the	profile	header	to	Device	or	Colour	Encoding.	

This	use	of	this	tag	is	not	defined	when	the	PCS	field	in	the	profile	header	is	set	to	zero.	

The	number	of	input	channels	to	the	multiProcessElementsType‐based	tag	shall	be	four	plus	the	number	
of	channels	defined	by	the	encoding	implied	by	the	PCS	field	in	the	profile	header.	The	order	and	encoding	
of	the	BRDF	and	device	channels	provided	to	the	multiProcessElementsType	are	shown	in	Table	27.	

The	output	channels	shall	be	the	number	of	device	channels	defined	by	the	colorSpace	signature	in	the	
profile	header.	

If	this	tag	is	not	present	then	relative	BRDF‐based	colorimetric	processing	shall	be	performed	by	first	
adjusting	the	colorimetric	PCS	values	by	the	media	white	point	and	then	using	the	relative	colorimetric	
brdfAToB1Tag.	

9.2.22 brdfBToD0Tag	

Tag	signature:	‘bBD0’	(62424430	h).	

Permitted	tag	types:	multiProcessElementsType.	

This	tag	defines	the	transform	to	achieve	perceptual	intent	rendering	in	relation	to	viewing	and	lighting	
angles.	Specifically,	it	describes	the	colour	transform	from	viewing	angle,	lighting	angle,	and	the	spectral‐
based	PCS	specified	by	the	spectralPCS	field	in	the	profile	header	to	Device	or	Colour	Encoding.	

This	use	of	this	tag	is	not	defined	when	the	spectralPCS	field	in	the	profile	header	is	set	to	zero.	

	

	

ICC.2:2023	

46	 ©	ICC	2023	–	All	rights	reserved	

The	number	of	input	channels	to	the	multiProcessElementsType‐based	tag	shall	be	four	plus	the	number	
of	channels	defined	by	the	encoding	implied	by	the	spectralPCS	field	in	the	profile	header.	The	order	and	
encoding	 of	 the	 BRDF	 and	 device	 channels	 provided	 to	 the	multiProcessElementsType	 are	 shown	 in	
Table	28.	

Table	28	—	BRDF	spectral	encoding	

Input	
channel	
index	

Channel	identification	 Encoding	type	

0	 Viewing	azimuth	angle	Φr	 azimuthNumber	

1	 Viewing	zenith	angle	θr	 zenithNumber	

2	 Lighting	azimuth	angle	Φi	 azimuthNumber	

3	 Lighting	zenith	angle	θi	 zenithNumber	

4	 Spectral	PCS	channel	0	 		

…	 …	 		

4+N	 Spectral	PCS	channel	N‐1	 		

The	output	channels	shall	be	the	number	of	channels	implied	by	the	colorSpace	signature	in	the	profile	
header.	

9.2.23 brdfBToD1Tag	

Tag	signature:	‘bBD1’	(62424431h).	

Permitted	tag	types:	multiProcessElementsType.	

This	 tag	defines	 the	 transform	to	achieve	relative	 intent	rendering	 in	relation	to	viewing	and	 lighting	
angles.	Specifically,	it	describes	the	colour	transform	from	viewing	angle,	lighting	angle,	and	the	spectral‐
based	PCS	specified	by	the	spectralPCS	field	in	the	profile	header	to	Device	or	Colour	Encoding.	

This	use	of	this	tag	is	not	defined	when	the	spectralPCS	field	in	the	profile	header	is	set	to	zero.	

The	number	of	input	channels	to	the	multiProcessElementsType‐based	tag	shall	be	four	plus	the	number	
of	channels	defined	by	the	encoding	implied	by	the	spectralPCS	field	in	the	profile	header.	The	order	and	
encoding	 of	 the	 BRDF	 and	 device	 channels	 provided	 to	 the	multiProcessElementsType	 are	 shown	 in	
Table	28.	

The	output	channels	shall	be	the	number	of	channels	implied	by	the	colorSpace	signature	in	the	profile	
header.	

If	 this	 tag	 is	 not	 present	 then	 relative	 BRDF‐based	 spectral	 processing	 shall	 be	 performed	 by	 first	
adjusting	 the	 spectral	 PCS	 values	 by	 the	 spectral	 media	 white	 point	 and	 then	 using	 the	 absolute	
brdfDToB3Tag.	

9.2.24 brdfBToD2Tag	

Tag	signature:	‘bBD2’	(62424432h).	

Permitted	tag	types:	multiProcessElementsType.	

This	tag	defines	the	transform	to	achieve	saturation	intent	rendering	in	relation	to	viewing	and	lighting	
angles.	Specifically,	it	describes	the	colour	transform	from	viewing	angle,	lighting	angle,	and	the	spectral‐
based	PCS	specified	by	the	spectralPCS	field	in	the	profile	header	to	Device	or	Colour	Encoding.	

This	use	of	this	tag	is	not	defined	when	the	spectralPCS	field	in	the	profile	header	is	set	to	zero.	

The	number	of	input	channels	to	the	multiProcessElementsType‐based	tag	shall	be	four	plus	the	number	
of	channels	defined	by	the	encoding	implied	by	the	spectralPCS	field	in	the	profile	header.		The	order	and	

ICC.2:2023	

©	ICC	2023	–	All	rights	reserved	 47	

encoding	 of	 the	 BRDF	 and	 device	 channels	 provided	 to	 the	multiProcessElementsType	 are	 shown	 in	
Table	28.	

The	output	channels	shall	be	the	number	of	channels	implied	by	the	colorSpace	signature	in	the	profile	
header.	

The	output	channels	are	defined	by	the	encoding	implied	by	the	spectralPCS	field	in	the	profile	header.	

9.2.25 brdfBToD3Tag	

Tag	signature:	‘bBD3’	(62424433h).	

Permitted	tag	types:	multiProcessElementsType.	

This	tag	defines	the	transform	to	achieve	saturation	intent	rendering	in	relation	to	viewing	and	lighting	
angles.	Specifically,	it	describes	the	colour	transform	from	viewing	angle,	lighting	angle,	and	the	spectral‐
based	PCS	specified	by	the	spectralPCS	field	in	the	profile	header	to	Device	or	Colour	Encoding.	

This	use	of	this	tag	is	not	defined	when	the	spectralPCS	field	in	the	profile	header	is	set	to	zero.	

The	number	of	input	channels	to	the	multiProcessElementsType‐based	tag	shall	be	four	plus	the	number	
of	channels	defined	by	the	encoding	implied	by	the	spectralPCS	field	in	the	profile	header.	The	order	and	
encoding	 of	 the	 BRDF	 and	 device	 channels	 provided	 to	 the	multiProcessElementsType	 are	 shown	 in	
Table	28.	

The	output	channels	shall	be	the	number	of	channels	implied	by	the	colorSpace	signature	in	the	profile	
header.	

If	this	tag	is	not	present	then	relative	BRDF‐based	spectral	processing	shall	be	performed	by	using	the	
relative	brdfDToB1Tag	and	then	adjusting	the	spectral	PCS	values	by	the	spectral	media	white	point.	

9.2.26 brdfDToB0Tag	

Tag	signature:	‘bDB0’	(62444230	h).	

Permitted	tag	types:	multiProcessElementsType.	

This	tag	defines	the	transform	to	achieve	perceptual	intent	rendering	in	relation	to	viewing	and	lighting	
angles.	Specifically,	it	describes	the	colour	transform	from	viewing	angle,	lighting	angle,	and	Device	or	
Colour	Encoding	to	the	spectral‐based	PCS	specified	by	the	spectralPCS	field	in	the	profile.	

This	use	of	this	tag	is	not	defined	when	the	spectralPCS	tag	is	set	to	zero.	

The	number	of	input	channels	to	the	multiProcessElementsType‐based	tag	shall	be	four	plus	the	number	
of	channels	implied	by	the	colorSpace	signature	in	the	profile	header.	The	order	and	encoding	of	the	BRDF	
and	device	channels	provided	to	the	multiProcessElementsType	are	shown	in	Table	26.	

The	output	channels	are	defined	by	the	encoding	implied	by	the	spectralPCS	field	in	the	profile	header.	

9.2.27 brdfDToB1Tag	

Tag	signature:	‘bDB1’	(62444231h).	

Permitted	tag	types:	multiProcessElementsType.	

This	 tag	defines	 the	 transform	to	achieve	relative	 intent	rendering	 in	relation	to	viewing	and	 lighting	
angles.	Specifically,	it	describes	the	colour	transform	from	viewing	angle,	lighting	angle,	and	Device	or	
Colour	Encoding	to	the	spectral‐based	PCS	specified	by	the	spectralPCS	field	in	the	profile.	

This	use	of	this	tag	is	not	defined	when	the	spectralPCS	tag	is	set	to	zero.	

ICC.2:2023	

48	 ©	ICC	2023	–	All	rights	reserved	

The	number	of	input	channels	to	the	multiProcessElementsType‐based	tag	shall	be	four	plus	the	number	
of	channels	implied	by	the	colorSpace	signature	in	the	profile	header.	The	order	and	encoding	of	the	BRDF	
and	device	channels	provided	to	the	multiProcessElementsType	are	shown	in	Table	26.	

The	output	channels	are	defined	by	the	encoding	implied	by	the	spectralPCS	field	in	the	profile	header.	

If	this	tag	is	not	present	then	relative	BRDF‐based	spectral	processing	shall	be	performed	by	using	the	
absolute	brdfDToB3Tag	and	then	adjusting	the	spectral	PCS	values	by	the	spectral	media	white	point.	

9.2.28 brdfDToB2Tag	

Tag	signature:	‘bDB2’	(62444232h).	

Permitted	tag	types:	multiProcessElementsType.	

This	tag	defines	the	transform	to	achieve	saturation	intent	rendering	in	relation	to	viewing	and	lighting	
angles.	Specifically,	it	describes	the	colour	transform	from	viewing	angle,	lighting	angle,	and	Device	or	
Colour	Encoding	to	the	spectral‐based	PCS	specified	by	the	spectralPCS	field	in	the	profile.	

This	use	of	this	tag	is	not	defined	when	the	spectralPCS	tag	is	set	to	zero.	

The	number	of	input	channels	to	the	multiProcessElementsType‐based	tag	shall	be	four	plus	the	number	
of	channels	implied	by	the	colorSpace	signature	in	the	profile	header.	The	order	and	encoding	of	the	BRDF	
and	device	channels	provided	to	the	multiProcessElementsType	are	shown	in	Table	26.	

The	output	channels	are	defined	by	the	encoding	implied	by	the	spectralPCS	field	in	the	profile	header.	

9.2.29 brdfDToB3Tag	

Tag	signature:	‘bDB3’	(62444233h).	

Permitted	tag	types:	multiProcessElementsType.	

This	tag	defines	the	transform	to	achieve	saturation	intent	rendering	in	relation	to	viewing	and	lighting	
angles.	Specifically,	it	describes	the	colour	transform	from	viewing	angle,	lighting	angle,	and	Device	or	
Colour	Encoding	to	the	spectral‐based	PCS	specified	by	the	spectralPCS	field	in	the	profile.	

This	use	of	this	tag	is	not	defined	when	the	spectralPCS	tag	is	set	to	zero.	

The	number	of	input	channels	to	the	multiProcessElementsType‐based	tag	shall	be	four	plus	the	number	
of	channels	implied	by	the	colorSpace	signature	in	the	profile	header.	The	order	and	encoding	of	the	BRDF	
and	device	channels	provided	to	the	multiProcessElementsType	are	shown	in	Table	26.	

The	output	channels	are	defined	by	the	encoding	implied	by	the	spectralPCS	field	in	the	profile	header.	

If	this	tag	is	not	present	then	relative	BRDF‐based	spectral	processing	shall	be	performed	by	using	the	
relative	brdfDToB1Tag	and	then	adjusting	the	spectral	PCS	values	by	the	spectral	media	white	point.	

9.2.30 brdfMToB0Tag	

Tag	signature:	‘bMB0’	(624d4230h).	

Permitted	tag	types:	tagStructType	of	type	brdfTransformStructure.	

This	 tag	 defines	 a	 BRDF	 model	 and	 its	 parameters	 for	 perceptual	 intent	 rendering	 using	 multiplex	
channels	as	input.	Specifically,	it	describes	a	BRDF	model	that	transforms	viewing	angle,	lighting	angle,	
and	Device	or	Colour	Encoding	 to	 the	colorimetric‐based	PCS	specified	by	 the	PCS	 field	 in	 the	profile	
header.	

For	the	transform	subtag	of	this	structure,	the	number	of	input	channels	shall	be	the	same	as	the	number	
of	channels	implied	by	the	MCS	signature	in	the	profile	header.	

ICC.2:2023	

©	ICC	2023	–	All	rights	reserved	 49	

The	 number	 of	 output	 channels	 of	 the	 transform	 subtag	 depends	 on	 the	 type	 of	 BRDF	 model.	 For	
monochrome	type	models	the	output	of	the	transform	subtag	shall	be	the	number	of	parameters	defined	
by	the	BRDF	model	type.	For	chromatic	type	models	the	number	of	output	values	shall	be	the	number	of	
parameters	defined	by	the	BRDF	model	type	multiplied	by	the	number	of	channels	implied	by	the	PCS	
signature	in	the	profile	header.	

9.2.31 brdfMToB1Tag	

Tag	signature:	‘bMB1’	(624d4231h).	

Permitted	tag	types:	tagStructType	of	type	brdfTransformStructure.	

This	tag	defines	a	BRDF	model	and	its	parameters	for	media‐relative	rendering	using	multiplex	channels	
as	input.	Specifically,	it	describes	a	BRDF	model	that	transforms	viewing	angle,	lighting	angle,	and	Device	
or	Colour	Encoding	to	the	colorimetric‐based	PCS	specified	by	the	PCS	field	in	the	profile	header.	

For	the	transform	subtag	of	this	structure,	the	number	of	input	channels	shall	be	the	same	as	the	number	
of	channels	implied	by	the	MCS	signature	in	the	profile	header.	

The	 number	 of	 output	 channels	 of	 the	 transform	 subtag	 depends	 on	 the	 type	 of	 BRDF	 model.	 For	
monochrome	type	models	the	output	of	the	transform	subtag	shall	be	the	number	of	parameters	defined	
by	the	BRDF	model	type.	For	chromatic	type	models	the	number	of	output	values	shall	be	the	number	of	
parameters	defined	by	the	BRDF	model	type	multiplied	by	the	number	of	channels	implied	by	the	PCS	
signature	in	the	profile	header.	

9.2.32 brdfMToB2Tag	

Tag	signature:	‘bMB2’	(624d4232h).	

Permitted	tag	types:	tagStructType	of	type	brdfTransformStructure.	

This	 tag	 defines	 a	 BRDF	 model	 and	 its	 parameters	 for	 saturation	 intent	 rendering	 using	 multiplex	
channels	as	input.	Specifically,	it	describes	a	BRDF	model	that	transforms	viewing	angle,	lighting	angle,	
and	Device	or	Colour	Encoding	 to	 the	colorimetric‐based	PCS	specified	by	 the	PCS	 field	 in	 the	profile	
header.	

For	the	transform	subtag	of	this	structure,	the	number	of	input	channels	shall	be	the	same	as	the	number	
of	channels	implied	by	the	MCS	signature	in	the	profile	header.	

The	 number	 of	 output	 channels	 of	 the	 transform	 subtag	 depends	 on	 the	 type	 of	 BRDF	 model.	 For	
monochrome	type	models	the	output	of	the	transform	subtag	shall	be	the	number	of	parameters	defined	
by	the	BRDF	model	type.	For	chromatic	type	models	the	number	of	output	values	shall	be	the	number	of	
parameters	defined	by	the	BRDF	model	type	multiplied	by	the	number	of	channels	implied	by	the	PCS	
signature	in	the	profile	header.	

9.2.33 brdfMToB3Tag	

Tag	signature:	‘bMB3’	(624d4233h).	

Permitted	tag	types:	tagStructType	of	type	brdfTransformStructure.	

This	tag	defines	a	BRDF	model	and	its	parameters	for	absolute‐colorimetric	rendering	using	multiplex	
channels	as	input.	Specifically,	it	describes	a	BRDF	model	that	transforms	viewing	angle,	lighting	angle,	
and	Device	or	Colour	Encoding	 to	 the	colorimetric‐based	PCS	specified	by	 the	PCS	 field	 in	 the	profile	
header.	

For	the	transform	subtag	of	this	structure,	the	number	of	input	channels	shall	be	the	same	as	the	number	
of	channels	implied	by	the	MCS	signature	in	the	profile	header.	

The	 number	 of	 output	 channels	 of	 the	 transform	 subtag	 depends	 on	 the	 type	 of	 BRDF	 model.	 For	
monochrome	type	models	the	output	of	the	transform	subtag	shall	be	the	number	of	parameters	defined	
by	the	BRDF	model	type.	For	chromatic	type	models	the	number	of	output	values	shall	be	the	number	of	

ICC.2:2023	

50	 ©	ICC	2023	–	All	rights	reserved	

parameters	defined	by	the	BRDF	model	type	multiplied	by	the	number	of	channels	implied	by	the	PCS	
signature	in	the	profile	header.	

9.2.34 brdfMToS0Tag	

Tag	signature:	‘bMS0’	(624d5330h).	

Permitted	tag	types:	tagStructType	of	type	brdfTransformStructure.	

This	 tag	 defines	 a	 BRDF	 model	 and	 its	 parameters	 for	 perceptual	 intent	 rendering	 using	 multiplex	
channels	as	input.	Specifically,	it	describes	a	BRDF	model	that	transforms	viewing	angle,	lighting	angle,	
and	Device	or	Colour	Encoding	to	the	spectral‐based	PCS	specified	by	the	spectralPCS	field	in	the	profile	
header.	

This	use	of	this	tag	is	not	defined	when	the	spectralPCS	tag	is	set	to	zero.	

For	the	transform	subtag	of	this	structure,	the	number	of	input	channels	shall	be	the	same	as	the	number	
of	channels	implied	by	the	MCS	signature	in	the	profile	header.	

The	 number	 of	 output	 channels	 of	 the	 transform	 subtag	 depends	 on	 the	 type	 of	 BRDF	 model.	 For	
monochrome	type	models	the	output	of	the	transform	subtag	shall	be	the	number	of	parameters	defined	
by	the	BRDF	model	type.	For	chromatic	type	models	the	number	of	output	values	shall	be	the	number	of	
parameters	defined	by	the	BRDF	model	type	multiplied	by	the	number	of	channels	implied	by	the	PCS	
signature	in	the	profile	header.	

9.2.35 brdfMToS1Tag	

Tag	signature:	‘bMS1’	(624d5331h).	

Permitted	tag	types:	tagStructType	of	type	brdfTransformStructure.	

This	tag	defines	a	BRDF	model	and	its	parameters	for	media‐relative	rendering	using	multiplex	channels	
as	input.	Specifically,	it	describes	a	BRDF	model	that	transforms	viewing	angle,	lighting	angle,	and	Device	
or	Colour	Encoding	to	the	spectral‐based	PCS	specified	by	the	spectralPCS	field	in	the	profile	header.	

This	use	of	this	tag	is	not	defined	when	the	spectralPCS	tag	is	set	to	zero.	

For	the	transform	subtag	of	this	structure,	the	number	of	input	channels	shall	be	the	same	as	the	number	
of	channels	implied	by	the	MCS	signature	in	the	profile	header.	

The	 number	 of	 output	 channels	 of	 the	 transform	 subtag	 depends	 on	 the	 type	 of	 BRDF	 model.	 For	
monochrome	type	models	the	output	of	the	transform	subtag	shall	be	the	number	of	parameters	defined	
by	the	BRDF	model	type.	For	chromatic	type	models	the	number	of	output	values	shall	be	the	number	of	
parameters	defined	by	the	BRDF	model	type	multiplied	by	the	number	of	channels	implied	by	the	PCS	
signature	in	the	profile	header.	

9.2.36 brdfMToS2Tag	

Tag	signature:	‘bMS2’	(624d5332h).	

Permitted	tag	types:	tagStructType	of	type	brdfTransformStructure.	

This	 tag	 defines	 a	 BRDF	 model	 and	 its	 parameters	 for	 saturation	 intent	 rendering	 using	 multiplex	
channels	as	input.	Specifically,	it	describes	a	BRDF	model	that	transforms	viewing	angle,	lighting	angle,	
and	Device	or	Colour	Encoding	to	the	spectral‐based	PCS	specified	by	the	spectralPCS	field	in	the	profile	
header.	

This	use	of	this	tag	is	not	defined	when	the	spectralPCS	tag	is	set	to	zero.	

For	the	transform	subtag	of	this	structure,	the	number	of	input	channels	shall	be	the	same	as	the	number	
of	channels	implied	by	the	MCS	signature	in	the	profile	header.	

ICC.2:2023	

©	ICC	2023	–	All	rights	reserved	 51	

	

The	 number	 of	 output	 channels	 of	 the	 transform	 subtag	 depends	 on	 the	 type	 of	 BRDF	 model.	 For	
monochrome	type	models	the	output	of	the	transform	subtag	shall	be	the	number	of	parameters	defined	
by	the	BRDF	model	type.	For	chromatic	type	models	the	number	of	output	values	shall	be	the	number	of	
parameters	defined	by	the	BRDF	model	type	multiplied	by	the	number	of	channels	implied	by	the	PCS	
signature	in	the	profile	header.	

9.2.37 brdfMToS3Tag	

Tag	signature:	‘bMS3’	(624d5333h).	

Permitted	tag	types:	tagStructType	of	type	brdfTransformStructure.	

This	tag	defines	a	BRDF	model	and	its	parameters	for	perceptual	rendering	using	multiplex	channels	as	
input.	Specifically,	it	describes	a	BRDF	model	that	transforms	viewing	angle,	lighting	angle,	and	Device	or	
Colour	Encoding	to	the	spectral‐based	PCS	specified	by	the	spectralPCS	field	in	the	profile	header.	

This	use	of	this	tag	is	not	defined	when	the	spectralPCS	tag	is	set	to	zero.	

For	the	transform	subtag	of	this	structure,	the	number	of	input	channels	shall	be	the	same	as	the	number	
of	channels	implied	by	the	MCS	signature	in	the	profile	header.	

The	 number	 of	 output	 channels	 of	 the	 transform	 subtag	 depends	 on	 the	 type	 of	 BRDF	 model.	 For	
monochrome	type	models	the	output	of	the	transform	subtag	shall	be	the	number	of	parameters	defined	
by	the	BRDF	model	type.	For	chromatic	type	models	the	number	of	output	values	shall	be	the	number	of	
parameters	defined	by	the	BRDF	model	type	multiplied	by	the	number	of	channels	implied	by	the	PCS	
signature	in	the	profile	header.	

9.2.38 BToA0Tag	

Tag	signature:	‘B2A0’	(42324130h).	

Permitted	tag	types:	lutBToAType	or	multiProcessElementsType.	

This	tag	defines	a	colour	transform	from	a	colorimetric‐based	PCS	to	Device	or	Colour	Encoding	using	the	
lookup	table	tag	element	structures	or	multiProcessElementsType	transforms.	For	most	profile	classes,	
it	defines	the	transform	to	achieve	perceptual	rendering	(see	Table	29).	The	processing	mechanisms	are	
described	in	lutBToAType	or	multiProcessElementsType	(see	10.2.13	and	10.2.16).	

Table	29	—	Profile	classes	and	defined	BToAx	rendering	intents	

Profile	class	 BToA0Tag	 BToA1Tag	 BToA2Tag	 BToA3Tag	

Input	 Colorimetric	PCS	to	
device:	perceptual	

Colorimetric	PCS	to	
device:	media	
relative	

Colorimetric	PCS	to	
device:	saturation	

Colorimetric	PCS	to	
device:	absolute	

Display	 Colorimetric	PCS	to	
device:	perceptual	

Colorimetric	PCS	to	
device:	media	
relative	

Colorimetric	PCS	to	
device:	saturation	

Colorimetric	PCS	to	
device:	absolute	

Output	 Colorimetric	PCS	to	
device:	perceptual	

Colorimetric	PCS	to	
device:	media	
relative	

Colorimetric	PCS	to	
device:	saturation	

Colorimetric	PCS	to	
device:	absolute	

ColorSpace	 Colorimetric	PCS	to	
colour	encoding:	
perceptual	

Colorimetric	PCS	to	
colour	encoding:	
colorimetric	

Colorimetric	PCS	to	
colour	encoding:	
saturation	

Colorimetric	PCS	to	
colour	encoding:	
saturation	

Abstract	 Undefined	 Undefined	 Undefined	 Undefined	

DeviceLink	 Undefined	 Undefined	 Undefined	 Undefined	

NamedColor	 Undefined	 Undefined	 Undefined	 Undefined	

ColorEncodingSpace	 Undefined	 Undefined	 Undefined	 Undefined	

ICC.2:2023	

52	 ©	ICC	2023	–	All	rights	reserved	

Table	29	(continued)	

Profile	class	 BToA0Tag	 BToA1Tag	 BToA2Tag	 BToA3Tag	

MultiplexIdentification	 Undefined	 Undefined	 Undefined	 Undefined	

MultiplexLink	 Undefined	 Undefined	 Undefined	 Undefined	

MultiplexVisualization	 Undefined	 Undefined	 Undefined	 Undefined	

9.2.39 BToA1Tag	

Tag	signature:	‘B2A1’	(42324131h).	

Permitted	tag	types:	lutBToAType	or	multiProcessElementsType.	

This	tag	defines	a	colour	transform	from	a	colorimetric‐based	PCS	to	Device	or	Colour	Encoding	using	the	
lookup	table	tag	element	structures	or	multiProcessElementsType	transforms.	For	most	profile	classes,	
it	 defines	 the	 transform	 to	 achieve	 relative	 colorimetric	 rendering	 (see	 Table	29).	 The	 processing	
mechanisms	are	described	in	lutBToAType	or	multiProcessElementsType	(see	10.2.13	and	10.2.16).	

If	 this	 tag	 is	 not	 present	 then	 relative	 colorimetric	 processing	 shall	 be	 performed	 by	 adjusting	 the	
colorimetric	PCS	values	by	the	media	white	point	and	then	using	the	absolute	colorimetric	BToA3Tag.	

9.2.40 BToA2Tag	

Tag	signature:	‘B2A2’	(42324132h).	

Permitted	tag	types:	lutBToAType	or	multiProcessElementsType.	

This	tag	defines	a	colour	transform	from	a	colorimetric‐based	PCS	to	Device	or	Colour	Encoding	using	the	
lookup	table	tag	element	structures	or	multiProcessElementsType	transforms.	For	most	profile	classes,	
it	defines	the	transform	to	achieve	saturation	rendering	(see	Table	29).	The	processing	mechanisms	are	
described	in	or	lutBToAType	or	multiProcessElementsType	(see	10.2.13	and	10.2.16).	

9.2.41 BToA3Tag	

Tag	signature:	‘B2A3’	(42324133h).	

Permitted	tag	types:	lutBToAType	or	multiProcessElementsType.	

This	tag	defines	a	colour	transform	from	a	colorimetric‐based	PCS	to	Device	or	Colour	Encoding	using	the	
lookup	table	tag	element	structures	or	multiProcessElementsType	transforms.	For	most	profile	classes,	
it	 defines	 the	 transform	 to	 achieve	 absolute	 colorimetric	 rendering	 (see	 Table	29).	 The	 processing	
mechanisms	are	described	in	lutBToAType	or	multiProcessElementsType	(see	10.2.13	and	10.2.16).	

If	 this	 tag	 is	 not	 present	 then	 absolute	 colorimetric	 processing	 shall	 be	 performed	 by	 adjusting	 the	
colorimetric	PCS	values	by	the	media	white	point	and	then	using	the	relative	colorimetric	BToA1Tag.	

9.2.42 BToD0Tag	

Tag	signature	‘B2D0’	(42324430h).	

Permitted	tag	types:	multiProcessElementsType.	

This	tag	defines	a	colour	transform	from	a	spectrally‐based	PCS	(determined	by	the	spectralPCS	and	PCS	
fields	in	the	header)	to	Device.	The	spectralPCS	header	field	shall	be	non‐zero	when	this	tag	is	present.	
This	 tag	 defines	 a	 spectrally‐based	 PCS‐to‐device	 transform	 with	 the	 spectral	 PCS	 defined	 by	 the	
spectralPCS,	spectralRange,	and	biSpectralRange	fields	in	the	profile	header.	It	supports	float32Number‐
encoded	input	range,	output	range	and	transform.	As	with	the	BToA0Tag,	it	defines	a	transform	to	achieve	
a	 perceptual	 rendering	 (see	 Table	30).	 The	 processing	 mechanism	 is	 described	 in	
multiProcessElementsType	(see	10.2.16).	

ICC.2:2023	

©	ICC	2023	–	All	rights	reserved	 53	

Table	30	—	Profile	classes	and	defined	BToDx	rendering	intents	

Profile	class	 BToD0Tag	 BToD1Tag	 BToD2Tag	 BToD3Tag	

Input	 Spectral	PCS	to	
device:	perceptual	

Spectral	PCS	to	
device:	media	
relative	

Spectral	PCS	to	
device:	saturation	

Spectral	PCS	to	
device:	absolute	

Display	 Spectral	PCS	to	
device:	perceptual	

Spectral	PCS	to	
device:	media	
relative	

Spectral	PCS	to	
device:	saturation	

Spectral	PCS	to	
device:	absolute	

Output	 Spectral	PCS	to	
device:	perceptual	

Spectral	PCS	to	
device:	media	
relative	

Spectral	PCS	to	
device:	saturation	

Spectral	PCS	to	
device:	absolute	

ColorSpace	 Spectral	PCS	to	
colour	encoding:	
perceptual	

Spectral	PCS	to	
colour	encoding:	
colorimetric	

Spectral	PCS	to	
colour	encoding:	
saturation	

Spectral	PCS	to	
colour	encoding:	
saturation	

Abstract	 Undefined	 Undefined	 Undefined	 Undefined	
DeviceLink	 Undefined	 Undefined	 Undefined	 Undefined	

NamedColor	 Undefined	 Undefined	 Undefined	 Undefined	
ColorEncodingSpace	 Undefined	 Undefined	 Undefined	 Undefined	
MultiplexIdentification	 Undefined	 Undefined	 Undefined	 Undefined	
MultiplexLink	 Undefined	 Undefined	 Undefined	 Undefined	
MultiplexVisualization	 Undefined	 Undefined	 Undefined	 Undefined	

9.2.43 BToD1Tag	

Tag	signature	‘B2D1’	(42324431h).	

Permitted	tag	types:	multiProcessElementsType.	

This	tag	defines	a	colour	transform	from	a	spectrally‐based	PCS	(determined	by	the	spectralPCS	and	PCS	
fields	in	the	header)	to	Device.	The	spectralPCS	header	field	shall	be	non‐zero	when	this	tag	is	present.	
This	 tag	 defines	 a	 spectrally‐based	 PCS	 to	 device	 transform	 with	 the	 spectral	 PCS	 defined	 by	 the	
spectralPCS,	spectralRange,	and	biSpectralRange	fields	in	the	profile	header.	It	supports	float32Number‐
encoded	input	range,	output	range	and	transform.	As	with	the	BToA0Tag,	it	defines	a	transform	to	achieve	
a	 media	 relative	 rendering	 (see	 Table	30).	 The	 processing	 mechanism	 is	 described	 in	
multiProcessElementsType	(see	10.2.16).	

If	this	tag	is	not	present	then	relative	processing	shall	be	performed	by	adjusting	the	PCS	values	by	the	
media	white	point	and	then	using	the	absolute	rendering	BToD3Tag.	

9.2.44 BToD2Tag	

Tag	signature	‘B2D2’	(42324432h).	

Permitted	tag	types:	multiProcessElementsType.	

This	tag	defines	a	colour	transform	from	a	spectrally‐based	PCS	(determined	by	the	spectralPCS	and	PCS	
fields	in	the	header)	to	Device.	The	spectralPCS	header	field	shall	be	non‐zero	when	this	tag	is	present.	
This	 tag	 defines	 a	 spectrally‐based	 PCS	 to	 device	 transform	 with	 the	 spectral	 PCS	 defined	 by	 the	
spectralPCS,	spectralRange,	and	biSpectralRange	fields	in	the	profile	header.	It	supports	float32Number‐
encoded	input	range,	output	range	and	transform.	As	with	the	BToA0Tag,	it	defines	a	transform	to	achieve	
a	 saturation	 rendering	 (see	 Table	30).	 The	 processing	 mechanism	 is	 described	 in	
multiProcessElementsType	(see	10.2.16).	

9.2.45 BToD3Tag	

Tag	signature	‘B2D3’	(42324433h).	

	

ICC.2:2023	

54	 ©	ICC	2023	–	All	rights	reserved	

Permitted	tag	types:	multiProcessElementsType.	

This	tag	defines	a	colour	transform	from	a	spectrally‐based	PCS	(determined	by	the	spectralPCS	and	PCS	
fields	in	the	header)	to	Device.	The	spectralPCS	header	field	shall	be	non‐zero	when	this	tag	is	present.	
This	 tag	 defines	 a	 spectrally‐based	 PCS	 to	 device	 transform	 with	 the	 spectral	 PCS	 defined	 by	 the	
spectralPCS,	spectralRange,	and	biSpectralRange	fields	in	the	profile	header.	It	supports	float32Number‐
encoded	input	range,	output	range	and	transform.	As	with	the	BToA0Tag,	it	defines	a	transform	to	achieve	
an	 absolute	 rendering	 (see	 Table	30).	 The	 processing	 mechanism	 is	 described	 in	
multiProcessElementsType	(see	10.2.16).	

If	this	tag	is	not	present	then	absolute	processing	shall	be	performed	by	adjusting	the	PCS	values	by	the	
media	white	point	and	then	using	the	relative	rendering	BToD1Tag.	

9.2.46 calibrationDateTimeTag	

Tag	signature:	‘calt’	(63616C74h).	

Permitted	tag	type:	dateTimeType.	

Profile	calibration	date	and	time.	This	allows	applications	and	utilities	to	verify	if	this	profile	matches	a	
vendor’s	profile	and	how	recently	calibration	has	been	performed.	

9.2.47 charTargetTag	

Tag	signature:	‘targ’	(74617267h).	

Permitted	tag	type:	utf8Type	or	utf8ZipType.	

This	tag	contains	the	name	of	the	registered	characterization	data	set,	or	it	contains	the	measurement	
data	 for	 a	 characterization	 target.	 This	 tag	 is	 provided	 so	 that	 distributed	 utilities	 can	 identify	 the	
underlying	characterization	data,	create	transforms	"on	the	fly"	or	check	the	current	performance	against	
the	original	device	performance.	

The	first	seven	characters	of	the	text	shall	identify	the	nature	of	the	characterization	data.	

If	the	first	seven	characters	are	"ICCHDAT",	then	the	remainder	of	the	text	shall	be	a	single	space	followed	
by	the	Reference	Name	of	a	characterization	data	set	in	the	Characterization	Data	Registry	maintained	by	
ICC,	 and	 terminated	 with	 a	 NULL	 byte	 (00h).	 The	 Reference	 Name	 in	 the	 text	 shall	 match	 exactly	
(including	 case)	 the	 Reference	 Name	 in	 the	 registry,	 which	 may	 be	 found	 on	 the	 ICC	 website	
(http://www.color.org).	

If	the	first	seven	characters	match	one	of	the	identifiers	defined	in	an	ANSI	or	ISO	standard,	then	the	tag	
embeds	 the	 exact	 data	 file	 format	 defined	 in	 that	 standard.	 Each	 of	 these	 file	 formats	 contains	 an	
identifying	character	string	as	 the	 first	seven	characters	of	 the	 format,	allowing	an	external	parser	 to	
determine	which	data	 file	 format	 is	being	used.	This	provides	the	 facilities	to	 include	a	wide	range	of	
targets	using	a	variety	of	measurement	specifications	in	a	standard	manner.	

9.2.48 cicpTag	

Tag	signature:	‘cicp’	(63696370h)	

Permitted	tag	type:	cicpType	

This	tag	defines	Coding‐Independent	Code	Points	(CICP)	for	video	signal	type	identification.	

The	 colour	 encoding	 specified	 by	 the	 CICP	 tag	 content	 shall	 be	 equivalent	 to	 the	 data	 colour	 space	
encoding	represented	by	this	ICC	profile.	

NOTE	The	ICC	colour	transform	cannot	match	every	possible	rendering	of	a	CICP	colour	encoding.	

ICC.2:2023	

©	ICC	2023	–	All	rights	reserved	 55	

This	tag	may	be	present	when	the	data	colour	space	in	the	profile	header	is	RGB,	YCbCr,	or	XYZ,	and	the	
profile	class	in	the	profile	header	is	Input	or	Display.	The	tag	shall	not	be	present	for	other	data	colour	
spaces	or	profile	classes	indicated	in	the	profile	header.	

9.2.49 colorEncodingParamsTag	

Tag	Signature:	‘cept’	(63657074h).	

Tag	Type:	tagStructType	of	type	colorEncodingParamsStructure.	

The	colorEncodingParamsTag	 is	defined	using	a	colorEncodingParamsStructure.	Element	members	 in	
this	structure	are	assumed	to	be	overrides	of	parameters	assumed	by	the	encoding	reference	name.	

9.2.50 colorSpaceNameTag	

Tag	Signature:	'csnm'	(63736e6dh).	

Tag	Type:	utf8Type.	

This	tag	defines	the	reference	name	for	the	three	component	colour	encoding	when	the	profile	uniquely	
defines	all	the	necessary	parameters	for	the	encoding.	This	occurs	when	the	referenceNameTag	solely	
contains	the	text	“ISO	22028‐1”	(quotes	excluded).	

If	 the	referenceNameTag	does	not	solely	contain	 the	text	“ISO	22028‐1”	 then	the	colorSpaceNameTag	
shall	contain	the	same	text	as	the	referenceNameTag	(if	the	profile	is	present).	

9.2.51 colorantOrderTag	

Tag	signature:	’clro’	(636C726Fh).	

Permitted	tag	type:	colorantOrderType.	

This	tag	specifies	the	laydown	order	of	colorants	associated	with	the	data	colour	space	field	in	the	profile	
header	(see	7.2.8)	when	the	data	colour	space	field	is	either	an	xCLR	where	x	is	a	hexadecimal	value	from	
1	to	F,	or	has	a	signature	representation	of	“ncXXXX”	where	X	is	a	hexadecimal	value	from	1	to	FFFF.	

9.2.52 colorantOrderOutTag	

Tag	signature:	’cloo’	(636c6f6fh).	

Permitted	tag	type:	colorantOrderType.	

This	tag	specifies	the	laydown	order	of	colorants	associated	with	the	PCS	field	in	the	profile	header	(see	
7.2.8)	when	the	PCS	field	is	either	an	xCLR	where	x	is	a	hexadecimal	value	from	1	to	F,	or	has	a	signature	
representation	of	“ncXXXX”	where	X	is	a	hexadecimal	value	from	1	to	FFFF.	This	tag	is	used	for	DeviceLink	
profiles	only.	

9.2.53 colorantInfoTag	

Tag	signature:	'clin'	(636c696eh).	

Permitted	tag	type:	tagArrayType	with	an	array	type	identifier	of	‘cinf’	(63696e66h).	

This	tag	identifies	the	colorants	associated	with	the	data	colour	space	field	header	(see	7.2.8)	when	the	
data	colour	space	field	is	either	an	xCLR	where	x	is	a	hexadecimal	value	from	1	to	F,	or	has	a	signature	
representation	of	“ncXXXX”	where	X	is	a	hexadecimal	value	from	1	to	FFFF.	The	colorant	information	is	
provided	 as	 an	 array	 of	 colorantInfoStructure	 elements.	 Each	 colorantInfoStructure	 entry	 provides	 a	
name	 for	 the	 colorant	 and	 optionally	 colorimetric	 or	 spectral	 information.	 See	 12.2.2	 for	 a	 complete	
description	of	contents	and	usage	of	a	colorantInfoStructure.	

ICC.2:2023	

56	 ©	ICC	2023	–	All	rights	reserved	

9.2.54 colorantInfoOutTag	

Tag	signature:	‘clio’	(636C696fh).	

Permitted	tag	type:	tagArrayType	with	an	array	type	identifier	of	‘cinf’	(63696e66h).	

This	tag	identifies	the	colorants	associated	with	the	PCS	colour	space	field	header	(see	7.2.8)	when	the	
PCS	colour	space	field	is	either	an	xCLR	where	x	is	a	hexadecimal	value	from	1	to	F,	or	has	a	signature	
representation	of	“ncXXXX”	where	X	is	a	hexadecimal	value	from	1	to	FFFF.	The	colorant	information	is	
provided	 as	 an	 array	 of	 colorantInfoStructure	 elements.	 Each	 colorantInfoStructure	 entry	 provides	 a	
name	for	the	colorant	and	optionally	colorimetric	and/or	spectral	information.	See	12.2.2	for	a	complete	
description	of	contents	and	usage	of	a	colorantInfoStructure.	

This	tag	is	used	for	DeviceLink	profiles	only.	

9.2.55 colorimetricIntentImageStateTag	

Tag	signature:	‘ciis’	(63696973h).	

Permitted	tag	type:	signatureType.	

This	tag	is	fully	specified	by	ISO	15076‐1	colorimetricIntentImageStateTag.	

This	tag	indicates	the	image	state	of	PCS	colorimetry	produced	using	the	colorimetric	intent	transforms.	
If	present,	the	colorimetricIntentImageStateTag	shall	specify	one	of	the	ICC‐defined	image	states	shown	
in	Table	31	and	described	herein.	Other	image	state	specifications	are	reserved	for	future	ICC	use.	

The	notable	difference	between	usage	in	ISO	15076‐1	and	this	document	is	that	an	arbitrary	observer	
and	white	point	can	now	be	associated	with	 the	colorimetric	PCS	using	PCC	(see	6.3.2)	resulting	 in	a	
deprecation	of	the	chromaticAdaptationTag	defined	in	ISO	15076‐1.	Therefore,	colorimetry	for	each	of	
the	states	defined	by	this	tag	should	be	directly	encoded	without	the	need	for	chromatic	adaptation	in	the	
colorimetric	colour	transforms.	

NOTE	1	 When	the	state	of	the	image	colorimetry	represented	in	the	PCS	is	different	from	that	of	the	image	data	
in	 the	 file,	 the	 colorimetric	 intent	 image	 state	 includes	 the	 word	 "estimates".	 This	 will	 be	 the	 case	 when	
transformation	of	the	image	file	data	to	colorimetry	is	not	fully	deterministic.	

EXAMPLE	 If	 the	 spectral	 sensitivities	 of	 a	 digital	 camera	 sensor	 (or	 photographic	 film)	 are	 not	 a	 linear	
transform	of	the	CIE	XYZ	CMFs,	there	will	not	be	a	single	"correct"	transform	to	focal	plane	colorimetry.	

Table	31	—	colorimetricIntentImageStateTag	signatures	

Colorimetric	intent	image	state	 Signature	 Hexadecimal	
encoding	

scene	colorimetry	estimates	 'scoe'	 73636F65h	

scene	appearance	estimates	 'sape'	 73617065h	

focal	plane	colorimetry	estimates	 'fpce'	 66706365h	

reflection	hardcopy	original	colorimetry	 ‘rhoc’	 72686F63h	

reflection	print	output	colorimetry	 ‘rpoc’	 72706F63h	

The	tag	value	'scoe'	(scene	colorimetry	estimates)	shall	indicate	that	colorimetry	in	the	PCS	represents	
estimates	of	 the	 colorimetry	of	 the	 scene,	 as	 viewed	 from	 the	 capture	point.	With	 the	media‐relative	
colorimetric	intent,	the	colorimetry	is	relative	to	the	scene	encoding	maximum.	With	the	ICC‐absolute	
colorimetric	 intent,	 the	colorimetry	 is	relative	 to	 the	scene	adopted	white.	The	scene	colorimetry	can	
result	from	a	real	scene,	a	synthetically	generated	scene,	an	edited	scene,	or	some	combination	of	these,	
but	shall	be	interpreted	as	actual	scene	colorimetry	for	subsequent	processing.	

For	scene	colorimetry	estimates,	the	mediaWhitePointTag	is	populated	with	the	XYZ	tristimulus	values	
of	 the	scene	encoding	maximum	white,	normalized	to	be	relative	 to	 the	scene	adopted	white	(perfect	

ICC.2:2023	

©	ICC	2023	–	All	rights	reserved	 57	

diffuser),	 and	 then	 converted	 to	 the	 corresponding	 tristimulus	 values	 for	 the	 PCS	 white.	 The	 scene	
adopted	white	Y	value	 is	normalized	 to	1,0;	 the	mediaWhitePointTag	Y	 value	 is	 relative	 to	 the	 scene	
adopted	white	Y	value	and	can	be	larger	than	1,0.	

NOTE	2	 The	un‐normalized	adopted	white	values	are	stored	in	the	illuminant	field	in	the	viewing	conditions	tag.	

The	tag	value	'sape'	(scene	appearance	estimates)	shall	indicate	that	colorimetry	in	the	PCS	represents	
estimates	of	the	appearance	of	the	scene,	as	viewed	from	the	capture	point,	fully	adapted	to	the	ISO	3664	
P2	 viewing	 conditions.	With	 the	media	 relative	 colorimetric	 intent,	 the	 corresponding	 colorimetry	 is	
relative	 to	 the	 scene	 encoding	 maximum	 white.	 With	 the	 ICC‐absolute	 colorimetric	 intent,	 the	
corresponding	colorimetry	is	relative	to	the	scene	adopted	white.	The	scene	appearance	estimates	may	
result	from	a	real	scene,	a	synthetically	generated	scene,	an	edited	scene,	or	some	combination	of	these,	
but	 shall	be	 interpreted	as	 scene	appearance	estimates	 for	an	actual	 scene	 in	subsequent	processing.	
When	this	image	state	is	specified,	the	ISO	3664	P2	viewing	conditions	shall	be	specified	in	the	spectral	
viewing	conditions	tag.	

For	scene	appearance	estimates,	the	mediaWhitePointTag	is	populated	with	the	XYZ	tristimulus	values	
of	 the	scene	encoding	maximum	white,	normalized	to	be	relative	 to	 the	scene	adopted	white	(perfect	
diffuser),	and	then	converted	to	the	corresponding	tristimulus	values	for	the	PCS	white	point	defined	in	
the	 spectral	 viewing	 conditions	 tag.	 The	 scene	 adopted	 white	 Y	 value	 is	 normalized	 to	 1,0;	 the	
mediaWhitePointTag	Y	value	is	relative	to	the	scene	adopted	white	Y	value	and	can	be	larger	than	1,0.	

The	 tag	 value	 'fpce'	 (focal	 plane	 colorimetry	 estimates)	 shall	 indicate	 that	 colorimetry	 in	 the	 PCS	
represents	estimates	of	the	colorimetry	of	the	light	present	at	the	focal	plane	of	a	camera	(digital	or	film).	
With	 the	 media	 relative	 colorimetric	 intent,	 the	 colorimetry	 is	 relative	 to	 the	 focal‐plane	 encoding	
maximum	white.	With	the	ICC‐absolute	colorimetric	intent,	the	colorimetry	is	relative	to	the	focal	plane	
adopted	white.	The	focal	plane	colorimetry	may	result	from	a	real	scene,	a	synthetically	generated	scene,	
an	edited	scene,	or	some	combination	of	these,	but	shall	be	 interpreted	as	focal	plane	colorimetry	for	
subsequent	 processing.	When	 this	 colorimetric	 intent	 image	 state	 is	 specified,	 the	 actual	 focal	 plane	
viewing	conditions,	including	the	adopted	white,	shall	be	specified	in	the	spectral	viewing	conditions	tag.	

For	 focal	plane	colorimetry	estimates,	 the	mediaWhitePointTag	 is	populated	with	 the	XYZ	tristimulus	
values	of	the	focal	plane	encoding	maximum	white,	normalized	to	be	relative	to	the	focal	plane	adopted	
white	(perfect	diffuser),	and	then	converted	to	the	corresponding	tristimulus	values	for	the	PCS	white	
point	(if	required).	The	focal	plane	adopted	white	Y	value	is	normalized	to	1,0;	the	mediaWhitePointTag	
Y	value	is	relative	to	the	focal	plane	adopted	white	Y	value	and	can	be	larger	than	1,0.	

NOTE	3	 The	 effects	 of	 any	 optics	 in	 or	 attached	 to	 the	 camera	 are	 included	 in	 the	 focal	 plane	 colorimetry	
estimates;	this	includes	lens	flare	and	filters.	

NOTE	4	 The	 un‐normalized	 adopted	 white	 values	 are	 stored	 in	 the	 illuminant	 field	 in	 the	 spectral	 viewing	
conditions	tag.	

The	tag	value	'rhoc'	(reflection	hardcopy	original	colorimetry)	shall	indicate	that	colorimetry	in	the	PCS	
represents	 the	colorimetry	of	a	 reflection	hardcopy	original	 that	has	been	digitally	scanned.	With	 the	
media	relative	colorimetric	intent,	the	colorimetry	is	normalized	relative	to	the	scan	condition	encoding	
maximum	white.	With	 the	 ICC‐absolute	 colorimetric	 intent,	 the	 colorimetry	 is	 relative	 to	 the	 perfect	
reflecting	diffuser.	When	this	colorimetric	intent	image	state	is	specified,	the	scan	illumination	conditions,	
including	the	adopted	white,	shall	be	specified	in	the	spectral	viewing	conditions.	

NOTE	5	 The	 un‐normalized	 adopted	 white	 values	 are	 stored	 in	 the	 illuminant	 field	 in	 the	 spectral	 viewing	
conditions	tag.	

The	 tag	 value	 'rpoc'	 (reflection	 print	 output	 colorimetry)	 shall	 indicate	 that	 colorimetry	 in	 the	 PCS	
represents	 the	colorimetry	of	 reflection	print	output.	With	 the	media	 relative	colorimetric	 intent,	 the	
colorimetry	 is	normalized	relative	 to	 the	print	medium	white	point,	measured	under	 the	actual	print	
viewing	conditions.	With	the	ICC‐absolute	colorimetric	intent,	the	colorimetry	is	relative	to	the	perfect	
reflecting	diffuser	after	chromatic	adaptation.	When	this	colorimetric	intent	image	state	is	specified,	the	

ICC.2:2023	

58	 ©	ICC	2023	–	All	rights	reserved	

print	 viewing	 conditions,	 including	 the	 adopted	 white,	 shall	 be	 specified	 in	 the	 spectral	 viewing	
conditions	tag.	

NOTE	6	 The	 un‐normalized	 adopted	 white	 values	 are	 stored	 in	 the	 illuminant	 field	 in	 the	 spectral	 viewing	
conditions	tag.	

9.2.56 copyrightTag	

Tag	signature:	‘cprt’	(63707274h).	

Permitted	tag	types:	multiLocalizedUnicodeType,	textType,	utf8Type.	

This	tag	contains	the	text	copyright	information	for	the	profile.	

9.2.57 customToStandardPccTag	

Tag	signature:	'c2sp'	(63327370h).	

Permitted	Tag	types:	multiProcessElementsType	

This	 tag	provides	 the	 transform	needed	to	convert	 from	the	colorimetry	defined	by	the	observer	and	
illuminant	 defined	 in	 the	 spectralViewingConditionsTag	 to	 the	 colorimetry	 defined	 by	 the	 CIE	 1931	
Standard	Colorimetric	Observer	with	a	D50	illuminant.	The	multiProcessElementsType	structure	shall	
define	a	sequence	of	one	or	more	transforms	that	performs	this	conversion.	

The	number	of	both	the	input	and	output	channels	of	the	transform	shall	be	three.	

9.2.58 cxfTag	

Tag	signature:	‘CxF	’	(43784620).	

Permitted	tag	type:	utf8Type,	utf8ZipType.	

This	tag	contains	a	Color	Exchange	Format	file.	The	CxF/X	file	contains	the	characterization	target	and	
corresponding	measurement	data.	The	CxF/X	file	is	an	XML	document	and	shall	be	encoded	as	specified	
by	ISO	17972‐1.	The	CxF/X	specification	requires	that	UTF‐8	be	used.	

The	cxfTag	shall	contain	the	characterization	set	and	measurement	data	used	to	create	the	profile.	The	
tag	may	contain	any	other	data	that	conforms	to	the	CxF/X	specification.	

9.2.59 deviceMfgDescTag	

Tag	signature:	‘dmnd’	(646D6E64h).	

Permitted	tag	type:	multiLocalizedUnicodeType.	

Structure	 containing	 invariant	 and	 localizable	 versions	 of	 the	 device	 manufacturer	 for	 display.	 The	
content	of	this	structure	is	described	in	10.2.15.	

9.2.60 deviceModelDescTag	

Tag	signature:	‘dmdd’	(646D6464h).	

Permitted	tag	type:	multiLocalizedUnicodeType.	

Structure	containing	invariant	and	localizable	versions	of	the	device	model	for	display.	The	content	of	
this	structure	is	described	in	10.2.15.	

9.2.61 directionalAToB0Tag	

Tag	signature:	‘dAB0’	(64414230	h).	

Permitted	tag	types:	multiProcessElementsType.	

ICC.2:2023	

©	ICC	2023	–	All	rights	reserved	 59	

This	tag	defines	the	transform	to	achieve	perceptual	intent	rendering	in	relation	to	viewing	angles	and	
relative	position	of	a	viewing	area.	Specifically,	it	describes	the	colour	transform	from	viewing	angle	and	
relative	 position	 of	 the	 viewing	 area,	 and	 Device	 or	 Colour	 Encoding	 to	 the	 colorimetric‐based	 PCS	
specified	by	the	PCS	field	in	the	profile	header.	

This	use	of	this	tag	is	not	defined	when	the	PCS	field	in	the	profile	header	is	set	to	zero.	

The	number	of	input	channels	to	the	multiProcessElementsType‐based	tag	shall	be	four	plus	the	number	
of	 channels	 implied	by	 the	colorSpace	signature	 in	 the	profile	header.	The	order	and	encoding	of	 the	
directional	 information	and	device	channels	provided	to	 the	multiProcessElementsType	are	shown	in	
Table	32.	

	

	

	

	

	

	

Table	32	—	Directional	device	channel	encoding	

Input	
channel	
index	

Channel	identification	 Encoding	type	

0	 Viewing	azimuth	angle	Φr	 azimuthNumber	

1	 Viewing	zenith	angle	θr	 zenithNumber	

2	 Relative	Horizontal	Position	rx	 horizontalType	

3	 Relative	Vertical	Position	ry	 verticalType	

4	 Device	channel	0	 		

…	 …	 		

4+N	 Device	channel	N−1	 		

The	output	channels	are	defined	by	the	encoding	implied	by	the	PCS	field	in	the	profile	header.	

9.2.62 directionalAToB1Tag	

Tag	signature:	‘dAB1’	(64414231h).	

Permitted	tag	types:	multiProcessElementsType.	

This	 tag	 defines	 the	 transform	 to	 achieve	media‐relative	 colorimetric	 intent	 rendering	 in	 relation	 to	
viewing	angles	and	relative	position	of	a	viewing	area.	Specifically,	it	describes	the	colour	transform	from	
viewing	 angle	 and	 relative	 position	 of	 the	 viewing	 area,	 and	 Device	 or	 Colour	 Encoding	 to	 the	
colorimetric‐based	PCS	specified	by	the	PCS	field	in	the	profile	header.	

This	use	of	this	tag	is	not	defined	when	the	PCS	field	in	the	profile	header	is	set	to	zero.	

The	number	of	input	channels	to	the	multiProcessElementsType‐based	tag	shall	be	four	plus	the	number	
of	 channels	 implied	by	 the	colorSpace	signature	 in	 the	profile	header.	The	order	and	encoding	of	 the	
directional	 information	and	device	channels	provided	to	 the	multiProcessElementsType	are	shown	in	
Table	32.	

The	output	channels	are	defined	by	the	encoding	implied	by	the	PCS	field	in	the	profile	header.	

ICC.2:2023	

60	 ©	ICC	2023	–	All	rights	reserved	

If	this	tag	is	not	present	then	relative	directional‐based	colorimetric	processing	shall	be	performed	by	
using	the	absolute	colorimetric	directionalAToB3Tag	and	then	adjusting	the	colorimetric	PCS	values	by	
the	media	white	point.	

9.2.63 directionalfAToB2Tag	

Tag	signature:	‘dAB2’	(64414232h).	

Permitted	tag	types:	multiProcessElementsType.	

This	tag	defines	the	transform	to	achieve	saturation	intent	rendering	in	relation	to	viewing	angles	and	
relative	position	of	a	viewing	area.	Specifically,	it	describes	the	colour	transform	from	viewing	angle	and	
relative	 position	 of	 the	 viewing	 area,	 and	 Device	 or	 Colour	 Encoding	 to	 the	 colorimetric‐based	 PCS	
specified	by	the	PCS	field	in	the	profile	header.	

This	use	of	this	tag	is	not	defined	when	the	PCS	field	in	the	profile	header	is	set	to	zero.	

The	number	of	input	channels	to	the	multiProcessElementsType‐based	tag	shall	be	four	plus	the	number	
of	 channels	 implied	by	 the	colorSpace	signature	 in	 the	profile	header.	The	order	and	encoding	of	 the	
directional	 information	and	device	channels	provided	to	 the	multiProcessElementsType	are	shown	in	
Table	32.	

The	output	channels	are	defined	by	the	encoding	implied	by	the	PCS	field	in	the	profile	header.	

9.2.64 directionalAToB3Tag	

Tag	signature:	‘dAB3’	(64414233h).	

Permitted	tag	types:	multiProcessElementsType.	

This	 tag	defines	 the	 transform	 to	achieve	absolute	 intent	 rendering	 in	 relation	 to	viewing	angles	and	
relative	position	of	a	viewing	area.	Specifically,	it	describes	the	colour	transform	from	viewing	angle	and	
relative	 position	 of	 the	 viewing	 area,	 and	 Device	 or	 Colour	 Encoding	 to	 the	 colorimetric‐based	 PCS	
specified	by	the	PCS	field	in	the	profile	header.	

This	use	of	this	tag	is	not	defined	when	the	PCS	field	in	the	profile	header	is	set	to	zero.	

The	number	of	input	channels	to	the	multiProcessElementsType‐based	tag	shall	be	four	plus	the	number	
of	 channels	 implied	by	 the	colorSpace	signature	 in	 the	profile	header.	The	order	and	encoding	of	 the	
directional	 information	and	device	channels	provided	to	 the	multiProcessElementsType	are	shown	in	
Table	32.	

The	output	channels	are	defined	by	the	encoding	implied	by	the	PCS	field	in	the	profile	header.	

If	this	tag	is	not	present	then	relative	directional‐based	colorimetric	processing	shall	be	performed	by	
using	the	relative	colorimetric	directionalAToB1Tag	and	then	adjusting	the	colorimetric	PCS	values	by	
the	media	white	point.	

9.2.65 directionalBToA0Tag	

Tag	signature:	‘dBA0’	(64424130	h).	

Permitted	tag	types:	multiProcessElementsType.	

This	tag	defines	the	transform	to	achieve	perceptual	intent	rendering	in	relation	to	viewing	angles	and	
relative	position	of	a	viewing	area.	Specifically,	it	describes	the	colour	transform	from	viewing	angle	and	
relative	position	of	the	viewing	area,	and	colorimetric‐based	PCS	specified	by	the	PCS	field	in	the	profile	
header	to	Device	or	Colour	Encoding.	

This	use	of	this	tag	is	not	defined	when	the	PCS	field	in	the	profile	header	is	set	to	zero.	

The	number	of	input	channels	to	the	multiProcessElementsType‐based	tag	shall	be	four	plus	the	number	
of	channels	defined	by	the	encoding	implied	by	the	PCS	field	in	the	profile	header.	The	order	and	encoding	
of	the	directional	information	and	device	channels	provided	to	the	multiProcessElementsType	are	shown	
in	Table	33.	

ICC.2:2023	

©	ICC	2023	–	All	rights	reserved	 61	

Table	33	—	Directional	colorimetric	encoding	

Input	
channel	
index	

Channel	identification	 Encoding	type	

0	 Viewing	azimuth	angle	Φr	 azimuthNumber	

1	 Viewing	zenith	angle	θr	 zenithNumber	

2	 Relative	Horizontal	Position	rx	 horizontalNumber	

3	 Relative	Vertical	Position	ry	 verticalNumber	

4	 PCS	channel	0	 		

…	 …	 		

4+N	 PCS	channel	N−1	 		

The	output	channels	shall	be	the	number	of	device	channels	defined	by	the	colorSpace	signature	in	the	
profile	header.	

9.2.66 directionalBToA1Tag	

Tag	signature:	‘dBA1’	(64424131h).	

Permitted	tag	types:	multiProcessElementsType.	

This	 tag	 defines	 the	 transform	 to	 achieve	media‐relative	 colorimetric	 intent	 rendering	 in	 relation	 to	
viewing	angles	and	relative	position	of	a	viewing	area.	Specifically,	it	describes	the	colour	transform	from	
viewing	angle	and	relative	position	of	the	viewing	area,	and	colorimetric‐based	PCS	specified	by	the	PCS	
field	in	the	profile	header	to	Device	or	Colour	Encoding.	

This	use	of	this	tag	is	not	defined	when	the	PCS	field	in	the	profile	header	is	set	to	zero.	

The	number	of	input	channels	to	the	multiProcessElementsType‐based	tag	shall	be	four	plus	the	number	
of	channels	defined	by	the	encoding	implied	by	the	PCS	field	in	the	profile	header.	The	order	and	encoding	
of	the	directional	information	and	device	channels	provided	to	the	multiProcessElementsType	are	shown	
in	Table	33.	

The	 number	 of	 output	 channels	 shall	 be	 the	 number	 of	 device	 channels	 defined	 by	 the	 colorSpace	
signature	in	the	profile	header.	

If	this	tag	is	not	present	then	relative	directional‐based	colorimetric	processing	shall	be	performed	by	
first	 adjusting	 the	 colorimetric	 PCS	 values	 by	 the	 media	 white	 point	 and	 then	 using	 the	 absolute	
colorimetric	directionalBToA3Tag.	

9.2.67 directionalBToA2Tag	

Tag	signature:	‘dBA2’	(64424132h).	

Permitted	tag	types:	multiProcessElementsType.	

This	tag	defines	the	transform	to	achieve	saturation	intent	rendering	in	relation	to	viewing	angles	and	
relative	position	of	a	viewing	area.	Specifically,	it	describes	the	colour	transform	from	viewing	angle	and	
relative	position	of	the	viewing	area,	and	colorimetric‐based	PCS	specified	by	the	PCS	field	in	the	profile	
header	to	Device	or	Colour	Encoding.	

This	use	of	this	tag	is	not	defined	when	the	PCS	field	in	the	profile	header	is	set	to	zero.	

The	number	of	input	channels	to	the	multiProcessElementsType‐based	tag	shall	be	four	plus	the	number	
of	channels	defined	by	the	encoding	implied	by	the	PCS	field	in	the	profile	header.	The	order	and	encoding	
of	the	directional	information	and	device	channels	provided	to	the	multiProcessElementsType	are	shown	
in	Table	33.	

ICC.2:2023	

62	 ©	ICC	2023	–	All	rights	reserved	

The	 number	 of	 output	 channels	 shall	 be	 the	 number	 of	 device	 channels	 defined	 by	 the	 colorSpace	
signature	in	the	profile	header.	

9.2.68 directionalBToA3Tag	

Tag	signature:	‘dBA3’	(64424133h).	

Permitted	tag	types:	multiProcessElementsType.	

This	 tag	defines	 the	 transform	 to	achieve	absolute	 intent	 rendering	 in	 relation	 to	viewing	angles	and	
relative	position	of	a	viewing	area.	Specifically,	it	describes	the	colour	transform	from	viewing	angle	and	
relative	position	of	the	viewing	area,	and	colorimetric‐based	PCS	specified	by	the	PCS	field	in	the	profile	
header	to	Device	or	Colour	Encoding.	

This	use	of	this	tag	is	not	defined	when	the	PCS	field	in	the	profile	header	is	set	to	zero.	

The	number	of	input	channels	to	the	multiProcessElementsType‐based	tag	shall	be	four	plus	the	number	
of	channels	defined	by	the	encoding	implied	by	the	PCS	field	in	the	profile	header.	The	order	and	encoding	
of	the	directional	information	and	device	channels	provided	to	the	multiProcessElementsType	are	shown	
in	Table	33.	

The	 number	 of	 output	 channels	 shall	 be	 the	 number	 of	 device	 channels	 defined	 by	 the	 colorSpace	
signature	in	the	profile	header.	

If	this	tag	is	not	present	then	relative	BRDF‐based	colorimetric	processing	shall	be	performed	by	first	
adjusting	the	colorimetric	PCS	values	by	the	media	white	point	and	then	using	the	relative	colorimetric	
brdfAToB1Tag.	

9.2.69 directionalBToD0Tag	

Tag	signature:	‘dBD0’	(64424430	h).	

Permitted	tag	types:	multiProcessElementsType.	

This	tag	defines	the	transform	to	achieve	perceptual	intent	rendering	in	relation	to	viewing	angles	and	
relative	position	of	a	viewing	area.	Specifically,	it	describes	the	colour	transform	from	viewing	angle	and	
relative	position	of	the	viewing	area,	and	the	spectral‐based	PCS	specified	by	the	spectralPCS	field	in	the	
profile	header	to	Device	or	Colour	Encoding.	

This	use	of	this	tag	is	not	defined	when	the	spectralPCS	field	in	the	profile	header	is	set	to	zero.	

The	number	of	input	channels	to	the	multiProcessElementsType‐based	tag	shall	be	four	plus	the	number	
of	channels	defined	by	the	encoding	implied	by	the	spectralPCS	field	in	the	profile	header.	The	order	and	
encoding	of	the	directional	information	and	device	channels	provided	to	the	multiProcessElementsType	
are	shown	in	Table	34.	

Table	34	—	Directional	spectral	encoding	

Input	channel	
index	

Channel	identification	 Encoding	type	

0	 Viewing	azimuth	angle	Φr	 azimuthNumber	

1	 Viewing	zenith	angle	θr	 zenithNumber	

2	 Relative	Horizontal	Position	rx	 horizontalNumber	

3	 Relative	Vertical	Position	ry	 verticalNumber	

4	 Spectral	PCS	channel	0	 		

…	 …	 		

4+N	 Spectral	PCS	channel	N−1	 		

ICC.2:2023	

©	ICC	2023	–	All	rights	reserved	 63	

The	number	of	output	channels	shall	be	the	number	of	channels	implied	by	the	colorSpace	signature	in	
the	profile	header.	

9.2.70 directionalBToD1Tag	

Tag	signature:	‘dBD1’	(64424431h).	

Permitted	tag	types:	multiProcessElementsType.	

This	 tag	 defines	 the	 transform	 to	 achieve	 relative	 intent	 rendering	 in	 relation	 to	 viewing	 angles	 and	
relative	position	of	a	viewing	area.	Specifically,	it	describes	the	colour	transform	from	viewing	angle	and	
relative	position	of	the	viewing	area,	and	the	spectral‐based	PCS	specified	by	the	spectralPCS	field	in	the	
profile	header	to	Device	or	Colour	Encoding.	

This	use	of	this	tag	is	not	defined	when	the	spectralPCS	field	in	the	profile	header	is	set	to	zero.	

The	number	of	input	channels	to	the	multiProcessElementsType‐based	tag	shall	be	four	plus	the	number	
of	channels	defined	by	the	encoding	implied	by	the	spectralPCS	field	in	the	profile	header.	The	order	and	
encoding	of	the	directional	information	and	device	channels	provided	to	the	multiProcessElementsType	
are	shown	in	Table	34.	

The	number	of	output	channels	shall	be	the	number	of	channels	implied	by	the	colorSpace	signature	in	
the	profile	header.	

If	 this	 tag	 is	 not	 present	 then	 relative	 BRDF‐based	 spectral	 processing	 shall	 be	 performed	 by	 first	
adjusting	 the	 spectral	 PCS	 values	 by	 the	 spectral	 media	 white	 point,	 and	 then	 using	 the	 absolute	
brdfDToB3Tag.	

9.2.71 directionalBToD2Tag	

Tag	signature:	‘bBD2’	(64424432h).	

Permitted	tag	types:	multiProcessElementsType.	

This	tag	defines	the	transform	to	achieve	saturation	intent	rendering	in	relation	to	viewing	angles	and	
relative	position	of	a	viewing	area.	Specifically,	it	describes	the	colour	transform	from	viewing	angle	and	
relative	position	of	the	viewing	area,	and	the	spectral‐based	PCS	specified	by	the	spectralPCS	field	in	the	
profile	header	to	Device	or	Colour	Encoding.	

This	use	of	this	tag	is	not	defined	when	the	spectralPCS	field	in	the	profile	header	is	set	to	zero.	

The	number	of	input	channels	to	the	multiProcessElementsType‐based	tag	shall	be	four	plus	the	number	
of	channels	defined	by	the	encoding	implied	by	the	spectralPCS	field	in	the	profile	header.	The	order	and	
encoding	of	the	directional	information	and	device	channels	provided	to	the	multiProcessElementsType	
are	shown	in	Table	34.	The	number	of	output	channels	shall	be	the	number	of	channels	implied	by	the	
colorSpace	signature	in	the	profile	header.	

The	output	channels	are	defined	by	the	encoding	implied	by	the	spectralPCS	field	in	the	profile	header.	

9.2.72 directionalBToD3Tag	

Tag	signature:	‘dBD3’	(64424433h).	

Permitted	tag	types:	multiProcessElementsType.	

This	tag	defines	the	transform	to	achieve	saturation	intent	rendering	in	relation	to	viewing	angles	and	
relative	position	of	a	viewing	area.	Specifically,	it	describes	the	colour	transform	from	viewing	angle	and	
relative	position	of	the	viewing	area,	and	the	spectral‐based	PCS	specified	by	the	spectralPCS	field	in	the	
profile	header	to	Device	or	Colour	Encoding.	

This	use	of	this	tag	is	not	defined	when	the	spectralPCS	field	in	the	profile	header	is	set	to	zero.	

The	number	of	input	channels	to	the	multiProcessElementsType‐based	tag	shall	be	four	plus	the	number	
of	channels	defined	by	the	encoding	implied	by	the	spectralPCS	field	in	the	profile	header.	The	order	and	

ICC.2:2023	

64	 ©	ICC	2023	–	All	rights	reserved	

encoding	of	the	directional	information	and	device	channels	provided	to	the	multiProcessElementsType	
are	shown	in	Table	34.	The	number	of	output	channels	shall	be	the	number	of	channels	implied	by	the	
colorSpace	signature	in	the	profile	header.	

If	this	tag	is	not	present	then	relative	BRDF‐based	spectral	processing	shall	be	performed	by	using	the	
relative	brdfDToB1Tag	and	then	adjusting	the	spectral	PCS	values	by	the	spectral	media	white	point.	

9.2.73 directionalDToB0Tag	

Tag	signature:	‘dDB0’	(64444230	h).	

Permitted	tag	types:	multiProcessElementsType.	

This	tag	defines	the	transform	to	achieve	perceptual	intent	rendering	in	relation	to	viewing	angles	and	
relative	position	of	a	viewing	area.	Specifically,	it	describes	the	colour	transform	from	viewing	angle	and	
relative	position	of	the	viewing	area,	and	Device	or	Colour	Encoding	to	the	spectral‐based	PCS	specified	
by	the	spectralPCS	field	in	the	profile	header.	

This	use	of	this	tag	is	not	defined	when	the	spectralPCS	tag	is	set	to	zero.	

The	number	of	input	channels	to	the	multiProcessElementsType‐based	tag	shall	be	four	plus	the	number	
of	 channels	 implied	by	 the	colorSpace	signature	 in	 the	profile	header.	The	order	and	encoding	of	 the	
directional	 information	and	device	channels	provided	to	 the	multiProcessElementsType	are	shown	in	
Table	32.	

The	output	channels	are	defined	by	the	encoding	implied	by	the	spectralPCS	field	in	the	profile	header.	

9.2.74 directionalDToB1Tag	

Tag	signature:	‘dDB1’	(64444231h).	

Permitted	tag	types:	multiProcessElementsType.	

This	tag	defines	the	transform	to	achieve	relative	 intent	rendering	 in	relationship	viewing	angles	and	
relative	position	of	a	viewing	area.	Specifically,	it	describes	the	colour	transform	from	viewing	angle	and	
relative	position	of	the	viewing	area,	and	Device	or	Colour	Encoding	to	the	spectral‐based	PCS	specified	
by	the	spectralPCS	field	in	the	profile	header.	

This	use	of	this	tag	is	not	defined	when	the	spectralPCS	tag	is	set	to	zero.	

The	number	of	input	channels	to	the	multiProcessElementsType‐based	tag	shall	be	four	plus	the	number	
of	 channels	 implied	by	 the	colorSpace	signature	 in	 the	profile	header.	The	order	and	encoding	of	 the	
directional	 information	and	device	channels	provided	to	 the	multiProcessElementsType	are	shown	in	
Table	32.	

The	output	channels	are	defined	by	the	encoding	implied	by	the	spectralPCS	field	in	the	profile	header.	

If	this	tag	is	not	present	then	relative	directional‐based	spectral	processing	shall	be	performed	by	using	
the	absolute	directionalDToB3Tag	and	then	adjusting	the	spectral	PCS	values	by	the	spectral	media	white	
point.	

9.2.75 directionalDToB2Tag	

Tag	signature:	‘dDB2’	(64444232h).	

Permitted	tag	types:	multiProcessElementsType.	

This	tag	defines	the	transform	to	achieve	saturation	intent	rendering	in	relation	to	viewing	angles	and	
relative	position	of	a	viewing	area.	Specifically,	it	describes	the	colour	transform	from	viewing	angle	and	
relative	position	of	the	viewing	area,	and	Device	or	Colour	Encoding	to	the	spectral‐based	PCS	specified	
by	the	spectralPCS	field	in	the	profile	header.	

This	use	of	this	tag	is	not	defined	when	the	spectralPCS	tag	is	set	to	zero.	

ICC.2:2023	

©	ICC	2023	–	All	rights	reserved	 65	

The	number	of	input	channels	to	the	multiProcessElementsType‐based	tag	shall	be	four	plus	the	number	
of	 channels	 implied	by	 the	colorSpace	signature	 in	 the	profile	header.	The	order	and	encoding	of	 the	
directional	 information	and	device	channels	provided	to	 the	multiProcessElementsType	are	shown	in	
Table	32.	

The	output	channels	are	defined	by	the	encoding	implied	by	the	spectralPCS	field	in	the	profile	header.	

9.2.76 directionalDToB3Tag	

Tag	signature:	‘dDB3’	(64444233h).	

Permitted	tag	types:	multiProcessElementsType.	

This	tag	defines	the	transform	to	achieve	saturation	intent	rendering	in	relation	to	viewing	angles	and	
relative	position	of	a	viewing	area.	Specifically,	it	describes	the	colour	transform	from	viewing	angle	and	
relative	position	of	the	viewing	area,	and	Device	or	Colour	Encoding	to	the	spectral‐based	PCS	specified	
by	the	spectralPCS	field	in	the	profile	header.	

This	use	of	this	tag	is	not	defined	when	the	spectralPCS	tag	is	set	to	zero.	

The	number	of	input	channels	to	the	multiProcessElementsType‐based	tag	shall	be	four	plus	the	number	
of	 channels	 implied	by	 the	colorSpace	signature	 in	 the	profile	header.	The	order	and	encoding	of	 the	
directional	 information	and	device	channels	provided	to	 the	multiProcessElementsType	are	shown	in	
Table	32.	

The	output	channels	are	defined	by	the	encoding	implied	by	the	spectralPCS	field	in	the	profile	header.	

If	this	tag	is	not	present	then	relative	directional‐based	spectral	processing	shall	be	performed	by	using	
the	relative	directionalDToB1Tag	and	then	adjusting	the	spectral	PCS	values	by	the	spectral	media	white	
point.	

9.2.77 DToB0Tag	

Tag	signature	‘D2B0’	(44324230h).	

Permitted	tag	types:	multiProcessElementsType.	

This	tag	has	a	different	behaviour	to	the	DToB0Tag	in	ISO	15076‐1.	It	defines	a	colour	transform	from	
device	to	a	spectrally‐based	PCS	(determined	by	the	spectralPCS	field	in	the	header).	When	this	tag	is	
present,	the	spectralPCS	header	field	shall	be	non‐zero.	This	tag	defines	a	device	to	spectrally‐based	PCS	
transform	with	the	spectral	PCS	defined	by	the	spectralPCS,	spectralRange,	and	biSpectralRange	fields	in	
the	profile	header.	It	supports	float32Number‐encoded	input	range,	output	range	and	transforms.	As	with	
the	AToB0Tag,	it	defines	a	transform	to	achieve	a	perceptual	rendering.	The	processing	mechanism	is	
described	in	multiProcessElementsType	(see	10.2.16).	

9.2.78 DToB1Tag	

Tag	signature	‘D2B1’	(44324231h).	

Permitted	tag	types:	multiProcessElementsType.	

This	tag	has	a	different	behaviour	to	the	DToB1Tag	in	ISO	15076‐1.	It	defines	a	colour	transform	from	
device	to	a	spectrally‐based	PCS	(determined	by	the	spectralPCS	field	in	the	header).	When	this	tag	is	
present,	the	spectralPCS	header	field	shall	be	non‐zero.	This	tag	defines	a	device	to	spectrally‐based	PCS	
transform	with	the	spectral	PCS	defined	by	the	spectralPCS,	spectralRange,	and	biSpectralRange	fields	in	
the	profile	header.	It	supports	float32Number‐encoded	input	range,	output	range	and	transforms.	As	with	
the	 AToB0Tag,	 it	 defines	 a	 transform	 to	 achieve	 a	 relative	 rendering.	 The	 processing	 mechanism	 is	
described	in	multiProcessElementsType	(see	10.2.16).	

If	this	tag	is	not	present	then	relative	colorimetric	processing	shall	be	performed	by	using	the	absolute	
DToB3Tag	and	then	adjusting	the	PCS	values	by	the	media	white	point.	

ICC.2:2023	

66	 ©	ICC	2023	–	All	rights	reserved	

9.2.79 DToB2Tag	

Tag	signature	‘D2B2’	(44324232h).	

Permitted	tag	types:	multiProcessElementsType.	

This	tag	has	a	different	behaviour	to	the	DToB2Tag	in	ISO	15076‐1.	It	defines	a	colour	transform	from	
device	to	a	spectrally‐based	PCS	(determined	by	the	spectralPCS	field	in	the	header).	When	this	tag	is	
present,	the	spectralPCS	header	field	shall	be	non‐zero.	This	tag	defines	a	device	to	spectrally‐based	PCS	
transform	with	the	spectral	PCS	defined	by	the	spectralPCS,	spectralRange,	and	biSpectralRange	fields	in	
the	profile	header.	It	supports	float32Number‐encoded	input	range,	output	range	and	transforms.	As	with	
the	AToB0Tag,	 it	defines	a	transform	to	achieve	a	saturation	rendering.	The	processing	mechanism	is	
described	in	multiProcessElementsType	(see	10.2.16).	

9.2.80 DToB3Tag	

Tag	signature	‘D2B3’	(44324233h).	

Permitted	tag	types:	multiProcessElementsType.	

This	tag	has	a	different	behaviour	to	the	DToB3Tag	in	ISO	15076‐1.	It	defines	a	colour	transform	from	
device	to	a	spectrally‐based	PCS	(determined	by	the	spectralPCS	field	in	the	header).	When	this	tag	is	
present,	the	spectralPCS	header	field	shall	be	non‐zero.	This	tag	defines	a	device	to	spectrally‐based	PCS	
transform	with	the	spectral	PCS	defined	by	the	spectralPCS,	spectralRange,	and	biSpectralRange	fields	in	
the	profile	header.	It	supports	float32Number‐encoded	input	range,	output	range	and	transforms.	As	with	
the	AToB0Tag,	 it	defines	a	 transform	to	achieve	an	absolute	 rendering.	The	processing	mechanism	 is	
described	in	multiProcessElementsType	(see	10.2.16).	

If	this	tag	is	not	present	then	absolute	colorimetric	processing	shall	be	performed	by	using	the	relative	
DToB1Tag	and	then	adjusting	the	PCS	values	by	the	media	white	point.	

9.2.81 gamutBoundaryDescription0Tag	

Tag	signature:	‘gbd0’	(67626430h).	

Permitted	tag	types:	gamutBoundaryDescriptionType.	

This	tag	defines	the	gamut	boundary	of	the	reference	medium	gamut	that	was	used	for	the	creation	of	the	
perceptual	transform.	

9.2.82 gamutBoundaryDescription1Tag	

Tag	signature:	‘gbd1’	(67626431h).	

Permitted	tag	types:	gamutBoundaryDescriptionType.	

This	tag	defines	the	gamut	boundary	for	the	relative	colorimetric	transform.	

9.2.83 gamutBoundaryDescription2Tag	

Tag	signature:	‘gbd2’	(67626432h).	

Permitted	tag	types:	gamutBoundaryDescriptionType.	

This	tag	defines	the	gamut	boundary	for	the	saturation	intent	transform.	

9.2.84 gamutBoundaryDescription3Tag	

Tag	signature:	‘gbd3’	(67626433h).	

Permitted	tag	types:	gamutBoundaryDescriptionType.	

ICC.2:2023	

©	ICC	2023	–	All	rights	reserved	 67	

This	tag	defines	the	gamut	boundary	for	the	absolute	colorimetric	intent	transform.	The	presence	of	the	
DToB3	 or	 BToD3	 tags	 may	 require	 a	 gamut	 boundary	 description	 that	 is	 different	 from	
gamutBoundaryDescription1Tag.	

9.2.85 HdrToSdr0Tag	

Tag	signature:	‘H2S0’	(48325330h)	

Permitted	tag	type:	multiProcessElementsType.	

This	 tag	defines	a	 transform	that	converts	extended	(HDR)	PCS	encoding	 to	non‐extended	(SDR)	PCS	
encoding	(which	may	involve	tone	mapping).	For	most	profile	classes	it	defines	a	transform	associated	
with	 the	 perceptual	 rendering	 intent.	 The	 processing	 mechanisms	 are	 described	 in	
multiProcessElementsType	(see	10.2.16).	

This	 tag	 represents	 an	 optional	 extension	 to	 the	 associated	 colorimetric	 rendering	 intent	 transform	
AToBxTag	 (see	8.14.2)	 or	MToBxTag	 (see	8.14.7)	 in	 a	profile	 for	 conversion	 from	HDR	 to	SDR	when	
needed.		The	use	of	this	tag	shall	be	indicated	when	bit	3	is	set	in	the	profile	flags	field	(bytes	44	to	47)	of	
the	profile	header	(see	7.2.13)	and	the	same	bit	is	NOT	set	in	the	immediately	succeeding	profile.	

When	this	tag	is	used	it	shall	be	applied	immediately	after	the	associated	A2BxTag	or	M2BxTag	is	applied	
and	before	PCS	processing	is	performed	going	into	any	transform	application	of	the	succeeding	connected	
profile.	

9.2.86 HdrToSdr1Tag	

Tag	signature:	‘H2S1’	(48325331h)	

Permitted	tag	type:	multiProcessElementsType.	

This	 tag	defines	a	 transform	that	converts	extended	(HDR)	PCS	encoding	 to	non‐extended	(SDR)	PCS	
encoding	(which	may	involve	tone	mapping).	For	most	profile	classes	it	defines	a	transform	associated	
with	 the	 relative	 rendering	 intent.	 The	 processing	 mechanisms	 are	 described	 in	
multiProcessElementsType	(see	10.2.16).	

This	 tag	 represents	 an	 optional	 extension	 to	 the	 associated	 colorimetric	 rendering	 intent	 transform	
AToBxTag	 (see	8.14.2)	 or	MToBxTag	 (see	8.14.7)	 in	 a	profile	 for	 conversion	 from	HDR	 to	SDR	when	
needed.		The	use	of	this	tag	shall	be	indicated	when	bit	3	is	set	in	the	profile	flags	field	(bytes	44	to	47)	of	
the	profile	header	(see	7.2.13)	and	the	same	bit	is	NOT	set	in	the	immediately	succeeding	profile.	

When	this	tag	is	used	it	shall	be	applied	immediately	after	the	associated	A2BxTag	or	M2BxTag	is	applied	
and	before	PCS	processing	is	performed	going	into	any	transform	application	of	the	succeeding	connected	
profile.	

9.2.87 HdrToSdr2Tag	

Tag	signature:	‘H2S2’	(48325332h)	

Permitted	tag	type:	multiProcessElementsType.	

This	 tag	defines	a	 transform	that	converts	extended	(HDR)	PCS	encoding	 to	non‐extended	(SDR)	PCS	
encoding	which	may	involve	tone	mapping.	For	most	profile	classes	it	defines	a	transform	associated	with	
the	saturation	rendering	intent.	The	processing	mechanisms	are	described	in	multiProcessElementsType	
(see	10.2.16).	

This	 tag	 represents	 an	 optional	 extension	 to	 the	 associated	 colorimetric	 rendering	 intent	 transform	
AToBxTag	 (see	8.14.2)	 or	MToBxTag	 (see	8.14.7)	 in	 a	profile	 for	 conversion	 from	HDR	 to	SDR	when	
needed.		The	use	of	this	tag	shall	be	indicated	when	bit	3	is	set	in	the	profile	flags	field	(bytes	44	to	47)	of	
the	profile	header	(see	7.2.13)	and	the	same	bit	is	NOT	set	in	the	immediately	succeeding	profile.	

When	this	tag	is	used	it	shall	be	applied	immediately	after	the	associated	A2BxTag	or	M2BxTag	is	applied	
and	before	PCS	processing	is	performed	going	into	any	transform	application	of	the	succeeding	connected	
profile.	

ICC.2:2023	

68	 ©	ICC	2023	–	All	rights	reserved	

9.2.88 HdrToSdr3Tag	

Tag	signature:	‘H2S3’	(48325333h)	

Permitted	tag	type:	multiProcessElementsType.	

This	 tag	defines	a	 transform	that	converts	extended	(HDR)	PCS	encoding	 to	non‐extended	(SDR)	PCS	
encoding	which	may	involve	tone	mapping.	For	most	profile	classes	it	defines	a	transform	associated	with	
the	absolute	rendering	intent.	The	processing	mechanisms	are	described	in	multiProcessElementsType	
(see	10.2.16).	

This	 tag	 represents	 an	 optional	 extension	 to	 the	 associated	 colorimetric	 rendering	 intent	 transform	
AToBxTag	 (see	8.14.2)	 or	MToBxTag	 (see	8.14.7)	 in	 a	profile	 for	 conversion	 from	HDR	 to	SDR	when	
needed.		The	use	of	this	tag	shall	be	indicated	when	bit	3	is	set	in	the	profile	flags	field	(bytes	44	to	47)	of	
the	profile	header	(see	7.2.13)	and	the	same	bit	is	NOT	set	in	the	immediately	succeeding	profile.	

When	this	tag	is	used	it	shall	be	applied	immediately	after	the	associated	A2BxTag	or	M2BxTag	is	applied	
and	before	PCS	processing	is	performed	going	into	any	transform	application	of	the	succeeding	connected	
profile.	

9.2.89 multiplexDefaultValuesTag	

Tag	signature:	‘mdv	’	(6d647620h).	

Permitted	tag	types:	uInt8ArrayType,	uInt16ArrayType,	float16ArrayType,	float32ArrayType”.	

The	multiplexDefaultValuesTag	 defines	 a	 default	multiplex	 channel	 value	 for	 each	multiplex	 channel	
identified	 in	 the	 multiplexTypeArrayTag.	 The	 default	 values	 shall	 be	 used	 for	 processing	 by	 the	
destination	 profile	 when	 the	 source	 profile	 does	 contain	 the	 multiplex	 channel	 identifier	 in	 its	
multiplexTypeArrayTag.	

The	encoding	of	integer	based	values	shall	be	interpreted	as	a	logical	0,0	to	1,0	when	processed	by	the	
MToA0Tag,	 MToB0Tag,	 MToB1Tag,	 MToB2Tag,	 MToB3Tag,	 MToS0Tag,	 MToS1Tag,	 MToS2Tag,	 or	
MToS3Tag.	 Floating	 point	 values	 shall	 be	 directly	 used	 by	 the	 MToA0Tag,	 MToB0Tag,	 MToB1Tag,	
MToB2Tag,	MToB3Tag,	MToS0Tag,	MToS1Tag,	MToS2Tag,	or	MToS3Tag.	

The	multiplexDefaultValuesTag	is	optional,	and	if	not	present	then	a	default	value	of	0,0	shall	be	used	for	
processing	when	source	multiplex	channel	data	are	not	available.	

The	number	of	array	entries	in	a	multiplexDefaultValuesTag	shall	be	the	same	as	the	number	of	multiplex	
colour	channels	indicated	by	the	signature	used	in	the	MCS	profile	header	field.	

9.2.90 multiplexTypeArrayTag	

Tag	signature:	‘mcta’	(6d637461h).	

Permitted	tag	type:	tagArray	of	utf8Type.	

tagArray	type	signature:	‘mcta’	(6d637461h).	

The	multiplexTypeArrayTag	defines	a	multiplex	channel	type	name	for	each	channel	in	the	MCS	for	the	
purpose	of	profile	connection.	

MCS	connection	between	profiles	is	performed	by	passing	multiplex	channel	values	between	channels	
that	have	identical	multiplex	channel	type	identifications.	Channels	with	a	multiplex	channel	type	in	the	
source	profile	that	are	not	in	the	destination	profile	are	ignored.	Channels	with	multiplex	channel	types	
in	the	destination	profile	that	are	not	in	the	source	profile	are	processed	with	a	multiplex	channel	value	
of	zero.	

NOTE	 The	order	of	multiplex	channel	identification	of	connected	profiles	does	not	need	to	be	the	same.	

Each	multiplex	channel	type	name	shall	be	unique	within	a	multiplexTypeArrayTag.	

ICC.2:2023	

©	ICC	2023	–	All	rights	reserved	 69	

Matching	of	multiplex	channel	type	names	shall	be	case	sensitive.	

The	number	of	sub‐tag	entries	in	a	multiplexTypeArrayTag	shall	be	the	same	as	the	number	of	multiplex	
colour	channels	indicated	by	the	signature	used	in	the	MCS	profile	header	field.	

9.2.91 measurementInfoTag	

Tag	signature:	‘minf’	(6d696e66h).	

Permitted	tag	type:	tagStructType	of	type	measurementInfo.	

This	tag	defines	measurement	conditions	 for	the	colorimetric	and/or	spectral	PCS	(defined	by	PCS	or	
spectralPCS	 fields	 of	 the	 profile	 header	 respectively).	 If	 this	 tag	 is	 not	 present	 the	 measurement	
conditions	shall	be	assumed	to	have	white	backing,	zero	flare,	0°:45°	geometry,	using	M1	illumination	
(ISO	13655).	

NOTE	 Unless	otherwise	specified,	 this	 tag	 is	 informative	only	with	no	CMM	processing	associated	with	 the	
contents	of	this	tag.	

9.2.92 measurementInputInfoTag	

Tag	signature:	‘miin’	(6d69696eh).	

Permitted	tag	type:	tagStructType	of	type	measurementInfo.	

This	tag	defines	measurement	information	for	measurements	related	to	values	on	input	side	of	abstract	
profiles	(defined	by	device	field	of	the	profile	header).	This	tag	may	therefore	only	be	present	if	the	profile	
is	an	abstract	profile.	

If	this	tag	is	not	present	the	measurement	conditions	shall	be	assumed	to	have	white	backing,	zero	flare,	
0°:45°	geometry,	using	M1	illumination	(ISO	13655).	

NOTE	 Unless	otherwise	specified,	 this	 tag	 is	 informative	only	with	no	CMM	processing	associated	with	 the	
contents	of	this	tag.	

9.2.93 mediaWhitePointTag	

Tag	signature:	‘wtpt’	(77747074h).	

Permitted	tag	type:	XYZType.	

This	tag,	which	is	used	for	generating	the	ICC‐absolute	colorimetric	intent,	specifies	the	chromatically	
adapted	nCIEXYZ	tristimulus	values	of	the	media	white	point.	 It	 is	used	for	generating	either	the	ICC‐
absolute	colorimetric	intent	using	an	ICC‐relative	intent	tag	when	an	ICC‐absolute	colorimetric	intent	tag	
is	not	used	or	the	ICC‐relative	colorimetric	intent	using	an	ICC‐absolute	intent	tag	when	an	ICC‐relative	
colorimetric	intent	tag	is	not	used.	When	the	measurement	data	used	to	create	the	profile	were	specified	
relative	to	an	adopted	white	with	a	chromaticity	different	from	that	of	the	PCS	adopted	white,	the	media	
white	point	nCIEXYZ	values	shall	be	adapted	to	be	relative	to	the	PCS	adopted	white	chromaticity	using	
the	chromaticAdaptationTag	matrix,	before	recording	in	the	tag.	

It	 is	recommended	that	the	PCC	(see	6.3.2)	be	configured	so	that	the	PCS	uses	the	measurement	data	
white	chromaticity.	

9.2.94 metadataTag	

Tag	signature:	‘meta’	(6d657461h).	

Permitted	tag	type:	dictType.	

This	tag	contains	a	set	of	metadata	items	for	the	profile.	

ICC.2:2023	

70	 ©	ICC	2023	–	All	rights	reserved	

The	names	 and	 values	 in	 the	 set	 shall	 be	 taken	 from	 the	 ICC	metadata	 registry,	 available	 on	 the	 ICC	
website	(http://www.color.org).	Display	elements	should	be	taken	from	the	metadata	registry,	as	this	
provides	common	localizations.	

9.2.95 MToA0Tag	

Tag	signature:	‘M2A0’	(4d324130h).	

Permitted	tag	type:	multiProcessElementsType.	

This	tag	provides	a	transformation	using	a	multiProcessElementsType	(see	10.2.16)	tag	that	converts	
from	multiplex	channel	values	to	device	channel	values.	

The	number	of	data	channels	provided	to	the	transform	shall	match	the	number	of	channels	associated	
with	 the	MCS	 field	 in	 the	Profile	 header.	MCS	 connection	 shall	 result	 in	multiplex	 channel	 values	 for	
channels	with	matching	multiplex	type	identifications	(see	9.2.85).	Channels	that	have	no	multiplex	type	
identification	match	with	the	source	MCS	shall	be	processed	so	the	output	has	the	same	value	as	the	input	
from	the	associated	channel	in	the	multiplexDefaultValuesTag	(see	9.2.84)	or	a	value	of	zero	multiplex	
channel	value	if	this	tag	is	not	present.	

The	number	of	data	channels	resulting	from	the	transform	shall	match	the	number	of	channels	defined	
by	the	deviceColor	field	in	the	Profile	header.	

	

9.2.96 MToB0Tag	

Tag	signature:	‘M2B0’	(4d324230h).	

Permitted	tag	type:	multiProcessElementsType.	

This	tag	provides	a	transformation	using	a	multiProcessElementsType	(see	10.2.16)	tag	that	converts	
from	multiplex	channel	values	to	colorimetric	PCS	values	for	the	perceptual	rendering	intent.	

The	number	of	data	channels	provided	to	the	transform	shall	match	the	number	of	channels	associated	
with	 the	MCS	 field	 in	 the	Profile	 header.	MCS	 connection	 shall	 result	 in	multiplex	 channel	 values	 for	
channels	with	matching	multiplex	type	identifications	(see	9.2.85).	Channels	that	have	no	multiplex	type	
identification	match	with	the	source	MCS	shall	be	processed	with	the	value	as	input	from	the	associated	
channel	in	the	multiplexDefaultValuesTag	(see	9.2.84)	or	a	zero	multiplex	channel	value	if	this	tag	is	not	
present.	

The	number	of	data	channels	resulting	from	the	transform	shall	match	the	number	of	channels	defined	
by	the	PCS	field	in	the	Profile	header.	

9.2.97 MToB1Tag	

Tag	signature:	‘M2B1’	(4d324231h).	

Permitted	tag	type:	multiProcessElementsType.	

This	tag	provides	a	transformation	using	a	multiProcessElementsType	(see	10.2.16)	tag	that	converts	
from	multiplex	channel	values	to	colorimetric	PCS	values	for	the	media‐relative	rendering	intent.	

The	number	of	data	channels	provided	to	the	transform	shall	match	the	number	of	channels	associated	
with	 the	MCS	 field	 in	 the	Profile	 header.	MCS	 connection	 shall	 result	 in	multiplex	 channel	 values	 for	
channels	with	matching	multiplex	type	identifications	(see	9.2.85).	Channels	that	have	no	multiplex	type	
identification	match	with	the	source	MCS	shall	be	processed	with	the	value	as	input	from	the	associated	
channel	in	the	multiplexDefaultValuesTag	(see	9.2.84)	or	a	zero	multiplex	channel	value	if	this	tag	is	not	
present.	

The	number	of	data	channels	resulting	from	the	transform	shall	match	the	number	of	channels	defined	
by	the	PCS	field	in	the	Profile	header.	

ICC.2:2023	

©	ICC	2023	–	All	rights	reserved	 71	

If	this	tag	is	not	present	then	relative	colorimetric	processing	shall	be	performed	by	using	the	absolute	
MToB3Tag	and	then	adjusting	the	PCS	values	by	the	media	white	point.	

9.2.98 MToB2Tag	

Tag	signature:	‘M2B2’	(4d324232h).	

Permitted	tag	type:	multiProcessElementsType.	

This	tag	provides	a	transformation	using	a	multiProcessElementsType	(see	10.2.16)	tag	that	converts	
from	multiplex	channel	values	to	colorimetric	PCS	values	for	the	saturation	rendering	intent.	

The	number	of	data	channels	provided	to	the	transform	shall	match	the	number	of	channels	associated	
with	 the	MCS	 field	 in	 the	Profile	 header.	MCS	 connection	 shall	 result	 in	multiplex	 channel	 values	 for	
channels	with	matching	multiplex	type	identifications	(see	9.2.85).	Channels	that	have	no	multiplex	type	
identification	match	with	the	source	MCS	shall	be	processed	with	the	value	as	input	from	the	associated	
channel	in	the	multiplexDefaultValuesTag	(see	9.2.84)	or	a	zero	multiplex	channel	value	if	this	tag	is	not	
present.	

The	number	of	data	channels	resulting	from	the	transform	shall	match	the	number	of	channels	defined	
by	the	PCS	field	in	the	Profile	header.	

9.2.99 MToB3Tag	

Tag	signature:	‘M2B3’	(4d324233h).	

Permitted	tag	type:	multiProcessElementsType.	

This	tag	provides	a	transformation	using	a	multiProcessElementsType	(see	10.2.16)	tag	that	converts	
from	multiplex	channel	values	to	colorimetric	PCS	values	for	the	absolute	rendering	intent.	

The	number	of	data	channels	provided	to	the	transform	shall	match	the	number	of	channels	associated	
with	 the	MCS	 field	 in	 the	Profile	 header.	MCS	 connection	 shall	 result	 in	multiplex	 channel	 values	 for	
channels	with	matching	multiplex	type	identifications	(see	9.2.85).	Channels	that	have	no	multiplex	type	
identification	match	with	the	source	MCS	shall	be	processed	with	the	value	as	input	from	the	associated	
channel	in	the	multiplexDefaultValuesTag	(see	9.2.84)	or	a	zero	multiplex	channel	value	if	this	tag	is	not	
present.	

The	number	of	data	channels	resulting	from	the	transform	shall	match	the	number	of	channels	defined	
by	the	PCS	field	in	the	Profile	header.	

If	this	tag	is	not	present	then	absolute	colorimetric	processing	shall	be	performed	by	using	the	relative	
MToB1Tag	and	then	adjusting	the	PCS	values	by	the	spectral	media	white	point.	

9.2.100 MToS0Tag	

Tag	signature:	‘M2S0’	(4d325330h).	

Permitted	tag	type:	multiProcessElementsType.	

This	tag	provides	a	transformation	using	a	multiProcessElementsType	(see	10.2.16)	tag	that	converts	
from	multiplex	channel	values	to	spectral	PCS	values	for	the	perceptual	rendering	intent.	

The	number	of	data	channels	provided	to	the	transform	shall	match	the	number	of	channels	associated	
with	 the	MCS	 field	 in	 the	Profile	 header.	MCS	 connection	 shall	 result	 in	multiplex	 channel	 values	 for	
channels	with	matching	multiplex	type	identifications	(see	9.2.85).	Channels	that	have	no	multiplex	type	
identification	match	with	the	source	MCS	shall	be	processed	with	the	value	as	input	from	the	associated	
channel	in	the	multiplexDefaultValuesTag	(see	9.2.84)	or	a	zero	multiplex	channel	value	if	this	tag	is	not	
present.	

The	number	of	data	channels	resulting	from	the	transform	shall	match	the	number	of	channels	defined	
by	the	spectralPCS	field	in	the	Profile	header.	

ICC.2:2023	

72	 ©	ICC	2023	–	All	rights	reserved	

9.2.101 MToS1Tag	

Tag	signature:	‘M2S1’	(4d325331h).	

Permitted	tag	type:	multiProcessElementsType.	

This	tag	provides	a	transformation	using	a	multiProcessElementsType	(see	10.2.16)	tag	that	converts	
from	multiplex	channel	values	to	spectral	PCS	values	for	the	media‐relative	rendering	intent.	

The	number	of	data	channels	provided	to	the	transform	shall	match	the	number	of	channels	associated	
with	 the	MCS	 field	 in	 the	Profile	 header.	MCS	 connection	 shall	 result	 in	multiplex	 channel	 values	 for	
channels	with	matching	multiplex	type	identifications	(see	9.2.85).	Channels	that	have	no	multiplex	type	
identification	match	with	the	source	MCS	shall	be	processed	with	the	value	as	input	from	the	associated	
channel	in	the	multiplexDefaultValuesTag	(see	9.2.84)	or	a	zero	multiplex	channel	value	if	this	tag	is	not	
present.	

The	number	of	data	channels	resulting	from	the	transform	shall	match	the	number	of	channels	defined	
by	the	spectralPCS	field	in	the	Profile	header.	

	

If	 this	 tag	 is	 not	 present	 then	 relative	 spectral	 processing	 shall	 be	 performed	 by	 using	 the	 absolute	
MToS3Tag	and	then	adjusting	the	PCS	values	by	the	spectral	media	white	point.	

9.2.102 MToS2Tag	

Tag	signature:	‘M2S2’	(4d325332h).	

Permitted	tag	type:	multiProcessElementsType.	

This	tag	provides	a	transformation	using	a	multiProcessElementsType	(see	10.2.16)	tag	that	converts	
from	multiplex	channel	values	to	spectral	PCS	values	for	the	saturation	rendering	intent.	

The	number	of	data	channels	provided	to	the	transform	shall	match	the	number	of	channels	associated	
with	 the	MCS	 field	 in	 the	Profile	 header.	MCS	 connection	 shall	 result	 in	multiplex	 channel	 values	 for	
channels	with	matching	multiplex	type	identifications	(see	9.2.85).	Channels	that	have	no	multiplex	type	
identification	match	with	the	source	MCS	shall	be	processed	with	the	value	as	input	from	the	associated	
channel	in	the	multiplexDefaultValuesTag	(see	9.2.84)	or	a	zero	multiplex	channel	value	if	this	tag	is	not	
present.	

The	number	of	data	channels	resulting	from	the	transform	shall	match	the	number	of	channels	defined	
by	the	spectralPCS	field	in	the	Profile	header.	

9.2.103 MToS3Tag	

Tag	signature:	‘M2S3’	(4d325333h).	

Permitted	tag	type:	multiProcessElementsType.	

This	tag	provides	a	transformation	using	a	multiProcessElementsType	(see	10.2.16)	tag	that	converts	
from	multiplex	channel	values	to	spectral	PCS	values	for	the	absolute	rendering	intent.	

The	number	of	data	channels	provided	to	the	transform	shall	match	the	number	of	channels	associated	
with	 the	MCS	 field	 in	 the	Profile	 header.	MCS	 connection	 shall	 result	 in	multiplex	 channel	 values	 for	
channels	with	matching	multiplex	type	identifications	(see	9.2.85).	Channels	that	have	no	multiplex	type	
identification	match	with	the	source	MCS	shall	be	processed	with	the	value	as	input	from	the	associated	
channel	in	the	multiplexDefaultValuesTag	(see	9.2.84)	or	a	zero	multiplex	channel	value	if	this	tag	is	not	
present.	

The	number	of	data	channels	resulting	from	the	transform	shall	match	the	number	of	channels	defined	
by	the	spectralPCS	field	in	the	Profile	header.	

ICC.2:2023	

©	ICC	2023	–	All	rights	reserved	 73	

If	 this	 tag	 is	 not	 present	 then	 absolute	 spectral	 processing	 shall	 be	 performed	 by	 using	 the	 relative	
MToB1Tag	and	then	adjusting	the	PCS	values	by	the	media	white	point.	

9.2.104 namedColorTag	

Tag	signature:	‘nmcl’	(6e6d636ch).	

Permitted	tag	type:	tagArrayType	as	a	namedColorArray.	

Named	colour	information	is	provided	as	a	namedColorArray	(see	13.2.1)	defined	as	a	tagArrayType	of	
tintZeroStructure	and	namedColorStructure	elements.	Information	related	to	a	named	colour	can	include	
PCS	and	as	optional	device	representation	for	a	list	of	named	colours.	The	first	element	in	the	array	shall	
be	a	tintZeroStructure	which	corresponds	to	colour	values	when	a	zero	tint	of	any	named	colour	is	used.	
See	12.2.7	for	a	complete	description	of	contents	and	usage	of	a	tintZeroStructure.	Succeeding	elements	
shall	be	defined	as	a	namedColorStructure.	See	12.2.5	for	a	complete	description	of	contents	and	usage	
of	a	namedColorStructure.	

	

9.2.105 	perceptualRenderingIntentGamutTag	

Tag	signature:	‘rig0’	(72696730h).	

Permitted	tag	type:	signatureType.	

There	 is	 only	 one	 standard	 reference	 medium	 gamut,	 defined	 according	 to	 ISO	12640‐3.	 When	 the	
signature	is	present,	the	specified	gamut	is	defined	to	be	the	reference	medium	gamut	for	the	PCS	side	of	
both	the	AToB0	and	BToA0	tags,	if	they	are	present.	If	this	tag	is	not	present	the	perceptual	rendering	
intent	reference	gamut	is	unspecified.	

The	standard	PCS	reference	medium	gamut	signatures	that	shall	be	used	are	listed	in	Table	35:	

Table	35	—	Perceptual	rendering	intent	gamut	

Name	 Signature	 Hexadecimal	
encoding	

Perceptual	reference	medium	gamut	 ‘prmg’	 70726D67h	

Because	the	perceptual	intent	is	the	typical	default	rendering	intent,	the	PRMG	should	be	considered	for	
this	rendering	intent.	

NOTE	 It	is	possible	that	the	ICC	will	define	other	signature	values	in	the	future.	

9.2.106 	profileDescriptionTag	

Tag	signature:	‘desc’	(64657363h).	

Permitted	tag	type:	multiLocalizedUnicodeType.	

Structure	containing	invariant	and	localizable	versions	of	the	profile	description	for	display.	The	content	
of	this	structure	is	described	in	10.2.15.	This	invariant	description	has	no	fixed	relationship	to	the	actual	
profile	disk	file	name.	

NOTE	 It	is	helpful	if	an	identification	of	the	characterization	data	that	was	used	in	the	creation	of	the	profile	is	
included	in	the	profileDescriptionTag	(e.g.	"based	on	CGATS	TR	001"[3]).	

9.2.107 	profileSequenceInformationTag	

Tag	signature:	‘psin’	(7073696eh).	

Permitted	tag	type:	tagArrayType	with	an	array	type	identifier	of	'pinf'	(70696e66h).	

ICC.2:2023	

74	 ©	ICC	2023	–	All	rights	reserved	

The	profileSequenceInformationTag	shall	contain	a	profileInfoArray	(see	13.2.2)	which	contains	an	array	
of	profileInfoStructure	structures	that	each	contain	information	about	a	profile.	The	successive	elements	
of	the	array	provide	a	description	of	the	successive	profiles	in	a	sequence	from	source	to	destination.	The	
profileSequenceInformation	tag	is	typically	used	with	the	DeviceLink	profile.	See	12.2.6	for	a	complete	
description	of	contents	and	usage	of	a	profileInfoStructure.	

9.2.108 	referenceNameTag	

Tag	Signature:	‘rfnm’	(72666e6dh).	

Tag	Type:	utf8Type.	

This	text	shall	contain	the	Reference	name	for	the	three	component	encoding.	This	may	correspond	to	
the	 Reference	 Name	 field	 in	 the	 3‐component	 colour	 encoding	 registry	 on	 the	 ICC	 website	
(http://www.color.org).	

When	the	three	component	colour	encoding	profile	utilizes	a	standardized	colour	space	encoding,	the	
elements	 of	 the	 colorEncodingParamsTag	 can	 be	 assumed	 and	 any	 elements	 existing	 in	 the	
colorEncodingParamsTag	shall	be	considered	as	overrides	of	the	default	values.	

If	the	referenceName	tag	solely	contains	the	text	“ISO	22028‐1”	(quotes	excluded)	then	the	profile	shall	
uniquely	 define	 the	 necessary	 parameters	 in	 the	 colorEncodingParamsTag.	 In	 this	 case	 the	
colorEncodingParamsTag	shall	be	included	and	all	elements	shall	be	fully	defined	for	the	colour	space.	
Additionally,	the	colorSpaceNameTag	shall	exist	and	define	the	assumed	reference	name	for	the	colour	
space	encoding.	

9.2.109 	saturationRenderingIntentGamutTag	

Tag	signature:	‘rig2’	(72696732h).	

Permitted	tag	type:	signatureType.	

This	tag	is	fully	specified	by	ISO	15076‐1.	

9.2.110 sourcePccTag	

Tag	signature:	‘sPCC’	(73504343h).	

Permitted	tag	types:	tagStructType	of	type	pccStructure.	

This	tag	defines	a	structure	containing	default	sub‐tag	overrides	of	the	default	PCC	data	and	tags	used	for	
connecting	the	source	PCS	(associated	with	the	data	header	field)	of	an	abstract	profile.		

These	 overrides	 shall	 be	 used	when	 a	 CMM	does	 not	 use	 external	 PCC	 overrides	 for	 the	 source	 PCS	
connection,	 and	 all	 requirements	 related	 to	 PCC	 processing	 shall	 equally	 apply	 to	 members	 of	 the	
pccStructure.	

Overrides	 provided	 by	 the	 pccStructure	 include:	 a	 definition	 of	 the	 illuminant	 colorimetry	 (normally	
provided	by	the	profile	header),	spectralViewingConditions	(providing	definitions	of	the	observer	and	
illuminant),	the	customToStandardPCC	transform,	and	the	standardToCustomPCC	transform.	

When	this	tag	is	not	present	in	an	abstract	profile	then	default	PCC	data	and	tags	associated	with	the	PCS	
field	of	the	profile	header	shall	be	used	for	PCS	connection	as	needed.	

9.2.111 	spectralViewingConditionsTag	

Tag	signature:	‘svcn’	(7376636eh).	

Permitted	Tag	types:	spectralViewingConditionsType.	

The	reference	colorimetric	observer	and	the	reference	illuminant	are	defined	in	this	tag.	When	this	tag	is	
present	it	describes	the	viewing	conditions	associated	with	both	the	colorimetric	and	spectral	PCS.	The	
content	of	this	structure	is	described	in	10.2.21.	

ICC.2:2023	

©	ICC	2023	–	All	rights	reserved	 75	

The	colorimetric	observer	type	and	illuminant	type	fields	of	this	structure	provide	information	that	shall	
be	used	for	the	purposes	of	matching	viewing	conditions	of	profiles	and	determining	the	PCS	conversion	
transforms	 to	 use	 for	 PCS	 processing.	 The	 correlated	 colour	 temperature	 field	 is	 also	 used	 for	 the	
purposes	of	matching	viewing	conditions	when	the	illuminant	type	value	is	“Black	body	defined	by	CCT	“	
(00000009h)	or	“Daylight	defined	by	CCT	“	(0000000Ah).	

9.2.112 	spectralWhitePointTag	

Tag	signature:	‘swpt’	(73777074h).	

Permitted	tag	type:	float16ArrayType,	float32ArrayType,	uInt16ArrayType.	

This	tag	is	required	when	the	spectral	PCS	is	non‐zero	to	define	the	PCS	for	the	white	point	associated	
with	the	data	in	the	profile.	The	number	of	entries	in	the	array	shall	match	the	number	of	entries	implied	
by	the	spectral	PCS	that	is	being	used.	

This	tag	is	used	when	converting	absolute	spectral	measurement	data	to	relative	spectral	measurement	
data	or	relative	spectral	measurement	data	to	absolute	spectral	measurement	data.	

9.2.113 	standardToCustomPccTag	

Tag	signature:	's2cp'	(73326370h).	

Permitted	Tag	types:	multiProcessElementsType.	

This	tag	provides	the	transform	needed	to	convert	from	the	colorimetry	defined	by	the1931	standard	
colorimetric	observer	with	a	D50	illuminant	to	the	colorimetry	defined	by	the	observer	and	illuminant	
defined	 in	 the	 spectralViewingConditionsTag.	The	multiProcessElementsType	 structure	 shall	 define	 a	
sequence	of	one	or	more	transforms	that	performs	this	conversion.	

The	number	of	both	the	input	and	output	channels	of	the	transform	shall	be	three.	

9.2.114 	surfaceMapTag	

Tag	signature:	‘smap’	(736d6170h).	

Permitted	tag	type:	embeddedNormalImageType	or	embeddedHeightImageType.	

This	tag	allows	a	normal	map	or	height	map	to	be	associated	with	surface	characteristics	of	all	colours	
specified	by	the	encapsulating	profile.	

9.2.115 	technologyTag	

Tag	signature:	‘tech’	(74656368h).	

Permitted	tag	type:	signatureType.	

Values	for	this	tag	are	specified	by	either	ISO	15076‐1	or	separate	profile	class	specifications.	

10 Tag	type	definitions	

10.1 General	

All	tags,	including	private	tags,	shall	have	as	their	first	four	bytes	a	tag	type	signature	to	identify	to	profile	
readers	what	kind	of	data	are	contained	within	a	tag.	This	encourages	tag	type	reuse	and	allows	profile	
parsers	to	reuse	code	when	tags	use	common	tag	types.	The	second	four	bytes	(4	to	7)	are	reserved	for	
future	expansion	and	shall	be	0	in	this	document.	The	tag	signature	for	all	private	tags	and	any	tag	type	
signature	not	defined	 in	Clause	10	shall	be	registered	with	 the	 ICC	(see	Clause	5)	 in	order	 to	prevent	
signature	collisions.	

ICC.2:2023	

76	 ©	ICC	2023	–	All	rights	reserved	

One	or	more	tag	types	are	associated	with	each	tag	defined	in	9.2.	The	tag	type	definitions	in	10.2	specify	
the	data	structure	that	shall	be	used	in	creating	the	contents	of	the	tag	data	element	for	each	tag.	

All	tag	data	elements,	including	those	of	private	tags,	shall	have	a	tag	type	signature	in	bytes	0	to	3.	Bytes	
4	to	7	are	reserved	for	future	expansion	and	shall	be	0.	

Any	private	tag	types	used	shall	be	registered	with	the	ICC	to	prevent	tag	type	signature	collisions.	

NOTE	 An	 effort	 was	made	 to	make	 sure	 1‐byte,	 2‐byte	 and	 4‐byte	 data	 lies	 on	 1‐byte,	 2‐byte	 and	 4‐byte	
boundaries,	respectively.	To	achieve	this,	extra	spaces	indicated	with	“reserved	for	padding”	are	included	in	some	
tag	type	definitions.	

Where	not	otherwise	 specified,	 value	0	 is	defined	 to	 imply	 “unknown	value”	 for	 all	 enumerated	data	
structures.	

Where	not	otherwise	specified,	 the	 least‐significant	16	bits	of	all	32‐bit	 flags	 in	 the	 type	descriptions	
below	are	reserved	for	use	by	the	ICC.	

In	many	of	the	tables	shown	in	Clause	10	the	following	syntax	is	used	in	the	encoding	column	for	the	
various	numeric	types	listed	in	4.2:	numeric	type[X]	where	X	represents	the	number	of	values	in	that	
position.	Where	[...]	is	used	the	number	of	values	depends	on	the	number	of	channels	in	the	tag	type	or	
number	of	entries	in	a	table.	

10.2 Specific	tag	type	listing	

10.2.1 cicpType	

The	cicpType	specifies	Coding‐independent	code	points	for	video	signal	type	identification.	The	byte	
assignment	and	encoding	shall	be	as	given	in	Table	32.	

Table	1	—	cicpType	encoding	

Byte
position

Field length
bytes

Content Encoded as

0 to 3 4 ’cicp’ (63696370h) type signature

4 to 7 4 Reserved, shall be set to 0

8 1 ColourPrimaries uInt8Number

9 1 TransferCharacteristics uInt8Number

10 1 MatrixCoefficients uInt8Number

11 1 VideoFullRangeFlag uInt8Number

	
	
The	fields	ColourPrimaries,	TransferCharacteristics,	MatrixCoefficients,	and	VideoFullRangeFlag	shall	be	
encoded	as	specified	in	Recommendation	ITU‐T	H.273.	Recommendation	ITU‐T	H.273	(ISO/IEC	23091‐
2)	provides	detailed	descriptions	of	the	code	values	and	their	interpretation.	

Widely	 used	 code	 point	 combinations	 are	 specified	 in	 Supplement	 19	 to	 ITU‐T	 H‐series	
Recommendations	(10/2019)	‐	Usage	of	video	signal	type	code	points.	

When	the	data	colour	space	in	the	profile	header	is	RGB	or	XYZ,	MatrixCoefficients	shall	be	0	(zero).	

When	the	data	colour	space	in	the	profile	header	is	YCbCr,	MatrixCoefficients	shall	be	non‐zero.	

NOTE	When	the	data	colour	space	in	the	profile	header	is	YCbCr,	a	MatrixCoefficients	value	representing	a	colour	
difference	encoding	can	be	used.	

EXAMPLES:	

ICC.2:2023	

©	ICC	2023	–	All	rights	reserved	 77	

Examples	for	RGB	colour	encodings.	

When	the	data	colour	space	in	the	profile	header	is	RGB,	VideoFullRangeFlag	is	often	1.	

Codes Interpretation

1-1-0-0 RGB narrow range representation specified in Recommendation ITU-R BT.709-6, Item 3.4

1-13-0-1 RGB full range colour encoding specified in IEC 61966-2-1 sRGB

9-14-0-0 R’G’B’ narrow range representation specified in Recommendation ITU-R BT.2020-2, Table 5

9-16-0-0 PQ R’G’B’ narrow range representation specified in Recommendation ITU-R BT.2100-2, Table 9

9-16-0-1 PQ R’G’B’ full range representation specified in Recommendation ITU-R BT.2100-2, Table 9

9-18-0-0 HLG R’G’B’ narrow range representation specified in Recommendation ITU-R BT.2100-2

9-18-0-1 HLG R’G’B’ full range representation specified in Recommendation ITU-R BT.2100-2

	
Examples	for	narrow‐range	YCbCr	or	ICtCp	colour	encodings.	

When	the	data	colour	space	in	the	profile	header	is	YCbCr,	VideoFullRangeFlag	is	usually	0	(zero).	

Codes Interpretation

1-1-1-0 YCbCr representation specified in Recommendation ITU-R BT.709-6, Item 3.4

9-14-9-0 Y’Cb’Cr’ narrow range representation specified in Recommendation ITU-R BT.2020-2, Table 5

9-16-9-0 PQ Y’Cb’Cr’ narrow range representation specified in Recommendation ITU-R BT.2100-2, Table 9

9-16-14-0 PQ ICtCp narrow range representation specified in Recommendation ITU-R BT.2100-2, Table 9

9-18-9-0 HLG Y’Cb’Cr’ narrow range representation specified in Recommendation ITU-R BT.2100-2

9-18-14-0 HLG ICtCp narrow range representation specified in Recommendation ITU-R BT.2100-2

10.2.2 colorantOrderType	

This	is	an	optional	tag	that	specifies	the	laydown	order	in	which	colorants	are	printed	on	an	n‐colorant	
device.	 The	 laydown	 order	 may	 be	 the	 same	 as	 the	 channel	 generation	 order	 listed	 in	 the	
colorantTableTag	or	the	channel	order	of	a	colour	encoding	type	such	as	CMYK,	in	which	case	this	tag	is	
not	needed.	When	this	is	not	the	case	(for	example,	ink‐towers	sometimes	use	the	order	KCMY),	this	tag	
may	be	used	to	specify	the	laydown	order	of	the	colorants.	When	used,	the	byte	assignments	shall	be	as	
given	in	Table	36.	

Table	36	—	colorantOrderType	encoding	

Byte	
position	

Field	length	
(bytes)	

Content	 Encoded	as…	

0	to	3	 4	 ‘clro’	(636c726fh)	type	signature	 		

4	to	7	 4	 Reserved,	shall	be	0	 		

8	to	11	 4	 Count	of	colorants	(n)	 uInt32Number	

12	 1	 Number	of	the	colorant	to	be	printed	first.	 uInt8Number	
13	to	
(11+n)	 n−1	 The	remaining	n−1 colorants	are	described	in	a	manner	

consistent	with	the	first	colorant uInt8Number	

The	size	of	the	array	is	the	same	as	the	number	of	colorants.	The	first	position	in	the	array	contains	the	
number	of	 the	 first	 colorant	 to	be	 laid	down,	 the	 second	position	contains	 the	number	of	 the	 second	
colorant	to	be	laid	down,	and	so	on,	until	all	colorants	are	listed.	

When	this	tag	is	used,	the	"count	of	colorants"	shall	be	in	agreement	with	the	data	colour	space	signature	
of	7.2.8.	

ICC.2:2023	

78	 ©	ICC	2023	–	All	rights	reserved	

10.2.3 curveType	

The	curveType	contains	a	4‐byte	count	value	and	a	one‐dimensional	table	of	2‐byte	values.	When	used,	
the	byte	assignment	shall	be	as	given	in	Table	37.	

Table	37	—	curveType	encoding	

Byte	
position	

Field	
length	
(bytes)	

Content	 Encoded	as…	

0	to	3	 4	 ‘curv’	(63757276h)	type	signature	 		

4	to	7	 4	 Reserved,	shall	be	0	 		

8	to	11	 4	
Count	value	specifying	the	number	of	entries	(n)	that	
follow	 uInt32Number

12	to	
end	

2	n	
Actual	curve	values	starting	with	the	zeroth	entry	and	
ending	with	the	entry	n−1	

uInt16Number	[...]a	

a			If	n	=	1	the	field	length	is	1	and	the	value	is	encoded	as	a	u8Fixed8Number.	

The	 curveType	 embodies	 a	 one‐dimensional	 function	 that	maps	 an	 input	 value	 in	 the	 domain	 of	 the	
function	to	an	output	value	in	the	range	of	the	function.	The	domain	and	range	values	shall	be	in	the	range	
of	0,0	to	1,0.	

—	 when	n	is	equal	to	0	an	identity	response	is	assumed;	

—	 when	n	 is	 equal	 to	 1,	 then	 the	 curve	 value	 shall	 be	 interpreted	 as	 a	 gamma	 value,	 encoded	 as	 a	
u8Fixed8Number.	Gamma	shall	be	interpreted	as	the	exponent	in	the	equation	y	=	xγ	and	not	as	an	
inverse;	

—	 when	n	is	greater	than	1	the	curve	values	(which	embody	a	sampled	one‐dimensional	function)	shall	
be	defined	as	follows:	

The	first	entry	shall	be	located	at	0,0,	the	last	entry	at	1,0,	and	intermediate	entries	shall	be	uniformly	
spaced	using	an	 increment	of	1,0	÷	(n	−	1).	These	entries	shall	be	encoded	as	uInt16Numbers	(i.e.	 the	
values	 represented	by	 the	entries	 in	 the	range	0,0	 to	1,0	shall	be	encoded	 in	 the	range	0	 to	65	535).	
Function	values	between	the	entries	shall	be	obtained	through	linear	interpolation.	

If	the	input	is	PCSXYZ,	1	+	(32	767/32	768)	shall	be	mapped	to	the	value	1,0.	If	the	output	is	PCSXYZ,	the	
value	1,0	shall	be	mapped	to	1	+	(32	767/32	768).	

10.2.4 dataType	

The	dataType	is	a	simple	data	structure	that	contains	either	UTF8	or	binary	data,	i.e.	utf8Type	data	or	
transparent	8‐bit	bytes.	The	length	of	the	string	is	obtained	by	subtracting	12	from	the	tag	data	element	
size	portion	of	the	tag	itself	as	defined	in	6.3.5.	If	this	type	is	used	for	UTF8	data,	it	shall	be	terminated	
with	a	00h	byte.	When	used,	the	byte	assignment	shall	be	as	given	in	Table	38.	

NOTE	 This	represents	an	extension	of	the	dataType	in	ISO	15076‐1	that	uses	ASCII	encoding	for	text.	Since	
ASCII	encoding	is	a	proper	subset	of	UTF8	encoding	the	use	of	ASCII	encoding	has	been	replaced	with	UTF8	encoding	
for	text‐based	data.	

Table	38	—	dataType	encoding	

Byte	
position	

Field	length	
(bytes)	

Content	

0	to	3	 4	 ‘data’	(64617461h)	type	signature	

4	to	7	 4	 Reserved,	shall	be	0	

ICC.2:2023	

©	ICC	2023	–	All	rights	reserved	 79	

8	to	11	 4	
Data	flag,	00000000h	represents	UTF8	data,	00000001h	represents	binary	
data,	other	values	are	reserved	for	future	use	

12	to	
end	

(tag	data	element	
size)	–	12	

A	string	of	((tag	data	element	size)	–	12)	UTF8	characters	or	((tag	data	
element	size)	–	12)	bytes	

10.2.5 dateTimeType	

This	dateTimeType	is	a	12‐byte	value	representation	of	the	time	and	date.	The	actual	values	are	encoded	
as	a	dateTimeNumber	described	in	4.2.1.2.	When	used,	the	byte	assignment	shall	be	as	given	in	Table	39.	

Table	39	—	dateTimeType	encoding	

Byte	
position	

Field	length	
(bytes)	

Content	 Encoded	as…	

0	to	3	 4	 ‘dtim’	(6474696Dh)	type	signature	 		

4	to	7	 4	 Reserved,	shall	be	0	 		

8	to	19	 12	 Date	and	time	 dateTimeNumber	

10.2.6 dictType	

The	dictTypeStructure	contains	a	dictionary	array	of	name‐value	pairs	with	each	name	being	uniquely	
associated	with	 a	 single	 value.	 Each	 name	 and	 value	 can	 optionally	 be	 associated	with	 localized	 text	
strings	for	display	purposes.	

The	byte	assignment	and	encoding	shall	be	as	given	in	Table	40	and	Table	41.	

Table	40	—	dictType	encoding	

Byte	
position	

Field	length	
(bytes)	

Content	 Encoded	as…	

0	to	3	 4	 ‘dict’	(64696374h)	type	signature	 		

4	to	7	 4	 Reserved,	shall	be	0	 		

8	to	11	 4	 Number	of	name‐value	records	(M)	 uInt32Number	

12	to	15	 4	 The	length	of	each	name‐value	record,	in	bytes	(N).	
The	value	shall	be	16,	24,	or	32	

uInt32Number	

16	to	
15+N	

N	 The	first	name‐value	record	 See	Table	41	

16+N	to	
15+M*N	

N*(M‐1)	 Additional	name‐value	records	as	needed	 		

16+M*N	
to	end	

(tag	data	element	
size)	–	(16+M*N)	

Storage	area	of	strings	of	Unicode	characters	and	
multiLocalizedUnicodeType	tags	

		

	

Table	41	—	Name‐Value	record	structure	

Byte	
position	

Field	length	
(bytes)	

Content	 Encoded	as…	

0	to	7	 8	 Name	string	position	of	UTF16	text	array	 positionNumber	

8	to	15	 8	 Value	string	position	of	UTF‐16	text	array	 positionNumber	

16	to	23	 8	 Display	name	element	position	of	
multiLocalizedUnicodeType	tag	element	

positionNumber	

ICC.2:2023	

80	 ©	ICC	2023	–	All	rights	reserved	

24	to	31	 8	 Display	value	element	position	of	
multiLocalizedUnicodeType	tag	element	

positionNumber	

The	value	in	the	length	of	each	name‐value	record	filed	(N)	shall	determine	how	many	entries	shall	be	
present	in	each	name‐value	record.	

—	 When	 the	 length	 value	 is	 16,	 each	 name‐value	 record	 shall	 be	 16	 bytes	 long	 and	 only	 the	
positionNumber	values	for	the	name	and	value	items	shall	be	present.	

—	 When	 the	 length	 value	 is	 24,	 each	 name‐value	 record	 shall	 be	 24	 bytes	 long	 and	 only	 the	
positionNumber	values	for	the	name,	value	and	display	name	items	shall	be	present.	

—	 When	the	length	value	is	32,	each	name‐value	record	shall	be	32	bytes	long	and	the	positionNumber	
values	for	the	name,	value,	display	name,	and	display	value	items	shall	be	present.	

In	the	general	use	of	dictType,	 there	may	be	no	 localized	values,	so	a	name‐value	record	 length	of	16	
would	be	appropriate.	 In	other	use	cases,	 localized	display	values	are	needed,	and	32	would	be	used.	
When	using	localization	for	value	fields	and	not	localizing	names,	use	32‐byte	name‐value	records	with	
the	display	name	positionNumber	fields	set	to	zero.	

A	name	string	shall	be	present	for	each	name‐value	record	and	name	string	positionNumber	size	shall	be	
greater	 than	 zero.	 Other	 data	 items	 referenced	 by	 the	 name‐value	 record	 are	 optional	 according	 to	
dictType,	although	particular	dictType	tag	definitions	my	impose	restrictions.	

Both	 the	 name	 string	 and	 value	 string	 shall	 be	 encoded	 as	 UTF‐16	 strings	 and	 shall	 NOT	 be	 zero	
terminated.	

Name	strings	shall	contain	at	least	one	Unicode	character,	and	the	string	contents	of	each	name	string	
shall	be	unique	within	a	dictTypeTag.	In	general,	a	zero‐length	string	(NUL)	is	valid	for	value	strings,	and	
shall	be	indicated	by	a	non‐zero	value	string	positionNumber	offset	and	a	value	string	positionNumber	
size	equal	to	zero.	

NOTE	 Value	string	=	NUL	may	be	restricted	for	particular	dictType	tags.	

A	positionNumber	offset	of	zero	shall	 indicate	that	the	corresponding	data	item	is	not	present	as	 it	 is	
undefined.	 	When	a	positionNumber	offset	is	zero,	the	meaning	of	the	corresponding	positionNumber	
size	is	undefined	and	shall	be	zero.	When	a	localized	display	name	or	display	value	positionNumber	is	
undefined	(positionNumber	offset	equal	to	zero),	no	translation	is	provided	for	the	corresponding	name	
string	or	value	string,	and	the	name	string	or	value	string	may	be	displayed.	This	 is	equivalent	to	 the	
behaviour	for	all	name	string	and	value	strings	when	the	name‐value	record	length	is	16.	

Alternatively,	a	defined	display	name	element	positionNumber	offset	 (non‐zero)	with	a	display	name	
element	positionNumber	size	equal	 to	zero	 indicates	that	the	name	string	 is	not	 intended	for	display.	
Similarly	a	defined	display	value	element	positionNumberOffset	(non‐zero)	with	a	display	value	element	
size	 equal	 to	 zero	 indicates	 that	 the	 value	 string,	 if	 provided,	 is	 not	 intended	 for	 display.	A	 localized	
display	value	may	be	provided	without	a	localized	display	name.	

Data	may	be	shared	between	the	name‐value	records	of	a	dictType	tag.	For	example,	the	offsets	for	the	
value	strings	can	be	identical,	as	well	as	the	offsets	for	display	value	elements	can	be	identical.	

The	 following	 pseudocode	 can	 be	 used	 to	 determine	 string	 validity	 where	 pos	 is	 value	 string	
positionNumber,	display	name	positionNumber,	or	display	value	positionNumber:	

If	pos.offset	==	0	

Then	item	is	undefined	(pos.length	can	be	ignored	when	pos.offset	is	zero)	

Else	

If	((pos.offset	>=	20+N*M)	&&	((pos.length>=	minSizeofItemType)	||	(Length=0))	&&	

(pos.offset	+	pos.length	<=end+1)	

																Then	item	is	defined.	

ICC.2:2023	

©	ICC	2023	–	All	rights	reserved	 81	

If	((item	==	value	string)	&&(pos.length==0)	

																Then	value	string	is	NUL	string	

Else	if	((item==	display	name	element)	&&	(pos.length)==0)	

																Then	name	string	is	not	for	display	use	and	no	display	name	is	provided	

Else	if	((item==display	name	element)	&&	pos.length)==0)	

																Then	value	string	is	not	for	display	use	and	no	display	value	is	provided	

Else	

																THROW_ERROR(“pos.offset	is	not	zero	and	pos.offset	or	pos.length	are	invalid”)	

Unless	otherwise	stated,	numbers	shall	be	encoded	in	the	string	value	as	follows:	

—	 A	number	shall	be	encoded	as	zero	or	more	blanks	and/or	tabs,	an	optional	‘+’	or	‘−‘	sign,	a	string	of	
decimal	digits	that	contain	one	decimal	point	‘.’,	and	an	optional	exponent	part.	The	exponent	part	
shall	consist	of	‘e’	or	‘E’,	an	optional	‘+’	or	‘−‘	sign,	and	one	or	two	decimal	digits.	The	exponent	shall	
indicate	a	power	of	10.	

—	 Multiple	numbers	stored	 in	a	 single	string	shall	be	separated	by	one	comma	 ‘,’	 between	adjacent	
numbers.	

10.2.7 embeddedHeightImageType	

This	type	provides	support	for	embedding	an	image	that	defines	a	height	map.	The	structure	encoding	
shall	be	as	given	in	Table	42.	

	

	

	

	

Table	42—	embeddedHeightImageType	encoding	

Byte	
position	

Field	
length	
(bytes)	

Content	 Encoded	as…	

0	to	3	 4	 ‘ehim’	(6568696dh)	type	signature	 		

4	to	7	 4	 Reserved,	shall	be	0	 		

8	to	11	 4	 Seamless	indicator	 See	Table	43	

12	to	15	 4	 Height	image	encoding	format	 See	Table	44	

16	to	19	 4	 Height	in	meters	of	minimum	pixel	value	 float32Number	

20	to	23	 4	 Height	in	meters	of	maximum	pixel	value	 float32Number	

24	to	
end	

(tag	data	
element	
size)	
−	24	

Height	image	data	 		

ICC.2:2023	

82	 ©	ICC	2023	–	All	rights	reserved	

The	displacement	image	data	can	be	created	so	that	when	the	displacement	map	is	tiled	across	a	surface	
it	has	no	visible	seams.	The	Seamless	indicator	field	indicates	if	the	displacement	image	is	seamless	and	
has	the	values	as	given	in	Table	43.	

Table	43	—	Displacement	image	type	

Image	Type	 Value	

Not	seamless	 0	

Seamless	 1	

The	image	data	shall	be	encoded	using	the	image	file	format	defined	by	the	Displacement	Image	Format	
field	which	can	have	the	values	given	in	Table	44.	

Table	44	—	Displacement	image	encoding	formats	

Image	Encoding	Format	 Value	

PNG	 0	

TIFF	 1	

The	contents	of	a	Displacement	Image	shall	be	encoded	as	greyscale	pixels	used	to	identify	the	height	of	
the	displacement.	A	pixel	with	a	minimum	pixel	value	shall	have	a	displacement	equal	to	the	height	in	
meters	defined	by	the	height	in	meters	of	minimum	pixel	value	field.	A	pixel	with	a	maximum	pixel	value	
shall	have	a	displacement	equal	to	the	height	in	meters	defined	by	the	height	in	meters	of	maximum	pixel	
value	field.	

The	physical	dimensions	of	the	pixels	in	the	image	shall	be	encoded	by	using	the	appropriate	encoding	
mechanisms	of	the	image‐encoding	format.	The	PNG	format	uses	the	pHYs	chunk	to	specify	the	physical	
size	 of	 the	 image.	 The	 TIFF	 format	 uses	 the	 perResolutionUnit,	 XResolution	 and	 YResolution	 tags	 to	
specify	the	physical	dimensions.	

10.2.8 embeddedNormalImageType	

This	type	provides	support	for	embedding	an	image	that	defines	a	normal	map.	The	structure	encoding	
shall	be	as	given	in	Table	45.	

	

Table	45	—	embeddedNormalImageType	encoding	

Byte	
position	

Field	
length	
(bytes)	

Content	 Encoded	as…	

0	to	3	 4	 ‘enim’	(656e696dh)	type	signature	 		

4	to	7	 4	 Reserved,	shall	be	0	 		

8	to	11	 4	 Seamless	indicator	 See	Table	46	

12	to	15	 4	 Normal	image	encoding	format	 See	Table	47	

16	to	
end	

(tag	data	
element	
size)	−	16	

Normal	image	data	 		

The	normal	image	data	can	be	created	so	that	when	the	normal	map	is	tiled	across	a	surface	it	has	no	
visible	seams.	The	Seamless	indicator	field	indicates	if	the	normal	image	is	seamless	and	has	the	values	
as	given	in	Table	46.	

Table	46	—	Normal	image	type	

ICC.2:2023	

©	ICC	2023	–	All	rights	reserved	 83	

Image	type	 Value	

Not	seamless	 0	

Seamless	 1	

The	image	data	shall	be	encoded	using	the	image	file	format	defined	by	the	Normal	Image	Format	field	
which	can	have	the	values	as	given	in	Table	47.	

Table	47	—	Normal	image	encoding	formats	

Image	encoding	format	 Value	

PNG	 0	

TIFF	 1	

The	contents	of	a	Normal	 Image	shall	be	encoded	as	RGB	pixels	used	 to	 identify	XYZ	direction	of	 the	
normal	vector	for	each	point	in	the	image.	RGBs	are	mapped	to	XYZ	directions	as	follows:	
1)	 red	maps	from	(0	−	maximum	red	value)	to	X	(−1,0	–	1,0);	

2)	 green	maps	from	(0	−	maximum	green	value)	to	Y	(−1,0	–	1,0);	

3)	 blue	maps	from	(0	−	maximum	blue	value)	to	Z	(0,0	–	1,0).	

Since	normals	point	towards	the	observer,	negative	values	of	Z	are	not	encoded.	The	maximum	values	for	
the	red,	green,	and	blue	channels	can	be	found	by	accessing	the	appropriate	fields	of	the	PNG	and	TIFF	
files.	The	length	of	the	vector	specified	by	the	XYZ	direction	shall	be	equal	to	1,0.	

The	physical	dimensions	of	the	pixels	in	the	image	shall	be	encoded	by	using	the	appropriate	encoding	
mechanisms	of	the	image‐encoding	format.	The	PNG	format	uses	the	pHYs	chunk	to	specify	the	physical	
size	 of	 the	 image.	 The	 TIFF	 format	 uses	 the	 perResolutionUnit,	 XResolution	 and	 YResolution	 tags	 to	
specify	the	physical	dimensions.	

10.2.9 float16ArrayType	

This	type	represents	an	array	of	generic	16‐bit	encoded	half‐precision	floating	point	values.	The	number	
of	values	is	determined	from	the	size	of	the	tag.	

When	used,	the	byte	assignment	and	encoding	shall	be	as	given	in	Table	48.	

Table	48	—	float16ArrayType	encoding	

Byte	position	 Field	length	
(bytes)	

Content	 Encoded	as…	

0..3	 4	 'fl16'	(666c3136h)	type	signature	 		

4..7	 4	 Reserved,	shall	be	0	 		

8..end	 2N	 An	array	of	16‐bit	half‐precision	floating	point	numbers	 float16Number[...]	

10.2.10 float32ArrayType	

This	type	represents	an	array	of	generic	32‐bit	encoded	single‐precision	floating	point	numbers	values.	
The	number	of	values	is	determined	from	the	size	of	the	tag.	

When	used,	the	byte	assignment	and	encoding	shall	be	as	given	in	Table	49.	

Table	49	—	float32ArrayType	encoding	

Byte	position	 Field	length	
(bytes)	

Content	 Encoded	as…	

0..3	 4	 'fl32'	(666c3332h)	type	signature	 		

ICC.2:2023	

84	 ©	ICC	2023	–	All	rights	reserved	

4..7	 4	 Reserved,	shall	be	0	 		

8..end	 4N	 An	array	of	32‐bit	single‐precision	floating	point	
numbers	

float32Number[...]	

10.2.11 	float64ArrayType	

This	type	represents	an	array	of	generic	64‐bit	encoded	double‐precision	floating	point	numbers	values.	
The	number	of	values	is	determined	from	the	size	of	the	tag.	

When	used,	the	byte	assignment	and	encoding	shall	be	as	given	in	Table	50.	

Table	50	—	float64ArrayType	encoding	

Byte	position	 Field	length	
(bytes)	

Content	 Encoded	as…	

0..3	 4	 'fl64'	(666c3634h)	type	signature	 		

4..7	 4	 Reserved,	shall	be	0	 		

8..end	 8N	 An	array	of	64‐bit	double‐precision	floating	point	numbers	 float64Number[...]

10.2.12 	gamutBoundaryDescriptionType	

The	GamutBoundaryDescriptionType	structure	encodes	a	collection	of	vertices	and	faces	that	describe	a	
gamut	boundary.	The	vertices	contain	a	PCS	value	and	an	optional	device	value.	The	faces	contain	a	list	
of	vertex	IDs.	The	order	of	the	vertex	IDs	shall	be	clockwise	when	viewed	from	outside	of	the	gamut.	The	
encoding	shall	be	as	shown	in	Table	51.	

Table	51	—	Gamut	boundary	description	encoding	

Byte	position	 Field	length	
(bytes)	

Content	 Encoded	as…	

0..3	 4	 'gbd	'	(67626420h)	type	signature	 		

4..7	 4	 Reserved,	shall	be	0	 		

8..9	 2	 Number	of	PCS	channels	(P)	 uInt16Number	

10..11	 2	 Number	of	device	channels	(Q)	 uInt16Number	

12..15	 4	 Number	of	vertices	(V)	 uInt32Number	

Table	51	(continued)	

Byte	position	 Field	length	
(bytes)	

Content	 Encoded	as…	

16..19	 4	 Number	of	faces	(F)	 uInt32Number	

20	..	19+F*12	 F*12	 Array	of	vertex	IDs	for	each	face	 uInt32Number	

20+F*12	..	
19+F*12+V*P*4	

V*P*4	 Array	of	PCS	coordinates	for	each	vertex	 float32Number	

20+F*12+V*P*4	
…	end	

V*Q*4	 Array	of	device	coordinates	for	each	vertex	 float32Number	

The	number	of	PCS	channels	(P)	shall	be	three	or	greater.	The	number	of	output	channels	(Q)	can	be	zero	
if	device	values	are	not	included.	

The	number	of	vertices	shall	be	four	or	greater.	

The	number	of	faces	shall	be	four	or	greater.	

ICC.2:2023	

©	ICC	2023	–	All	rights	reserved	 85	

The	array	of	vertex	IDs	is	an	array	that	specifies	the	IDs	of	each	vertex	of	each	face.	The	array	is	organized	
so	that	the	three	IDs	of	the	first	face	are	specified	first,	the	three	IDs	of	the	second	face	next,	and	so	on.	
The	ID	of	the	vertex	is	a	number	that	shall	be	between	0	and	V‐1.	This	ID	corresponds	to	the	order	of	the	
vertices	in	the	vertex	array.	

The	 array	 of	 vertex	 PCS	 values	 contains	 one	 PCS	 value	 for	 each	 vertex.	 The	 order	 of	 the	 vertices	
corresponds	with	the	vertex	IDS	from	the	face	description.	The	range	of	the	Output	Channels	is	the	range	
of	values	that	can	be	represented	as	float32Number.	

The	optional	array	of	device	values	contains	one	device	value	for	each	vertex.	The	order	of	the	vertices	
corresponds	with	the	vertex	IDS	from	the	face	description.	The	range	of	the	Output	Channels	is	the	range	
of	values	that	can	be	represented	as	float32Number.	

The	set	of	faces	should	constitute	a	closed	volume.	

NOTE	 Euler’s	formula	can	be	used	to	verify	that	the	volume	is	closed.	

Annex	B	provides	details	of	the	encoding	and	use	of	a	gamutBoundaryDescriptionType.	

10.2.13 	lutAToBType	

10.2.13.1 General	

This	structure	represents	a	colour	transform.	The	type	contains	up	to	five	processing	elements	that	are	
stored	in	the	AToBTag	tag	in	the	following	order:	a	set	of	one‐dimensional	curves;	a	3	×	3	matrix	with	
offset	 terms;	 a	 set	 of	 one‐dimensional	 curves;	 a	 multi‐dimensional	 lookup	 table;	 and	 a	 set	 of	 one‐
dimensional	output	curves.	Data	are	processed	using	these	elements	via	the	following	sequence:	

("A"	curves)	⇒	(multi‐dimensional	lookup	table,	CLUT)	⇒	("M"	curves)	⇒	(matrix)	⇒	("B"	curves).	

NOTE	 The	processing	elements	are	not	in	this	order	in	the	tag	to	allow	for	simplified	reading	and	writing	of	
profiles.	

It	 is	possible	 to	use	any	or	all	of	 these	processing	elements.	At	 least	one	processing	element	shall	be	
included.	Only	the	following	combinations	are	permitted:	

—	 B;	

—	 M,	Matrix,	B;	

—	 A,	CLUT,	B;	

—	 A,	CLUT,	M,	Matrix,	B.	

Other	combinations	may	be	achieved	by	setting	processing	element	values	to	identity	transforms.	The	
domain	and	range	of	the	A	and	B	curves	and	CLUT	are	defined	to	consist	of	all	real	numbers	between	0,0	
and	 1,0	 inclusive.	 The	 first	 entry	 is	 located	 at	 0,0,	 the	 last	 entry	 at	 1,0,	 and	 intermediate	 entries	 are	
uniformly	spaced	using	an	increment	of	1,0/(m−1).	For	the	A	and	B	curves	m	is	the	number	of	entries	in	
the	table.	For	the	CLUT	M	is	the	number	of	grid	points	along	each	dimension.	Since	the	domain	and	range	
of	the	tables	are	0,0	to	1,0	it	is	necessary	to	convert	all	device	values	and	PCSLAB	values	to	this	numeric	
range.	It	shall	be	assumed	that	the	maximum	value	in	each	case	is	set	to	1,0	and	the	minimum	value	to	
0,0	and	all	intermediate	values	are	linearly	scaled	accordingly.	

When	using	this	type,	it	is	necessary	to	assign	each	data	colour	space	component	to	an	input	and	output	
channel.	The	channel	order	shall	be	the	same	as	that	associated	with	the	colour	space	signature	(see	7.2.8	
and	7.2.9)	

When	used,	the	byte	assignment	and	encoding	shall	be	as	given	in	Table	52.	

Table	52	—	lutAToBType	encoding	

ICC.2:2023	

86	 ©	ICC	2023	–	All	rights	reserved	

Byte	position	 Field	length	
(bytes)	

Content	 Encoded	as…	

0	to	3	 4	 ‘mAB	’	(6D414220h)	[multi‐function	A‐to‐B	
table]	type	signature	

		

4	to	7	 4	 Reserved,	shall	be	0	 		
8	 1	 Number	of	Input	Channels	(i)	 uInt8Number	
9	 1	 Number	of	Output	Channels	(o)	 uInt8Number	
10	to	11	 2	 Reserved	for	padding,	shall	be	0	 		
12	to	15	 4	 Offset	to	first	"B"	curve	 uInt32Number	
16	to	19	 4	 Offset	to	matrix	 uInt32Number	
20	to	23	 4	 Offset	to	first	"M"	curve	 uInt32Number	
24	to	27	 4	 Offset	to	CLUT	 uInt32Number	
28	to	31	 4	 Offset	to	first	"A"	curve	 uInt32Number	
32	to	end	 Variable	 Data	 		

Each	curve	and	processing	element	shall	start	on	a	4‐byte	boundary.	To	achieve	this,	each	item	shall	be	
followed	by	up	to	three	00h	pad	bytes	as	needed.	

Curve	data	elements	may	be	shared.	For	example,	the	offsets	for	A,	B	and	M	curves	can	be	identical.	

The	offset	entries	(bytes	12	to	31)	point	to	the	various	processing	elements	found	in	the	tag.	The	offsets	
indicate	the	number	of	bytes	from	the	beginning	of	the	tag	to	the	desired	data.	If	any	of	the	offsets	are	
zero,	it	is	an	indication	that	processing	element	is	not	present	and	the	operation	is	not	performed.	

This	tag	type	may	be	used	independent	of	the	value	of	the	PCS	field	specified	in	the	header.	

10.2.13.2 "A"	curves	

The	number	of	"A"	curves	is	the	same	as	the	number	of	input	channels.	The	"A"	curves	may	only	be	used	
when	the	CLUT	is	used.	The	curves	are	stored	sequentially,	with	00h	bytes	used	for	padding	between	
them	 if	 needed.	Each	 "A"	 curve	 is	 stored	 as	 an	 embedded	 curveType	or	 a	parametricCurveType	 (see	
10.2.2	or	10.2.17).	The	length	is	as	indicated	by	the	specification	of	the	respective	curve	type.	Note	that	
the	entire	tag	type,	including	the	tag	type	signature	and	reserved	bytes,	is	included	for	each	curve.	

10.2.13.3 CLUT	

The	 CLUT	 appears	 as	 an	 n‐dimensional	 array,	 with	 each	 dimension	 having	 a	 number	 of	 entries	
corresponding	to	the	number	of	grid	points.	

	

The	CLUT	values	are	arrays	of	8‐bit	or	16‐bit	unsigned	values,	normalized	to	the	range	of	0	to	255	or	0	to	
65	535.	

The	CLUT	is	organized	as	an	i‐dimensional	array	with	a	variable	number	of	grid	points	in	each	dimension,	
where	 i	 is	 the	 number	 of	 input	 channels	 in	 the	 transform.	 The	 dimension	 corresponding	 to	 the	 first	
channel	 varies	 least	 rapidly	 and	 the	 dimension	 corresponding	 to	 the	 last	 input	 channel	 varies	most	
rapidly.	Each	grid	point	value	is	an	o‐integer	array,	where	o	is	the	number	of	output	channels.	The	first	
sequential	 integer	 of	 the	 entry	 contains	 the	 function	 value	 for	 the	 first	 output	 function,	 the	 second	
sequential	integer	of	the	entry	contains	the	function	value	for	the	second	output	function	and	so	on	until	
all	of	the	output	functions	have	been	supplied.	The	size	of	the	CLUT	in	bytes	is	(nGrid1	×	nGrid2	×…×	
nGridN)	×	number	of	output	channels	(o)	×	size	of	(channel	component).	

When	used,	the	byte	assignment	and	encoding	for	the	CLUT	shall	be	as	given	in	Table	53.	

Table	53	—	lutAToBType	CLUT	encoding	

Byte	position	
Field	length	
(bytes)	 Content	 Encoded	as…	

ICC.2:2023	

©	ICC	2023	–	All	rights	reserved	 87	

0	to	15	 16	

Number	of	grid	points	in	each	dimension.	
Only	the	first	i	entries	are	used,	where	i	is	
the	number	of	input	channels.	Unused	
entries	shall	be	00h.	

uInt8Number[16]	

16	 1	
Precision	of	data	elements	in	bytes.	
Shall	be	either	01h	or	02h.	 uInt8Number	

17	to	19	 3	 Reserved	for	padding,	shall	be	0	 		

20	to	end	 Variable	
CLUT	data	points	(arranged	as	described	in	
the	text).	

uInt8Number	[...]	or	
uInt16Number	[...]	

If	the	number	of	input	channels	does	not	equal	the	number	of	output	channels,	the	CLUT	shall	be	present.	

If	the	number	of	grid	points	in	a	one‐dimensional	curve,	or	in	a	particular	dimension	of	the	CLUT,	is	two,	
the	data	for	those	points	shall	be	set	so	that	the	correct	results	are	obtained	when	linear	interpolation	is	
used	to	generate	intermediate	values.	

10.2.13.4 										"M"	curves	

When	present,	the	number	of	"M"	curves	shall	be	the	same	as	the	number	of	output	channels.	The	curves	
are	 stored	 sequentially,	with	00h	bytes	used	 for	padding	between	 them	 if	needed.	Each	 "M"	 curve	 is	
stored	as	an	embedded	curveType	or	a	parametricCurveType	(see	10.2.2	or	10.2.17).	The	length	is	as	
indicated	by	the	specification	of	the	respective	curve	type.	Note	that	the	entire	tag	type,	including	the	tag	
type	signature	and	reserved	bytes,	is	included	for	each	curve.	The	"M"	curves	may	only	be	used	when	the	
matrix	is	used.	

ICC.2:2023	

88	 ©	ICC	2023	–	All	rights	reserved	

	

10.2.13.5 Matrix	

The	matrix	is	organized	as	a	3	×	4	array.	The	elements	appear	in	order	from	e1–e12.	The	matrix	elements	
are	each	s15Fixed16Numbers,	as	shown	in	Formula	(5):	

array	=	[e11,	e12,	…,	e1P,	e21,	e22,	…,	e2P,	…,	eQ1,	eQ2,	…,	eQP,	e1,	e2,	…,	eQ]	 (5)	

The	matrix	is	used	to	convert	data	to	a	different	colour	space,	according	to	Formula	(6):	

1 11 12 1 11

2 21 22 2 22

1 2

...

...

...

P

P

Q Q Q QP QP

Y e e e eX

Y e e e eX

Y e e e eX

	 (6)	

The	range	of	input	values	X1,	X2	and	X3	is	0,0	to	1,0.	The	resultant	values	Y1,	Y2	and	Y3	shall	be	clipped	to	
the	range	0,0	to	1,0	and	used	as	inputs	to	the	"B"	curves.	

10.2.13.6 “B"	curves	

The	number	of	"B"	curves	shall	be	the	same	as	the	number	of	output	channels.	The	curves	are	stored	
sequentially,	with	00h	bytes	used	for	padding	between	them	if	needed.	Each	"B"	curve	is	stored	as	an	
embedded	curveType	or	a	parametricCurveType	(see	10.2.2	or	10.2.17).	The	length	is	as	indicated	by	the	
specification	of	the	respective	curve	type.	Note	that	the	entire	tag	type,	including	the	tag	type	signature	
and	reserved	bytes,	are	included	for	each	curve.	

10.2.14 	lutBToAType	

10.2.14.1 General	

This	structure	represents	a	colour	transform.	The	type	contains	up	to	five	processing	elements	which	are	
stored	in	the	BToATag	in	the	following	order:	a	set	of	one‐dimensional	curves;	a	3	×	3	matrix	with	offset	
terms;	a	set	of	one‐dimensional	curves;	a	multi‐dimensional	lookup	table;	and	a	set	of	one‐dimensional	
curves.	Data	are	processed	using	these	elements	via	the	following	sequence:	

("B"	curves)	⇒	(matrix)	⇒	("M"	curves)	⇒	(multi‐dimensional	lookup	table,	CLUT)	⇒	("A"	curves).	

It	 is	possible	 to	use	any	or	all	of	 these	processing	elements.	At	 least	one	processing	element	shall	be	
included.	Only	the	following	combinations	are	permitted:	
—	 B;	

—	 B,	Matrix,	M;	

—	 B,	CLUT,	A;	

—	 B,	Matrix,	M,	CLUT,	A.	

Other	combinations	may	be	achieved	by	setting	processing	element	values	to	identity	transforms.	The	
domain	and	range	of	the	A	and	B	curves	and	CLUT	are	defined	to	consist	of	all	real	numbers	between	0,0	
and	 1,0	 inclusive.	 The	 first	 entry	 is	 located	 at	 0,0,	 the	 last	 entry	 at	 1,0,	 and	 intermediate	 entries	 are	
uniformly	spaced	using	an	increment	of	1,0/(m−1).	For	the	A,	M	and	B	curves	m	is	the	number	of	entries	
in	the	table.	For	the	CLUT	m	is	the	number	of	grid	points	along	each	dimension.	Since	the	domain	and	
range	of	the	tables	are	0,0	to	1,0	it	is	necessary	to	convert	all	device	values	and	PCSLAB	values	to	this	
numeric	range.	It	shall	be	assumed	that	the	maximum	value	in	each	case	is	set	to	1,0	and	the	minimum	
value	to	0,0	and	all	intermediate	values	are	linearly	scaled	accordingly.	

When	using	this	type,	it	is	necessary	to	assign	each	data	colour	space	component	to	an	input	and	output	
channel.	The	channel	order	shall	be	the	same	as	that	associated	with	the	colour	space	signature	(see	7.2.8	
and	7.2.9)	

ICC.2:2023	

©	ICC	2023	–	All	rights	reserved	 89	

When	used,	the	byte	assignment	and	encoding	shall	be	as	given	in	Table	54.	

Table	54	—	lutBToAType	encoding	

Byte	position	 Field	length	
(bytes)	

Content	 Encoded	as…	

0	to	3	 4	 ‘mBA’	(6D424120h)	[multi‐function	BToA	
table]	type	signature	

		

4	to	7	 4	 Reserved,	shall	be	0	 		
8	 1	 Number	of	Input	Channels	(i)	 uInt8Number	
9	 1	 Number	of	Output	Channels	(o)	 uInt8Number	
10‐11	 2	 Reserved	for	padding,	shall	be	0	 		
12	to	15	 4	 Offset	to	first	"B"	curve	 uInt32Number	
16	to	19	 4	 Offset	to	matrix	 uInt32Number	
20	to	23	 4	 Offset	to	first	"M"	curve	 uInt32Number	
24	to	27	 4	 Offset	to	CLUT	 uInt32Number	

28	to	31	 4	 Offset	to	first	"A"	curve	 uInt32Number	

32	to	end	 Variable	 Data	 		

Each	curve	and	processing	element	shall	start	on	a	4‐byte	boundary.	To	achieve	this,	each	item	may	be	
followed	by	up	to	three	00h	pad	bytes	as	needed.	

Curve	data	elements	may	be	shared.	For	example,	the	offsets	for	A,	B	and	M	curves	may	be	identical.	

The	offset	entries	(bytes	12	to	31)	point	to	the	various	processing	elements	found	in	the	tag.	The	offsets	
indicate	the	number	of	bytes	from	the	beginning	of	the	tag	to	the	desired	data.	If	any	of	the	offsets	are	
zero,	it	is	an	indication	that	processing	element	is	not	present	and	the	operation	is	not	performed.	

This	tag	type	shall	only	be	used	when	the	PCS	field	in	the	header	specifies	either	PCSXYZ	or	PCSLAB.	

10.2.14.2 "B"	curves	

The	number	of	"B"	curves	is	the	same	as	the	number	of	input	channels.	The	curves	are	stored	sequentially,	
with	 00h	 bytes	 used	 for	 padding	between	 them	 if	 needed.	 Each	 "B"	 curve	 is	 stored	 as	 an	 embedded	
curveType	 tag	 or	 a	 parametricCurveType	 (see	 10.2.2	 or	 10.2.17).	 The	 length	 is	 as	 indicated	 by	 the	
specification	of	the	curve	type.	Note	that	the	entire	tag	type,	including	the	tag	type	signature	and	reserved	
bytes,	is	included	for	each	curve.	

10.2.14.3 Matrix	

The	matrix	is	organized	as	a	3	×	4	array.	The	elements	of	the	matrix	appear	in	the	type	in	order	from	e1	
to	e12.	The	matrix	elements	are	each	s15Fixed16Numbers,	as	shown	in	Formula	(7):	

array	=	[e1,	e2,	e3,	e4,	e5,	e6,	e7,	e8,	e9,	e10,	e11,	e12]	 (7)	

The	matrix	is	used	to	convert	data	to	a	different	colour	space,	according	to	Formula	(8):	

1 1 2 3 1 10

2 4 5 6 2 11

3 7 8 9 3 12

Y e e e X e

Y e e e X e

Y e e e X e

	 (8)	

The	range	of	input	values	X1,	X2	and	X3	is	0,0	to	1,0.	The	resultant	values	Y1,	Y2	and	Y3	shall	be	clipped	to	
the	range	0,0	to	1,0	and	used	as	inputs	to	the	"M"	curves.	

The	matrix	is	permitted	only	if	the	number	of	output	channels,	or	"M"	curves,	is	three.	

ICC.2:2023	

90	 ©	ICC	2023	–	All	rights	reserved	

10.2.14.4 "M"	curves	

When	present,	the	number	of	"M"	curves	shall	be	the	same	as	the	number	of	input	channels.	The	curves	
are	 stored	 sequentially,	with	00h	bytes	used	 for	padding	between	 them	 if	needed.	Each	 "M"	 curve	 is	
stored	as	an	embedded	curveType	or	a	parametricCurveType	(see	10.2.2	or	10.2.17).	The	length	is	as	
indicated	by	the	specification	of	the	proper	curve	type.	Note	that	the	entire	tag	type,	including	the	tag	
type	signature	and	reserved	bytes,	are	included	for	each	curve.	The	"M"	curves	may	only	be	used	when	
the	matrix	is	used.	

10.2.14.5 CLUT	

The	 CLUT	 appears	 as	 an	 n‐dimensional	 array,	 with	 each	 dimension	 having	 a	 number	 of	 entries	
corresponding	to	the	number	of	grid	points.	

The	CLUT	values	are	arrays	of	8‐bit	or	16‐bit	unsigned	values,	normalized	to	the	range	of	0	to	255	or	0	to	
65	535.The	CLUT	is	organized	as	an	i‐dimensional	array	with	a	variable	number	of	grid	points	in	each	
dimension,	where	i	is	the	number	of	input	channels	in	the	transform.	The	dimension	corresponding	to	
the	first	channel	varies	least	rapidly	and	the	dimension	corresponding	to	the	last	input	channel	varies	
most	rapidly.	Each	grid	point	value	is	an	o‐integer	array,	where	o	is	the	number	of	output	channels.	The	
first	sequential	integer	of	the	entry	contains	the	function	value	for	the	first	output	function,	the	second	
sequential	integer	of	the	entry	contains	the	function	value	for	the	second	output	function	and	so	on	until	
all	of	the	output	functions	have	been	supplied.	The	size	of	the	CLUT	in	bytes	is	(nGrid1	×	nGrid2	×…×	
nGridN)	×	number	of	output	channels	(o)	×	size	of	(channel	component).	

When	used,	the	byte	assignment	and	encoding	for	the	CLUT	shall	be	as	given	in	Table	55.	

Table	55	—	lutBToAType	CLUT	encoding	

Byte	position	
Field	length	
(bytes)	 Content	 Encoded	as…	

0	to15	 16	

Number	of	grid	points	in	each	dimension.	
Only	the	first	i	entries	are	used,	where	i	is	
the	number	of	input	channels.	Unused	
entries	shall	be	00h.	

uInt8Number[16]	

16	 1	 Precision	of	data	elements	in	bytes.	
Shall	be	either	01h	or	02h.	

uInt8Number	

17	to	19	 3	 Reserved	for	padding.	 		

20	to	end	 Variable	
CLUT	data	points	(arranged	as	described	in	
the	text).	

uInt8Number	[...]	or	
uInt16Number	[...]	

If	the	number	of	grid	points	in	a	one‐dimensional	curve,	or	in	a	particular	dimension	of	the	CLUT,	is	two,	
the	data	for	those	points	shall	be	set	so	that	the	correct	results	are	obtained	when	linear	interpolation	is	
used	to	generate	intermediate	values.	

If	the	number	of	input	channels	does	not	equal	the	number	of	output	channels,	the	CLUT	shall	be	present.	

10.2.14.6 "A"	curves	

When	present,	the	number	of	"A"	curves	shall	be	the	same	as	the	number	of	output	channels.	The	"A"	
curves	may	only	be	used	when	the	CLUT	is	used.	The	curves	are	stored	sequentially,	with	00h	bytes	used	
for	 padding	 between	 them	 if	 needed.	 Each	 "A"	 curve	 is	 stored	 as	 an	 embedded	 curveType	 or	 a	
parametricCurveType	(see	10.2.2	or	10.2.17).	The	length	is	as	indicated	by	the	specification	of	the	proper	
curve	type.	Note	that	the	entire	tag	type,	including	the	tag	type	signature	and	reserved	bytes,	is	included	
for	each	curve.	

ICC.2:2023	

©	ICC	2023	–	All	rights	reserved	 91	

10.2.15 	measurementType	

This	 tag	 structure	 represents	 a	 backwards	 compatible	 extension	 of	 ISO	15076‐1	 with	 the	 same	 tag	
signature.	The	encoding	of	this	type	has	been	extended	from	the	measurementType	in	ISO	15076‐1.	An	
optional	element	encodes	the	measurement	condition,	and	additional	standard	 illuminants	have	been	
included.	

If	 the	encoded	tag	structure	length	is	only	36	bytes	then	the	value	for	the	measurement	type	shall	be	
assumed	to	be	zero.	

The	measurementType	information	refers	only	to	the	internal	profile	data	and	is	meant	to	provide	profile	
makers	an	alternative	to	the	default	measurement	specifications.	When	used,	the	byte	assignment	and	
encoding	shall	be	as	given	in	Table	56.	

Table	56	—	measurementType	structure	

Byte	
position	

Field	
length	
(bytes)	

Content	 Encoded	as…	

0	to	3	 4	 ‘meas’	(6D656173h)	type	signature	 		

4	to	7	 4	 Reserved,	shall	be	0	 		

8	to	11	 4	 Encoded	value	for	standard	observer	 see	Table	57	

12	to	23	 12	 nCIEXYZ	tristimulus	values	for	measurement	backing	 XYZNumber	

24	to	27	 4	 Encoded	value	for	measurement	geometry	 see	Table	58	

28	to	31	 4	 Encoded	value	for	measurement	flare	 see	Table	59	

32	to	35	 4	 Encoded	value	for	standard	illuminant	 see	Table	60	

36	to	39	

(optional)	

4	

(optional)	
Encoded	measurement	condition	(optional	extension)	 see	Table	61	

The	encoding	for	the	standard	observer	field	is	shown	in	Table	57.	

Table	57	—	Standard	observer	encodings	

Standard	observer	
Hexadecimal	
encoding	

Unknown	 00000000h	

CIE	1931	standard	colorimetric	observer	 00000001h	

CIE	1964	standard	colorimetric	observer	 00000002h	

The	encoding	for	the	measurement	geometry	field	is	shown	in	Table	58.	

Table	58	—	Measurement	geometry	encodings	

Geometry	 Hexadecimal	encoding	

Unknown	 00000000h	

0°:45°	or	45°:0°	 00000001h	

0°:d	or	d:0°	 00000002h	

The	encoding	for	the	measurement	flare	value	is	shown	in	Table	59,	and	is	equivalent	to	the	basic	numeric	
type	u16Fixed16Number	in	ISO	15076‐1:2010,	4.2.1.7.	

ICC.2:2023	

92	 ©	ICC	2023	–	All	rights	reserved	

Table	59	—	Measurement	flare	encodings	

Flare	 Hexadecimal	encoding	

0	(0	%)	 00000000h	
1,0	(or	100	%)	 00010000h	

The	 encoding	 for	 the	 standard	 illuminant	 field	 is	 shown	 in	Table	60.	 This	 represents	 an	 extension	of	
encodings	found	in	ISO	15076‐1.	

Table	60	—	Standard	illuminant	encodings	

Standard	illuminant	 Hexadecimal	encoding	

Custom	 00000000h	

D50	 00000001h	

D65	 00000002h	

D93	 00000003h	

F2	 00000004h	

D55	 00000005h	

A	 00000006h	

Equi‐Power	(E)	 00000007h	

F8	 00000008h	

Black	body	defined	by	CCT	 00000009h	

Daylight	defined	by	CCT	 0000000Ah	

B	 0000000Bh	

C	 0000000Ch	

F1	 0000000Dh	

F3	 0000000Eh	

F4	 0000000Fh	

F5	 00000010h	

F6	 00000011h	

F7	 00000012h	

F9	 00000013h	

F10	 00000014h	

F11	 00000015h	

F12	 00000016h	

The	encoding	for	the	optional	ISO	13655	measurement	condition	value	is	shown	in	Table	61.	If	the	length	
of	the	measurementInfo	tag	storage	is	less	than	40	then	the	measurementType	shall	be	assumed	to	be	
unknown	(00000000h).	

Table	61	—	ISO	13655	measurement	condition	encodings	

Type	 Hexadecimal	encoding	

Unknown	 00000000h	
M0	 00000001h	

M1	 00000002h	

M2	 00000003h	

M3	 00000004h	

ICC.2:2023	

©	ICC	2023	–	All	rights	reserved	 93	

10.2.16 	multiLocalizedUnicodeType	

This	tag	structure	contains	a	set	of	records	each	referencing	a	multilingual	Unicode	string	associated	with	
a	profile.	Each	string	is	referenced	in	a	separate	record	with	the	information	about	what	language	and	
region	the	string	is	for.	

The	byte	assignment	and	encoding	shall	be	as	given	in	Table	62.	

Note	that	the	fourth	field	of	this	tag,	the	record	size,	should,	for	the	time	being,	contain	the	value	12,	which	
corresponds	to	the	size	 in	bytes	of	each	record.	Any	code	that	needs	to	access	the	n‐th	record	should	
determine	the	record’s	offset	by	multiplying	n	by	the	contents	of	this	size	field	and	adding	16.	This	minor	
extra	effort	allows	for	future	expansion	of	the	record	encoding,	should	the	need	arise,	without	having	to	
define	a	new	tag	type.	

Multiple	strings	within	this	tag	may	share	storage	locations.	For	example,	en/US	and	en/UK	can	refer	to	
the	same	string	data.	

For	the	specification	of	Unicode,	see	The	Unicode	Standard[13]	published	by	The	Unicode	Consortium	or	
visit	http://www.unicode.org.	 For	 the	definition	of	 language	 code	and	 region	 codes,	 see	 ISO‐639	and	
ISO	3166.	The	Unicode	strings	in	storage	should	be	encoded	as	16‐bit	big‐endian,	UTF‐16BE,	and	should	
not	be	NULL	terminated.	

NOTE	 For	 additional	 clarification	 on	 the	 encodings	 used,	 see	 the	 ICC	 technical	 note	 01‐2002	 available	 on	
www.color.org.	

If	the	specific	record	for	the	desired	region	is	not	stored	in	the	tag,	the	record	with	the	same	language	
code	should	be	used.	If	the	specific	record	for	the	desired	language	is	not	stored	in	the	tag,	the	first	record	
in	the	tag	is	used	if	no	other	user	preference	is	available.	

Table	62	—	multiLocalizedUnicodeType	

Byte	position	
Field	length	
(bytes)	 Content	 Encoded	as…	

0	to	3	 4	 ‘mluc’	(0x6D6C7563)	type	signature	 		

4	to	7	 4	 Reserved,	shall	be	0	 		

8	to	11	 4	 Number	of	records	(n)	 uInt32Number	

12	to	15	 4	
Record	size:	the	length	in	bytes	of	every	record.	The	
value	is	12.	

0000000Ch	

16	to	17	 2	 First	record	language	code:	language	code	specified	in	
ISO‐639	

uInt16Number	

18	to	19	 2	
First	record	country	code:	region	code	specified	in	ISO	
3166	

uInt16Number	

20	to	23	 4	
First	record	string	length:	the	length	in	bytes	of	the	
string	

uInt32Number	

24	to	27	 4	
First	record	string	offset:	the	offset	from	the	start	of	
the	tag	to	the	start	of	the	string,	in	bytes	 uInt32Number	

28	to	
28	+	[12(n	−	1)]	−	
1	(or	15	+	12n)	

12(n	–	1)	 Additional	records	as	needed	

28	+	[12(n	−	1)]	or	
(16	+	12n)	to	end	

Variable	 Storage	area	of	strings	of	Unicode	characters	

10.2.17 	multiProcessElementsType	

This	 structure	 represents	 a	 colour	 transform,	 containing	 a	 sequence	 of	 processing	 elements.	 The	
processing	elements	contained	in	the	structure	are	defined	in	the	structure	itself,	allowing	for	a	flexible	
structure.	Supported	processing	elements	are	defined	in	Clause	11	of	this	document.	Other	processing	
element	types	may	be	added	in	the	future.	Each	type	of	processing	element	may	be	contained	any	number	

ICC.2:2023	

94	 ©	ICC	2023	–	All	rights	reserved	

of	 times	 in	 the	structure.	The	processing	elements	support	 float32Number‐encoded	 input	and	output	
ranges.	

If	 undefined	or	 invalid	processing	 element	 types	are	present	 in	 a	multiProcessElementsType	 tag,	 the	
multiProcessElementsType	tag	shall	not	be	used	and	fall	back	behaviour	shall	be	followed	(if	possible).	A	
CMM	 shall	 perform	 an	 initial	 check	 in	 order	 to	 ensure	 that	 all	 processing	 element	 types	 in	 a	
multiProcessElementsType	tag	are	valid.	

When	 using	 this	 type,	 it	 is	 necessary	 to	 assign	 each	 colour	 space	 component	 to	 an	 input	 and	 output	
channel.	These	assignments	shall	be	as	shown	in	Table	63.	

The	encoding	of	a	multiProcessElementsType	structure	shall	be	as	given	in	Table	63.	

Table	63	—	multiProcessElementsType	encoding	

Byte	position	 Field	
length	
(bytes)	

Content	 Encoded	as…	

0…3	 4	 ‘mpet’	(6D706574h)	[multi‐process	
elements	table]	type	signature	

		

4…7	 4	 Reserved,	shall	be	0	 		

8..9	 2	 Number	of	input	channels	(F)	 uInt16Number	

10..11	 2	 Number	of	output	channels	(T)	 uInt16Number	

12..15	 4	 Number	of	processing	elements	(N) uInt32Number	

16..15+8N	 8N	 Process	element	positions	table	 positionNumber[...]	

16+8N..end	 		 Data	 		

The	number	of	processing	elements	(n)	shall	be	greater	than	or	equal	to	1.	The	process	element	positions	
table	contains	information	on	where	and	how	large	the	process	elements	are.	Offset	locations	are	relative	
to	the	start	of	the	multiProcessElementsType	tag.	Thus	the	offset	of	first	stored	process	element	shall	be	
16	+	8n.	

Each	processing	element	shall	start	on	a	4‐byte	boundary.	To	achieve	this,	each	item	shall	be	followed	by	
up	to	three	00h	pad	bytes	as	needed.	

It	is	permitted	to	share	data	between	processing	elements.	For	example,	the	offsets	for	some	processing	
elements	can	be	identical.	

Processing	elements	in	the	multiProcessElementsType	are	processed	in	the	order	that	they	are	defined	
in	the	processing	elements	position	table.	The	results	of	a	processing	element	are	passed	on	to	the	next	
processing	 element.	 The	 last	 processing	 element	 provides	 the	 final	 result	 for	 the	 containing	
multiProcessElementsType.	Therefore,	the	input/output	channels	specified	by	the	processing	elements	
and	the	containing	multiProcessElementsType	need	to	be	in	agreement.	

The	first	processing	element’s	input	channels	shall	be	the	same	as	the	input	channels	of	the	containing	
multiProcessElementsType.	The	input	channels	of	a	processing	element	shall	be	the	same	as	the	previous	
processing	element’s	output	channels.	The	last	processing	element’s	output	channels	shall	be	the	same	
as	the	output	channels	of	the	containing	multiProcessElementsType.	

The	 definition	 of	 supported	 processing	 elements	 can	 be	 found	 in	 Clause	11	 multiProcessElement	
Definitions.	

10.2.18 	parametricCurveType	

The	parametricCurveType	describes	a	one‐dimensional	curve	by	specifying	one	of	a	predefined	set	of	
functions	 using	 the	 parameters.	 When	 used,	 the	 byte	 assignment	 and	 encoding	 shall	 be	 as	 given	 in	
Table	64.	

ICC.2:2023	

©	ICC	2023	–	All	rights	reserved	 95	

	

Table	64	—	parametricCurveType	encoding	

Byte	
position	

Field	
length	
(bytes)	

Content	 Encoded	as	

0	to	3	 4	 ‘para’	(70617261h)	type	signature	 		

4	to	7	 4	 Reserved,	shall	be	0	 		

8	to	9	 2	 Encoded	value	of	the	function	type	
uInt16Number		
(see	Table	65)	

10	to	11	 2	 Reserved,	shall	be	0	 		

12	to	
end	

See	
Table	65	

One	or	more	parameters	(see	Table	65)	 s15Fixed16Number	[...]	

The	encoding	for	the	function	type	field	and	the	parameters	are	shown	in	Table	65.	

Table	65	—	parametricCurveType	function	type	encoding	

Field	length	
(bytes)	

Function	type	 Encoded	
value	

Parameters	 Note	

4	 gY X 	 0000h	 g	 		

12	
 gY aX b 	 /X b a 	

0Y 	 /X b a 	
0001h	 g	a	b	 CIE	122‐1966	[10]	

16	
 gY aX b c 	 /X b a 	

Y c 	 /X b a 	
0002h	 g	a	b	c	 IEC	61966‐3	

20	
 gY aX b 	 X d 	

Y cX 	 X d 	
0003h	 g	a	b	c	d	

IEC	61966‐2.1	
(sRGB)	

28	
 gY aX b e 	 X d 	

 Y cX f 	 X d 	
0004h	 g	a	b	c	d	e	f	 		

NOTE			More	functions	can	be	added	as	necessary.	

The	order	of	 the	parameters	 in	the	data,	Table	64,	 follows	the	 left‐to‐right	order	of	 the	parameters	 in	
Table	65.	

The	domain	and	range	of	each	function	shall	be	[0,0	1,0].	Any	function	value	outside	the	range	shall	be	
clipped	 to	 the	 range	 of	 the	 function.	 When	 unsigned	 integer	 data	 are	 supplied	 as	 input,	 it	 shall	 be	
converted	 to	 the	domain	by	dividing	 it	by	 a	 factor	of	 (2N)	−	1,	where	N	 is	 the	number	of	bits	used	 to	
represent	the	input	data.	When	the	output	is	required	to	be	unsigned	integer	data,	it	shall	be	converted	
from	the	range	by	multiplying	it	by	a	factor	of	(2M)	−	1,	where	M	is	the	number	of	bits	used	to	represent	
the	output	data.	

If	the	input	is	PCSXYZ,	the	PCSXYZ	X,	Y,	or	Z	value	1+	(32	767÷32	768)	shall	be	mapped	to	the	function	
input	value	1,0.	If	the	output	is	PCSXYZ,	the	function	output	value	1,0	shall	be	mapped	to	the	PCSXYZ	X,	Y,	
or	Z	value	1+	(32	767÷32	768).	

ICC.2:2023	

96	 ©	ICC	2023	–	All	rights	reserved	

NOTE	 The	parameters	selected	for	a	parametric	curve	can	result	in	complex	or	undefined	values	for	the	input	
range	used.	This	can	occur	for	example	if	d	<	‐b/a.	In	such	cases	the	behaviour	of	the	curve	is	undefined.	

10.2.19 	s15Fixed16ArrayType	

This	type	represents	an	array	of	generic	4‐byte	(32‐bit)	 fixed	point	quantity.	The	number	of	values	is	
determined	from	the	size	of	the	tag.	

When	used,	the	byte	assignment	and	encoding	shall	be	as	given	in	Table	66.	

Table	66	—	s15Fixed16ArrayType	encoding	

Byte	
position	

Field	length	
(bytes)	 Content	

0	to	3	 4	 ‘sf32’	(73663332h)	type	signature	

4	to	7	 4	 Reserved,	shall	be	0	

8	to	end	 Variable	 An	array	of	s15Fixed16Number	values	

10.2.20 	signatureType	

The	signatureType	contains	a	4‐byte	sequence.	Sequences	of	less	than	four	characters	are	padded	at	the	
end	with	 spaces,	 20	h.	 Typically	 this	 type	 is	 used	 for	 registered	 tags	 that	 can	 be	 displayed	 on	many	
development	systems	as	a	sequence	of	four	characters.	

When	used,	the	byte	assignment	and	encoding	shall	be	as	given	in	Table	67.	

Table	67	—	signatureType	encoding	

Byte	
position	

Field	
length	
(bytes)	

Content	

0	to	3	 4	 ‘sig	’	(73696720h)	type	signature	

4	to	7	 4	 Reserved,	shall	be	0	

8	to	11	 4	 4‐byte	signature	

10.2.21 	sparseMatrixArrayType	

The	sparseMatrixArrayType	defines	a	tag	type	for	encoding	an	array	of	sparse	matrices.	When	used,	the	
byte	assignment	and	encoding	shall	be	as	given	in	Table	68.	

Table	68	—	sparseMatrixArrayType	encoding	

Byte	position	 Field	length	
(bytes)	

Content	 Encoded	as…	

0…3	 4	 'smat'	(736d6174h)	type	signature	 		

4…7	 4	 Reserved,	shall	be	0	 		

8..9	 2	 Number	of	equivalent	output	
channels	used	by	sparse	matrix	
encoding	(Q)	

uInt16Number	

10..11	 2	 Sparse	matrix	LUT	encoding	type	

	

sparseMatrixEncodingType	

12..15	 4	 Number	of	sparse	matrices	in	list	
(N)	

uInt32Number	

ICC.2:2023	

©	ICC	2023	–	All	rights	reserved	 97	

12…end	 N*B	 List	of	(N)	sparse	matrices	 List	of	compact	sparseMatrixUInt8	or	
sparseMatrixUInt16	or	
sparseMatrixFloat16	or	
sparseMatrixFloat32	

The	sparse	matrices	encoded	in	the	list	shall	all	be	encoded	according	to	the	value	in	the	Sparse	Matrix	
LUT	Encoding	type	element.	

The	sparse	matrices	encoded	in	the	 list	of	sparse	matrices	shall	use	compact	padding	resulting	 in	 the	
Matrix	Entry	Data	Values	and	end	of	each	sparse	matrix	being	aligned	on	a	4	byte	boundary.	

All	sparse	matrices	in	the	sparseMatrixArrayType	shall	have	the	same	number	of	rows	and	columns.	

10.2.22 	spectralViewingConditionsType	

Spectral	data	are	always	coded	equidistantly	defined	by	a	start	wavelength,	interval	step	wavelength	and	
end	wavelength	such	that	the	difference	between	the	end	wavelength	and	start	wavelength	is	an	integer	
number	of	interval	steps.	

A	profile	may	encode	both	standard	and	custom	settings	for	the	colorimetric	observer.	In	both	cases,	the	
observer’s	CMFs	are	stored	in	a	3XN	matrix	with	N	the	spectral	dimension	defined	by	the	fields	“start	
wavelength	 colorimetric	observer”,	 “interval	wavelength	colorimetric	observer”	 and	 “end	wavelength	
colorimetric	observer”.	The	3XN	matrix	is	stored	row	by	row,	in	the	“Matrix	colorimetric	observer”	field.	

For	object	colours,	both	custom	and	standard	illuminants	are	supported.	The	illuminant	is	specified	both	
by	its	illuminant	type	as	well	as	its	power	distribution	function.	When	the	illuminant	type	value	is	either	
“Black	body	defined	by	CCT”	(00000009h)	or	“Daylight	defined	by	CCT”	(0000000Ah)	the	(correlated)	
colour	temperature	field	is	also	used	to	define	the	illuminant.	If	the	illuminant	type	is	not	one	of	these	
values	then	the	(correlated)	colour	temperature	field	is	merely	informative	and	may	be	set	to	zero.	

The	power	distribution	of	the	illuminant	is	represented	by	an	M‐dimensional	vector	with	M	defined	by	
the	 fields	 “start	 wavelength	 illuminant”,	 “interval	 wavelength	 illuminant”	 and	 “end	 wavelength	
illuminant”.	

To	remain	compatible	with	the	viewingConditions	tag,	the	unnormalized	XYZ	values	for	the	illuminant	
and	surround	are	also	provided,	both	defined	in	cd/m2.	

For	 luminous	 colours	no	 illuminant	 is	 specified.	 In	 this	 case,	 the	 fields	 “start	wavelength	 illuminant”,	
“interval	wavelength	illuminant”,	“end	wavelength	illuminant”	and	“Vector	illuminant”	are	replaced	by	
the	corresponding	values	for	the	white	emission	spectrum.	And	as	a	result	the	“un‐normalized	CIEXYZ	
values	 for	 illuminant”	 field	 is	 filled	 with	 the	 un‐normalized	 CIEXYZ	 values	 for	 the	 reference	 white	
emission	spectrum.	

When	 used,	 the	 spectralViewingConditions	 Type	 byte	 assignment	 and	 encoding	 shall	 be	 as	 given	 in	
Table	69.	Encodings	for	the	standard	observer	field	are	provide	in	Table	70,	and	the	Encodings	for	the	
standard	illuminants	are	provided	in	Table	71.	

Table	69	—	spectralViewingConditions	Type	tag	type	

Byte	position	
Field	
length	
(bytes)	

Content	 Encoded	as	

0	..	3	 4	 ‘svcn’	(7376636eh)	type	signature	 		

4	..	7	 4	 Reserved,	shall	be	0	 		

8	..	11	 4	 Colorimetric	observer	type	 See	Table	70	

12	..	17	 6	 Spectral	range	for	colorimetric	observer	with	(N)	steps	 spectralRange	

18..19	 2	 Reserved,	shall	be	0	 		

ICC.2:2023	

98	 ©	ICC	2023	–	All	rights	reserved	

20..	
20+12*N‐1	

12N	 Matrix	colorimetric	observer	(X	vector,	then	Y	vector,	then	
Z	vector)	

float32Number[]	

20+12*N	..	
23+12*N	

4	 Illuminant	type	 See	Table	71	

24+12*N	..	27+12*N	 4	 (Correlated)	colour	temperature	 float32Number	

28+12*N	..	33+12*N	 6	 Illuminant	spectral	range	with	(M)	steps	 spectralRange	

34+12*N	..	35+12*N	 2	 Reserved,	shall	be	0	 		

36+12*N.	
36+12*N+4*M‐1	

4M	 Vector	illuminant	 float32Number[]	

36+12*N+4*M	..	
36+12*N+4*M+11	

12	 Un‐normalized	CIEXYZ	values	for	illuminant	(with	Y	in	
cd/m2)	

XYZNumber	

48+12*N+4*M	..	
48+12*N+4*M+11	

12	 Un‐normalized	CIEXYZ	values	for	surround	(with	Y	in	
cd/m2)	

XYZNumber	

Table	70	—	Standard	observer	encodings	

Standard	observer	 Value	

Custom	colorimetric	observer	 00000000h	

CIE	1931	standard	colorimetric	observer	 00000001h	
CIE	1964	standard	colorimetric	observer	 00000002h	

Table	71	—	Illuminant	encodings	

Standard	illuminant	 Encoding	

Custom	 00000000h	

D50	 00000001h	

D65	 00000002h	

D93	 00000003h	

F2	 00000004h	

D55	 00000005h	

A	 00000006h	

Equi‐Power	(E)	 00000007h	

F8	 00000008h	

Black	body	defined	by	CCT	 00000009h	

Daylight	defined	by	CCT	 0000000Ah	

B	 0000000Bh	

C	 0000000Ch	

F1	 0000000Dh	

F3	 0000000Eh	

F4	 0000000Fh	

F5	 00000010h	

F6	 00000011h	

F7	 00000012h	

F9	 00000013h	

F10	 00000014h	

F11	 00000015h	

ICC.2:2023	

©	ICC	2023	–	All	rights	reserved	 99	

F12	 00000016h	

Having	 the	 ability	 to	 use	 custom	 reference	 viewing	 conditions	 introduces	 the	 need	 for	 additional	
processing	by	the	CMM	when	connecting	profiles	that	use	a	colorimetric‐based	PCS.	The	CMM	needs	to	
both	determine	the	compatibility	of	the	implied	PCS	for	each	of	the	profiles	and	then	insert	the	proper	
PCS	transforms	that	are	needed.	

For	 both	 the	 source	 and	 destination	 profile,	 the	 reference	 observer	 and	 reference	 illuminant	 are	
determined	in	the	following	manner:	

If	 the	 profile	 version	 is	 less	 than	 V5,	 then	 the	 CIE	1931	 standard	 observer	 and	 a	 D50	 illuminant	 is	
assumed.	Else	if	no	reference	spectral	viewing	condition	tag	exists	and	the	illuminant	field	in	the	profile	
header	 matches	 the	 CIE	1931	 standard	 observer	 and	 a	 D50	 illuminant,	 then	 the	 CIE	1931	 standard	
observer	and	D50	illuminant	are	assumed.	Else	if	a	reference	spectral	viewing	condition	tag	exists,	then	
the	observer	and	illuminant	are	defined	by	the	observer	and	illuminant	fields	in	the	reference	spectral	
viewing	condition	tag.	

Note	that	the	 illuminant	 field	 in	the	profile	header	should	always	be	 in	agreement	with	the	reference	
spectral	viewing	conditions	tag	if	available.	

Once	the	reference	observer	and	reference	illuminant	for	both	source	and	destination	are	determined,	
then	the	decision	about	what	(if	any)	transformations	are	needed	to	connect	the	profiles	can	be	made.	

If	 both	 the	 reference	 observer	 and	 reference	 illuminant	 match	 between	 the	 two	 profiles	 then	 no	
additional	transformations	are	needed.	

Otherwise:	

If	 the	reference	observer	of	 the	source	profile	 is	not	the	CIE	1931	standard	observer	or	the	reference	
illuminant	of	 the	 source	profile	 is	not	 a	D50	 illuminant,	 then	 the	 transform	 from	 the	 source	profile’s	
customToStandardPccTag	 is	 first	 used,	 unless	 the	CMM	provides	 its	 own	 transform.	 If	 this	 tag	 is	 not	
present	and	the	CMM	does	not	provide	an	alternative,	then	the	source	profile	cannot	be	connected.	

If	the	reference	observer	of	the	destination	profile	is	not	the	CIE	1931	standard	observer	or	the	reference	
illuminant	of	 the	destination	profile	 is	not	a	D50	 illuminant,	 then	 the	 transform	 from	 the	destination	
profile’s	standardToCustomPccTag	profile	is	then	used,	unless	the	CMM	provides	its	own	transform.	If	
this	tag	is	not	present	and	the	CMM	does	not	provide	an	alternative,	then	the	profile	cannot	be	connected.	

If	the	number	of	steps	(N)	in	the	spectral	range	for	the	colorimetric	observer	is	zero	and	the	colorimetric	
observer	type	is	non‐zero	and	found	in	Table	70	then	the	spectral	range	for	the	colorimetric	observer	
shall	 be	 assumed	 to	 go	 from	 380nm	 to	 780nm	 with	 81	 steps	 and	 the	 assumed	matrix	 colorimetric	
observer	data	shall	be	defined	for	the	corresponding	observer	as	found	in	Table	X.	

Table	X	–	Assumed	matrix	colorimetric	observer	data	for	observers	with	zero	steps	

Standard	
observer	

Colorimetric	
observer	
type	value	

Associated	matrix	colorimetric	observer	data	

CIE	1931	
standard	
colorimetric	
server	

01h	

0,001368				0,002236				0,004243				0,007650				0,014310				0,023190				0,043510	

0,077630				0,134380				0,214770				0,283900				0,328500				0,348280				0,348060	

0,336200				0,318700				0,290800				0,251100				0,195360				0,142100				0,095640	

0,057950				0,032010				0,014700				0,004900				0,002400				0,009300				0,029100	

0,063270				0,109600				0,165500				0,225750				0,290400				0,359700				0,433450	

0,512050				0,594500				0,678400				0,762100				0,842500				0,916300				0,978600	

1,026300				1,056700				1,062200				1,045600				1,002600				0,938400				0,854450	

0,751400				0,642400				0,541900				0,447900				0,360800				0,283500				0,218700	

0,164900				0,121200				0,087400				0,063600				0,046770				0,032900				0,022700	

0,015840				0,011359				0,008111				0,005790				0,004109				0,002899				0,002049	

0,001440				0,001000				0,000690				0,000476				0,000332				0,000235				0,000166	

0,000117				0,000083				0,000059				0,000042	

ICC.2:2023	

100	 ©	ICC	2023	–	All	rights	reserved	

0,000039				0,000064				0,000120				0,000217				0,000396				0,000640				0,001210

0,002180				0,004000				0,007300				0,011600				0,016840				0,023000				0,029800	

0,038000				0,048000				0,060000				0,073900				0,090980				0,112600				0,139020	

0,169300				0,208020				0,258600				0,323000				0,407300				0,503000				0,608200	

0,710000				0,793200				0,862000				0,914850				0,954000				0,980300				0,994950	

1,000000				0,995000				0,978600				0,952000				0,915400				0,870000				0,816300	

0,757000				0,694900				0,631000				0,566800				0,503000				0,441200				0,381000	

0,321000				0,265000				0,217000				0,175000				0,138200				0,107000				0,081600	

0,061000				0,044580				0,032000				0,023200				0,017000				0,011920				0,008210	

0,005723				0,004102				0,002929				0,002091				0,001484				0,001047				0,000740	

0,000520				0,000361				0,000249				0,000172				0,000120				0,000085				0,000060	

0,000042				0,000030				0,000021				0,000015	

0,006450				0,010550				0,020050				0,036210				0,067850				0,110200				0,207400	

0,371300				0,645600				1,039050				1,385600				1,622960				1,747060				1,782600	

1,772110				1,744100				1,669200				1,528100				1,287640				1,041900				0,812950	

0,616200				0,465180				0,353300				0,272000				0,212300				0,158200				0,111700	

0,078250				0,057250				0,042160				0,029840				0,020300				0,013400				0,008750	

0,005750				0,003900				0,002750				0,002100				0,001800				0,001650				0,001400	

0,001100				0,001000				0,000800				0,000600				0,000340				0,000240				0,000190	

0,000100				0,000050				0,000030				0,000020				0,000010				0,000000				0,000000	

0,000000				0,000000				0,000000				0,000000				0,000000				0,000000				0,000000	

0,000000				0,000000				0,000000				0,000000				0,000000				0,000000				0,000000	

0,000000				0,000000				0,000000				0,000000				0,000000				0,000000				0,000000	

0,000000				0,000000				0,000000				0,000000	

CIE	1964	
standard	
colorimetric	
observer	

02h	

0,000160				0,000662				0,002362				0,007242				0,019110				0,043400				0,084736	

0,140638				0,204492				0,264737				0,314679				0,357719				0,383734				0,386726	

0,370702				0,342957				0,302273				0,254085				0,195618				0,132349				0,080507	

0,041072				0,016172				0,005132				0,003816				0,015444				0,037465				0,071358	

0,117749				0,172953				0,236491				0,304213				0,376772				0,451584				0,529826	

0,616053				0,705224				0,793832				0,878655				0,951162				1,014160				1,074300	

1,118520				1,134300				1,123990				1,089100				1,030480				0,950740				0,856297	

0,754930				0,647467				0,535110				0,431567				0,343690				0,268329				0,204300	

0,152568				0,112210				0,081261				0,057930				0,040851				0,028623				0,019941	

0,013842				0,009577				0,006605				0,004553				0,003145				0,002175				0,001506	

0,001045				0,000727				0,000508				0,000356				0,000251				0,000178				0,000126	

0,000090				0,000065				0,000046				0,000033	

0,000017				0,000072				0,000253				0,000769				0,002004				0,004509				0,008756	

0,014456				0,021391				0,029497				0,038676				0,049602				0,062077				0,074704	

0,089456				0,106256				0,128201				0,152761				0,185190				0,219940				0,253589	

0,297665				0,339133				0,395379				0,460777				0,531360				0,606741				0,685660	

0,761757				0,823330				0,875211				0,923810				0,961988				0,982200				0,991761	

0,999110				0,997340				0,982380				0,955552				0,915175				0,868934				0,825623	

0,777405				0,720353				0,658341				0,593878				0,527963				0,461834				0,398057	

0,339554				0,283493				0,228254				0,179828				0,140211				0,107633				0,081187	

0,060281				0,044096				0,031800				0,022602				0,015905				0,011130				0,007749	

0,005375				0,003718				0,002565				0,001768				0,001222				0,000846				0,000586	

0,000407				0,000284				0,000199				0,000140				0,000098				0,000070				0,000050	

0,000036				0,000025				0,000018				0,000013	

0,000705				0,002928				0,010482				0,032344				0,086011				0,197120				0,389366	

0,656760				0,972542				1,282500				1,553480				1,798500				1,967280				2,027300	

1,994800				1,900700				1,745370				1,554900				1,317560				1,030200				0,772125	

0,570060				0,415254				0,302356				0,218502				0,159249				0,112044				0,082248	

ICC.2:2023	

©	ICC	2023	–	All	rights	reserved	 101	

0,060709				0,043050				0,030451				0,020584				0,013676				0,007918				0,003988

0,001091				0,000000				0,000000				0,000000				0,000000				0,000000				0,000000	

0,000000				0,000000				0,000000				0,000000				0,000000				0,000000				0,000000	

0,000000				0,000000				0,000000				0,000000				0,000000				0,000000				0,000000	

0,000000				0,000000				0,000000				0,000000				0,000000				0,000000				0,000000	

0,000000				0,000000				0,000000				0,000000				0,000000				0,000000				0,000000	

0,000000				0,000000				0,000000				0,000000				0,000000				0,000000				0,000000	

0,000000				0,000000				0,000000				0,000000	

If	the	number	of	steps	(M)	in	the	spectral	range	for	the	illuminant	is	zero	and	the	illuminant	field	is	non‐
zero,	 found	 in	Table	71	and	not	equal	 to	000000009h	or	0000000Ah,	 then	 the	spectral	 range	 for	 the	
illuminant	shall	be	assumed	to	go	from	380nm	to	780nm	with	81	steps	and	the	assumed	vector	illuminant	
data	shall	be	defined	for	the	corresponding	illuminant	in	Table	Y.	

Table	Y	‐	Assumed	vector	data	for	illuminants	with	zero	steps	

Standard	
illuminant	

Illuminant	
type	value	

Associated	vector	illuminant	data	

D50	 01h	

24,488		27,179		29,871		39,589		49,308		52,910		56,513		58,273		60,034		58,926		57,818		
66,321		74,825		81,036		87,247		88,930		90,612		90,990		91,368		93,238		95,109		93,536		
91,963		93,843		95,724		96,169		96,613		96,871		97,129		99,614		102,099		101,427		100,755		
101,536		102,317		101,159		100,000		98,868		97,735		98,327		98,918		96,208		93,499		
95,593		97,688		98,478		99,269		99,155		99,042		97,382		95,722		97,290		98,857		97,262		
95,667		96,929		98,190		100,597		103,003		101,068		99,133		93,257		87,381		89,492		91,604		
92,246		92,889		84,872		76,854		81,683		86,511		89,546		92,580		85,405		78,230		67,961		
57,692		70,307		82,923		80,599		78,274	

D65	 02h	

49,975500		52,311800		54,648200		68,701500		82,754900		87,120400		91,486000	

92,458900		93,431800		90,057000		86,682300		95,773600		104,865000		110,936000	

117,008000		117,410000		117,812000		116,336000		114,861000		115,392000	

115,923000		112,367000		108,811000		109,082000		109,354000		108,578000	

107,802000		106,296000		104,790000		106,239000		107,689000		106,047000	

104,405000		104,225000		104,046000		102,023000		100,000000		98,167100	

96,334200		96,061100		95,788000		92,236800		88,685600		89,345900		90,006200	

89,802600		89,599100		88,648900		87,698700		85,493600		83,288600		83,493900	

83,699200		81,863000		80,026800		80,120700		80,214600		81,246200		82,277800	

80,281000		78,284200		74,002700		69,721300		70,665200		71,609100		72,979000	

74,349000		67,976500		61,604000		65,744800		69,885600		72,486300		75,087000	

69,339800		63,592700		55,005400		46,418200		56,611800		66,805400		65,094100	

63,382800	

	

D93	 03h	

92,424314		92,694368		92,964422		111,383899		129,803377		135,801152	

141,798926		141,447583		141,096240		133,975439		126,854638		135,602812	

144,350987		149,960021		155,569056		154,184112		152,799168		148,783207	

144,767246		143,338753		141,910261		136,139746		130,369231		128,545220	

126,721209		124,329813		121,938418		117,937629		113,936841		114,043847	

114,150853		111,519464		108,888075		107,474441		106,060808		103,030404	

100,000000		97,314129		94,628259		93,347855		92,067450		88,659570		85,251689	

84,758623		84,265557		83,380599		82,495642		80,837162		79,178681		76,519588	

73,860495		73,447089		73,033684		71,360089		69,686495		69,189247		68,692000	

68,742482		68,792965		67,049716		65,306467		61,725711		58,144955		58,497707	

58,850460		60,339599		61,828738		56,573774		51,318811		54,969052		58,619293	

60,929241		63,239189		58,464199		53,689209		46,273925		38,858642		47,398674	

55,938706		54,609104		53,279502	

A	 06h	
9,795100		10,899600		12,085300		13,354300		14,708000		16,148000		17,675300	

19,290700		20,995000		22,788300		24,670900		26,642500		28,702700		30,850800	

ICC.2:2023	

102	 ©	ICC	2023	–	All	rights	reserved	

33,085900		35,406800		37,812100		40,300200		42,869300		45,517400		48,242300

51,041800		53,913200		56,853900		59,861100		62,932000		66,063500		69,252500	

72,495900		75,790300		79,132600		82,519300		85,947000		89,412400		92,912000	

96,442300		100,000000		103,582000		107,184000		110,803000		114,436000	

118,080000		121,731000		125,386000		129,043000		132,697000		136,346000	

139,988000		143,618000		147,235000		150,836000		154,418000		157,979000	

161,516000		165,028000		168,510000		171,963000		175,383000		178,769000	

182,118000		185,429000		188,701000		191,931000		195,118000		198,261000	

201,359000		204,409000		207,411000		210,365000		213,268000		216,120000	

218,920000		221,667000		224,361000		227,000000		229,585000		232,115000	

234,589000		237,008000		239,370000		241,675000	

E	 07h	

100,000000		100,000000		100,000000		100,000000		100,000000		100,000000	

100,000000		100,000000		100,000000		100,000000		100,000000		100,000000	

100,000000		100,000000		100,000000		100,000000		100,000000		100,000000	

100,000000		100,000000		100,000000		100,000000		100,000000		100,000000	

100,000000		100,000000		100,000000		100,000000		100,000000		100,000000	

100,000000		100,000000		100,000000		100,000000		100,000000		100,000000	

100,000000		100,000000		100,000000		100,000000		100,000000		100,000000	

100,000000		100,000000		100,000000		100,000000		100,000000		100,000000	

100,000000		100,000000		100,000000		100,000000		100,000000		100,000000	

100,000000		100,000000		100,000000		100,000000		100,000000		100,000000	

100,000000		100,000000		100,000000		100,000000		100,000000		100,000000	

100,000000		100,000000		100,000000		100,000000		100,000000		100,000000	

100,000000		100,000000		100,000000		100,000000		100,000000		100,000000	

100,000000		100,000000		100,000000	

	

	

10.2.23 	tagArrayType	

The	tagArrayType	structure	encodes	an	array	of	tags	that	have	an	identical	tag	type.	Clause	13	defines	
valid	tag	arrays	with	their	associated	array	type	identifiers.	

The	structure	type	indentifiers	may	vary	when	tag	array	elements	are	of	tagStructType.	How	they	vary	
shall	be	associated	with	the	array	type	identifier.	(See	Clause	13).	

The	format	of	the	tagArrayType	structure	can	be	found	in	Table	72.	

Table	72	—	tagArrayType	encoding	

Byte	position	 Field	length	
(bytes)	

Content	 Encoded	as…	

0..3	 4	 ‘tary’	(74617279h)	type	signature	 		

4..7	 4	 Reserved,	shall	be	0	 		

8..11	 4	 Array	Type	Identifier	 4‐byte	signature	

12..15	 4	 Number	of	tag	elements	in	array	(N)	 uInt32Number	

16..23	 8	 Tag	element	1	position	 positionNumber	

…	 …	 …	 …	

16+(N‐1)*8	..	
16+N*8‐1	

8	 Tag	element	N	position	 positionNumber	

16+N*8	..	end	 		 Tag	element	data	 		

ICC.2:2023	

©	ICC	2023	–	All	rights	reserved	 103	

Each	tag	array	element	has	an	offset	and	size.	Each	offset	is	relative	to	the	beginning	of	the	associated	
tagArrayType	structure.	Tag	array	elements	should	always	begin	at	an	offset	divisible	by	4	with	padding	
between	elements	as	needed.	

The	Element	tag	type	signature	shall	match	the	signature	of	the	tag	type	for	all	tag	elements	in	the	array.	

The	Element	tag	type	signature	can	be	the	signature	of	any	valid	profile	tag	type.	

If	the	Element	tag	type	signature	is	‘tags’	(74616773h)	then	the	tag	array	is	an	array	of	tagStructType	
tags.	In	this	case	the	Element	struct	type	identifier	shall	be	the	same	as	the	Struct	Type	Identifier	(Byte	
position	8..11)	in	each	of	the	tagStructType	tags.	

If	the	Element	tag	type	signature	is	not	‘tags’	(74616773h)	then	the	Element	struct	type	identifier	shall	
be	zero	(0h).	

The	Offset	of	multiple	tag	elements	can	be	the	same	(IE	tag	elements	can	share	tag	data).	

10.2.24 tagStructType	

The	tagStructType	structure	allows	a	collection	of	tag	elements	to	be	grouped	into	a	single	structure.	

The	format	of	the	tagStructType	structure	can	be	found	in	Table	73.	

Table	73	—	tagStructType	encoding	

Byte	position	 Field	length	
(bytes)	

Content	 Encoded	as…	

0..3	 4	 ‘tstr’	(74737472h)	tagStructType	
signature	

		

4..7	 4	 Reserved,	shall	be	0	 		

8..11	 4	 Struct	type	Identifier	 4‐byte	signature	

12..15	 4	 Number	of	tag	elements	N	in	structure	 uInt32Number	

16..19	 4	 Tag	element	1	signature	 4‐byte	signature	

20..27	 8	 Tag	element	1	position	 positionNumber	

…	 …	 …	 …	

N*12+4..N*12+7	 4	 Tag	element	N	signature	 4‐byte	signature	

N*12+8..N*12+15	 8	 Tag	element	N	position	 positionNumber	

N*12+16..end	 		 Tag	element	data	 		

Each	tag	element	(or	sub‐tag)	of	a	tagStructType	has	a	tag	signature,	offset	and	size.	Each	offset	is	relative	
to	the	beginning	of	the	associated	tagStructType	structure.	All	elements	should	begin	at	an	offset	divisible	
by	4	with	padding	between	tag	elements	as	needed.	The	struct	type	identifier	shall	be	used	to	identify	the	
required	 and	 optional	 sub‐tag	 elements	 in	 the	 tag	 structure.	 (See	 Clause	12	 for	 publicly	 defined	
tagStructType	structure	definitions.)	

Tag	elements	can	be	any	valid	profile	tag	type.	

Tag	element	signatures	shall	be	unique	within	a	tagStructType	structure.	

The	Offset	of	multiple	elements	can	be	the	same	(i.e.	elements	can	share	tag	data).	

10.2.25 textType	

The	textType	is	a	simple	text	structure	that	contains	a	7‐bit	ASCII	text	string.	The	length	of	the	string	is	
obtained	by	subtracting	8	from	the	element	size	portion	of	the	tag	itself.	This	string	shall	be	terminated	
with	a	00h	byte.	

ICC.2:2023	

104	 ©	ICC	2023	–	All	rights	reserved	

The	byte	assignment	and	encoding	shall	be	as	given	in	Table	78.	

Table	2	—	textType	encoding	

Byte
position

Field length
bytes

Content

0 to 3 4 ‘text’ (74657874h) type signature

4 to 7 4 Reserved, shall be set to 0

8 to end Variable A string of (element size 8) 7‐bit	ASCII characters

	

10.2.26 u16Fixed16ArrayType	

This	type	represents	an	array	of	generic	4‐byte	(32‐bit)	quantity.	The	number	of	values	is	determined	
from	the	size	of	the	tag.	

When	used,	the	byte	assignment	and	encoding	shall	be	as	given	in	Table	74.	

Table	74	—	u16Fixed16ArrayType	encoding	

Byte	
position	

Field	length	
(bytes)	 Content	

0	to	3	 4	 ‘uf32’	(75663332h)	type	signature	

4	to	7	 4	 Reserved,	shall	be	0	

8	to	end	 Variable	 An	array	of	u16Fixed16Number	values	

10.2.27 uInt16ArrayType	

This	type	represents	an	array	of	generic	2‐byte	(16‐bit)	quantity.	The	number	of	values	is	determined	
from	the	size	of	the	tag.	

When	used,	the	byte	assignment	and	encoding	shall	be	as	given	in	Table	75.	

Table	75	—	uInt16ArrayType	encoding	

Byte	
position	

Field	length	
(bytes)	

Content	

0	to	3	 4	 ‘ui16’	(75693136h)	type	signature	

4	to	7	 4	 Reserved,	shall	be	0	

8	to	end	 Variable	 An	array	of	unsigned	16bit	integers	

10.2.28 uInt32ArrayType	

This	type	represents	an	array	of	generic	4–byte	(32‐‐bit)	quantity.	The	number	of	values	is	determined	
from	the	size	of	the	tag.	

When	used,	the	byte	assignment	and	encoding	shall	be	as	given	in	Table	76.	

Table	76	—	uInt32ArrayType	encoding	

Byte	
position	

Field	length	
(bytes)	

Content	

0	to	3	 4	 ‘ui32’	(75693332h)	type	signature	

4	to	7	 4	 Reserved,	shall	be	0	

ICC.2:2023	

©	ICC	2023	–	All	rights	reserved	 105	

8	to	end	 Variable	 An	array	of	unsigned	32‐bit	integers	

10.2.29 uInt64ArrayType	

This	type	represents	an	array	of	generic	8–byte	(64‐bit)	quantity.	The	number	of	values	is	determined	
from	the	size	of	the	tag.	

When	used,	the	byte	assignment	and	encoding	shall	be	as	given	in	Table	77.	

Table	77	—	uInt64ArrayType	encoding	

Byte	
position	

Field	length	
(bytes)	

Content	

0	to	3	 4	 ‘ui64’	(75693634h)	type	signature	

4	to	7	 4	 Reserved,	shall	be	0	

8	to	end	 Variable	 An	array	of	unsigned	64‐bit	integers	

10.2.30 uInt8ArrayType	

This	type	represents	an	array	of	generic	1–byte	(8‐bit)	quantity.	The	number	of	values	 is	determined	
from	the	size	of	the	tag.	

When	used,	the	byte	assignment	and	encoding	shall	be	as	given	in	Table	78.	

Table	78	—	uInt8ArrayType	encoding	

Byte	
position	

Field	length	
(bytes)	 Content	

0	to	3	 4	 ‘ui08’	(75693038h)	type	signature	

4	to	7	 4	 Reserved,	shall	be	0	

8	to	end	 Variable	 An	array	of	unsigned	8‐bit	integers	

10.2.31 utf16Type	

This	tag	structure	contains	a	text	structure	that	contains	a	16‐bit	UTF‐16	string.	The	length	of	the	string	
is	 obtained	 by	 subtracting	 8	 from	 the	 element	 size	 portion	 of	 the	 tag	 itself.	 For	 the	 specification	 of	
Unicode,	 see	 The	 Unicode	 Standard	 published	 by	 The	 Unicode	 Consortium	 or	 visit	
http://www.unicode.org.	

The	format	of	the	utf16Type	structure	can	be	found	in	Table	79.	

Table	79	—	utf16Type	encoding	

Byte	
position	

Field	
length	
(bytes)	

Content	 Encoded	as…	

0..3	 4	 ‘ut16’	(75743136h)	type	signature	 		

4..7	 4	 Reserved,	shall	be	0	 		

8..end	 		 UTF‐16	data	 uInt16Number[…]	

10.2.32 utf8Type	

This	tag	structure	contains	a	text	structure	that	contains	an	8‐bit	UTF‐8	string.	The	length	of	the	string	is	
obtained	by	subtracting	8	from	the	element	size	portion	of	the	tag	itself.	For	the	specification	of	Unicode,	
see	The	Unicode	Standard	published	by	The	Unicode	Consortium	or	visit	http://www.unicode.org.	

ICC.2:2023	

106	 ©	ICC	2023	–	All	rights	reserved	

The	format	of	the	utf8Type	structure	can	be	found	in	Table	80.	

Table	80	—	utf8Type	encoding	

Byte	position	 Field	length	
(bytes)	

Content	 Encoded	as…	

0..3	 4	 ‘utf8’	(75746638h)	type	signature	 		

4..7	 4	 Reserved,	shall	be	0	 		

8..end	 		 UTF‐8	data	 		

10.2.33 utf8ZipType	

This	 tag	 structure	 is	 a	 container	 for	 a	 UTF‐8	 string	 that	 has	 been	 compressed	 using	 the	 DEFLATE	
compression	method	 specified	by	RFC	1951	 (http://tools.ietf.org/html/rfc1951)	 into	 the	 compressed	
data	format	specified	by	RFC	1950	(http://tools.ietf.org/html/rfc1950).	

NOTE	 This	is	equivalent	to	the	Zip	data	format	produced	by	the	ZLIB	data	compression	library.	

The	 length	of	 the	compressed	data	stream	can	be	determined	by	subtracting	8	 from	the	element	size	
portion	of	the	tag	itself.	

The	data	that	is	compressed	is	a	UTF‐8	string.	For	the	specification	of	Unicode,	see	The	Unicode	Standard	
published	by	The	Unicode	Consortium	or	visit	http://www.unicode.org.	

The	format	of	the	utf8ZipType	structure	can	be	found	in	Table	81.	

Table	81	—	utf8ZipType	encoding	

Byte	position	 Field	length	
(bytes)	

Content	 Encoded	as…	

0..3	 4	 ‘zut8’	(7a757438h)	type	signature	 		

4..7	 4	 Reserved,	shall	be	0	 		

8..end	 		 Compressed	data	stream	 		

10.2.34 XYZType	

The	XYZType	contains	an	array	of	 three	encoded	values	 for	PCSXYZ,	CIEXYZ,	or	nCIEXYZ	values.	The	
number	of	sets	of	values	 is	determined	 from	the	size	of	 the	 tag.	When	used,	 the	byte	assignment	and	
encoding	shall	be	as	given	 in	Table	82.	Tristimulus	values	shall	be	non‐negative.	The	signed	encoding	
allows	for	implementation	optimizations	by	minimizing	the	number	of	fixed	formats.	

Table	82	—	XYZType	encoding	

Byte	
position	

Field	length	
(bytes)	 Content	 Encoded	as…	

0	to	3	 4	 ‘XYZ	’	(58595A20h)	type	signature	 		

4	to	7	 4	 Reserved,	shall	be	0	 		

8	to	end	 Variable	 An	array	of	PCSXYZ,	CIEXYZ,	or	nCIEXYZ	values	 XYZNumber	

10.2.35 zipXmlType	

This	tag	structure	is	a	container	for	XML	formatted	data	that	has	been	compressed	using	the	DEFLATE	
compression	method	specified	by	RFC	1951	(http://tools.ietf.org/html/rfc1951)	 into	 the	compressed	
data	format	specified	by	RFC	1950	(http://tools.ietf.org/html/rfc1950).	

ICC.2:2023	

©	ICC	2023	–	All	rights	reserved	 107	

NOTE	 This	is	equivalent	to	the	Zip	data	format	produced	by	the	ZLIB	data	compression	library.	

The	 length	of	 the	compressed	data	stream	can	be	determined	by	subtracting	8	 from	the	element	size	
portion	of	the	tag	itself.	

The	data	that	is	compressed	shall	be	encoded	using	XML.	For	the	specification	of	XML,	see	the	XML	1.0	
specification[14]	published	by	the	World	Wide	Web	Consortium	or	visit	http://www.w3.org/TR/REC‐xml.	

The	format	of	the	zipXmlType	structure	can	be	found	in	Table	83.	

Table	83	—	zipXmlType	encoding	

Byte	position	 Field	length	
(bytes)	

Content	 Encoded	as…	

0..3	 4	 ‘zxml’	(7a786d6ch)	type	signature	or	

‘ZXML’	(5a584d4ch)	type	signature	

		

4..7	 4	 Reserved,	shall	be	0	 		

8..end	 		 Compressed	data	stream	 		

11 	 multiProcessingElementType	definitions	

11.1 General	

The	multiProcessElementsType	and	several	of	the	processing	elements	presented	in	this	subclause	are	
defined	by	ISO	15076‐1.	The	use	of	multiProcessElementsType‐based	tags	is	more	extensively	utilized	by	
this	extended	version	of	ICC	colour	management	with	both	modifications/extensions	to	the	processing	
elements	defined	by	ISO	15076‐1	as	well	as	the	inclusion	of	additional	processing	elements.	

Processing	elements	in	the	multiProcessElementsType	are	processed	in	the	order	that	they	are	defined	
in	the	processing	elements	position	table.	The	results	of	a	processing	element	are	passed	on	to	the	next	
processing	 element.	 The	 last	 processing	 element	 provides	 the	 final	 result	 for	 the	 containing	
multiProcessElementsType	 tag.	 Therefore,	 the	 input/output	 channels	 specified	 by	 the	 processing	
elements	and	the	containing	multiProcessElementsType	tag	need	to	be	in	agreement.	

The	first	processing	element’s	input	channels	shall	be	the	same	as	the	input	channels	of	the	containing	
multiProcessElementsType	 tag.	 The	 input	 channels	 of	 a	 processing	 element	 shall	 be	 the	 same	 as	 the	
previous	processing	element’s	output	channels.	The	last	processing	element’s	output	channels	shall	be	
the	same	as	the	output	channels	of	the	containing	multiProcessElementsType	tag.	

Clipping	of	the	results	of	a	processing	element	shall	not	be	performed.	Some	processing	elements	may	
perform	clipping	as	needed	on	input.	

The	specification	for	each	processing	element	shall	indicate	whether	that	element	performs	clipping	on	
input.	

The	general	element	encoding	for	multiProcessElementsType	tag	elements	is	shown	in	Table	84.	

Table	84	—	generalElement	encoding	

Byte	position	 Field	
length	
(bytes)	

Content	 Encoded	as…	

0…3	 4	 Element	type	signature	 		

4…7	 4	 Reserved,	shall	be	0	 		

8…9	 2	 Number	of	input	channels	(P)	 uInt16Number	

10…11	 2	 Number	of	output	channels	(Q)	 uInt16Number	

ICC.2:2023	

108	 ©	ICC	2023	–	All	rights	reserved	

12..end	 4	 Element	Data	 		

11.2 Specific	processing	element	listing	

11.2.1 calculatorElement	

11.2.1.1 General	

A	calculatorElement	allows	for	the	encoding	of	arbitrary	functions	of	multiple	data	inputs.	

A	calculatorElement	can	be	used	to	augment	the	other	multi‐processing	elements.	A	calculatorElement	
can	 also	 contain	 sub‐elements	 that	 can	 be	 conditionally	 evaluated	 within	 the	 context	 of	 the	
calculatorElement’s	main	function.	

In	addition	to	defining	input	and	output	channels,	a	calculatorElement	can	also	define	and	use	temporary	
channel	storage,	which	provides	additional	channels	of	data	outside	the	channel	data	persisted	between	
processing	elements	within	a	single	Multi	Processing	Element	Tag.	 Input	and	output	channel	data	are	
maintained	separately.	

Temporary	channel	data	are	maintained	and	stored	only	within	the	context	of	a	single	Multi	Processing	
Element	Tag.	Temporary	channel	data	shall	not	be	persisted	from	one	Multi	Processing	Element	tag	to	
another	when	Multi	Processing	Element	tags	are	connected	or	referenced	as	sub‐calculator	elements.	At	
each	invocation	of	a	calculator	(or	sub‐calculator)	element	it	shall	be	assumed	that	all	Temporary	channel	
data	are	initialized	to	zero.	

For	performance	purposes	it	is	recommended	that	temporary	channel	data	be	initialized	before	being	
referenced.	

The	maximum	number	of	input,	output	and	temporary	channels	shall	be	65	535.	

The	encoding	of	a	calculatorElement	is	shown	in	Table	85.	

Table	85	—	calculatorElement	encoding	

Byte	position	 Field	
length	
(bytes)	

Content	 Encoded	as…	

0…3	 4	 ‘calc’	(63616C63h)	type	signature	 		

4…7	 4	 Reserved,	shall	be	0	 		

8…9	 2	 Number	of	input	channels	(P)	 uInt16Number	

10…11	 2	 Number	of	output	channels	(Q)	 uInt16Number	

12…13	 2	 Reserved,	shall	be	0	 	

14…15	 2	 Number	of	sub‐elements	(E)	 uInt16Number	

16…23	 8	 Main	function	position	 positionNumber	

24…24+8*E‐1	 8*E	 Sub‐element	positions	 Array	of	
positionNumber	

24+8*E	…	end	 		 Data	for	calculator	element	 		

The	sub‐element	positions	array	provides	indexing	to	sub‐elements	accessible	by	the	calculator’s	main	
function.	Each	sub‐element	positionNumber	entry	offset	shall	be	relative	to	the	start	of	 the	calculator	
element,	 and	 the	 positionNumber	 entry	 size	 shall	 fit	 within	 the	 size	 of	 the	 calculator	 element.	 Sub‐
elements	pointed	to	by	the	sub‐element	positions	shall	either	be	unique	and	non‐overlapping	or	shall	
refer	to	shared	sub‐elements	(having	the	same	offset	and	size).	Sub‐elements	shall	be	stored	next	to	one	
another	with	no	additional	data	between	sub‐elements	aside	from	zero	filled	32‐bit	alignment	padding	
(as	needed)	

ICC.2:2023	

©	ICC	2023	–	All	rights	reserved	 109	

When	 the	 first	 4	 bytes	 of	 the	 “Data	 for	 calculator	 element”	 section	 (starting	 a	 byte	 position	24+8*E)	
contains	the	signature	‘clmt’	(636c6d74h)	then	an	additional	extension	structure	shall	be	used	to	indicate	
limits	that	the	calculator	element	and	its	sub‐elements	shall	follow.		The	encoding	of	a	calculatorLimits	is	
shown	in	in	Table	85b.	

Table	85b	—	calculatorLimits	encoding	

Byte	position	 Field	
length	
(bytes)	

Content	 Encoded	as…	

24+8*E	 4	 ‘clmt’	(636c6d74h)	type	signature	 		

28+8*E	 4	 Reserved,	shall	be	0	 		

32+8*E	 4	 Maximum	stack	size		

(if	0	then	no	maximum	shall	apply)	

uInt32Number	

36+8*E	 4	 Maximum	number	of	temporary	channels		

(if	0	then	no	maximum	shall	apply)	

uInt32Number	

40+8*E	 4	 Maximum	total	number	of	operations	including	
operations	in	sub‐elements	

(if	0	then	no	maximum	shall	apply)	

uInt32Number	

44+8*E	 8	 Reserved,	shall	be	0	 	

52+8*E	 	 Data	for	calculator	element	 	

	

The	sub‐element	positions	shall	not	overlap	with	the	main	function.	Multiple	sub‐elements	can	share	data	
having	the	same	position	and	size,	but	sub‐elements	shall	not	overlap	in	any	other	way.		

There	 shall	 be	 no	 voids	 between	 the	 calculatorElement	 header,	 (optional)	 calculatorLimits,	 main	
function,	and	embedded	sub‐elements.	

The	main	function	defines	a	sequence	of	operations	using	RPN	(reverse	polish	notation).	A	data	stack	of	
numeric	results	is	kept	as	operations	are	evaluated.	The	data	stack	is	assumed	to	be	empty	at	the	start	of	
each	main	function	evaluation.	Each	operation	in	a	function	can	use	a	constant	parameter,	input	channel	
data,	or	temporary	channel	data	to	place	results	onto	the	data	stack	or	otherwise	manipulate	the	data	
stack.	

During	the	course	of	interpretation,	the	main	calculator	function	can	place	data	results	into	the	output	
channels	or	into	temporary	channel	storage.	Output	channels	shall	be	assumed	to	be	zero	until	set	by	the	
main	calculator	function.	

Main	function	validity	checking	shall	be	performed	by	checking	for	valid	operations,	valid	channel	index	
addressing,	and	valid	stack	access	(with	no	stack	underflow	or	overflow)	before	main	function	evaluation	
is	performed	to	ensure	system	data	integrity.		

When	calculatorLimits	are	provided	then	they	shall	be	used	by	main	function	validity	checking	to	ensure	
that	temporary	variable	and	stack	size	are	within	the	stated	limits	for	temporary	channel	indexing	and	
data	 stack	 size.	 The	 calculatorLimits	 shall	 also	 apply	 to	 any	 sub‐calculator	 elements	 for	 their	 main	
function	validation.			

When	a	calculatorLimits	extension	is	not	provided	then	the	reserved	storage	for	the	data	stack	shall	be	
for	at	least	65	535	values.	

All	arithmetic	operations	should	fully	implement	IEEE	754.	

Mathematical	 error	 handling	 is	 the	 responsibility	 of	 the	 calculatorElement	 script	 implementer.	
calculatorElement	operations	generally	take	data	from	the	stack	and	place	results	on	the	stack.	In	some	
cases	the	operation	has	no	defined	result	(like	dividing	by	zero)	and	non‐real	numbers	(+INF,	‐INF,	or	

ICC.2:2023	

110	 ©	ICC	2023	–	All	rights	reserved	

NaN)	may	be	placed	on	the	stack	as	the	result.	Operations	that	use	such	non‐real	values	as	input	may	also	
result	in	non‐real	values	as	output.	Regardless,	the	number	of	values	consumed	and	produced	by	each	
operation	 shall	 be	 as	 specified	 for	 the	 operation.	 The	 ‘rnum’	 (726e756dh)	 operator	 can	 be	 used	 to	
determine	if	values	on	the	stack	are	real	numbers,	or	stack	values	can	be	compared	to	the	results	of	the	
‘+INF’,	 ‘‐INF’,	 and	 ‘NaN	'	 operators.	 The	behaviour	of	 a	CMM	 for	non‐real	 values	placed	 in	 the	output	
channels	or	passed	to	calculatorElement	sub‐elements	is	implementation	dependent.	

The	encoding	of	a	calculatorElement	function	is	shown	in	Table	86.	

	

Table	86	—	calculatorElement	Function	encoding	

Byte	position	 Field	
length	
(bytes)	

Content	 Encoded	as…	

0…3	 4	 ‘func’	(66756e63h)	type	signature	 		

4…7	 4	 Reserved,	shall	be	0	 		

8…11	 4	 Number	of	operations	(N)	 uInt32Number	

12…12	+	N*8	‐	1	 8	 Function	operations	 		

Individual	operations	shall	be	encoded	as	a	signature	followed	by	four	data	bytes.	There	are	eight	types	
of	 operation	 encodings	 (Push	 floating	 point	 constant,	 channel	 vector,	 sub‐element	 invocation,	 stack	
operation,	matrix,	sequence	functional,	function	vector,	and	conditional).	

NOTE	 Information	 about	 a	 textual	 representation	 of	 calculator	 elements	 with	 examples	 can	 be	 found	 in	
Annex	F.	

11.2.1.2 Floating	point	constant	operations	

The	floating	point	constant	operation	is	used	to	push	a	single	float32Number	onto	the	evaluation	stack.	
The	floating	point	constant	operation	encoding	is	shown	in	Table	87.	

Table	87	—	Floating	point	constant	operation	encoding	

Byte	position	 Field	
length	
(bytes)	

Content	 Encoded	as…	

0…3	 4	 'data'	(64617461h)	 		

4…7	 4	 float32Number	to	put	on	stack	 float32Number	

11.2.1.3 Channel	vector	operations	

A	 channel	 vector	 operation	 is	 used	 to	 operate	 on	 input,	 output	 or	 temporary	 channel	 data	 either	 by	
pushing	it	onto	the	evaluation	stack	or	storing	evaluation	stack	data	into	channel	storage.	The	encoding	
of	a	channel	vector	operation	 is	shown	 in	Table	88	with	descriptions	of	 the	channel	vector	operation	
signatures	shown	in	Table	89.	

The	in	channel	operation	is	limited	to	retrieving	pixel	data	from	input	channels	defined	in	the	calculator	
element	header.	The	out	channel	operator	is	limited	to	storing	pixel	data	to	output	channels	defined	in	
the	calculator	element.	Input	channels	are	read	only	and	therefore	the	use	of	the	out	channel	operator	
shall	not	affect	 input	channel	values.	Temporary	channels	are	assumed	to	be	zero	at	 the	start	of	each	
calculator	element’s	main	function	evaluation.	

Table	88	—	Channel	vector	operation	encoding	

ICC.2:2023	

©	ICC	2023	–	All	rights	reserved	 111	

Byte	position	 Field	
length	
(bytes)	

Content	 Encoded	as…	

0…3	 4	 Operation	signature	 		

4…5	 2	 Zero	based	starting	index	(S)	 uInt16Number	

6…7	 2	 Relative	last	index	(additional	count	from	
start)	(T)	

uInt16Number	

The	index	(S)	is	the	starting	index	of	the	input,	output,	or	temporary	data	channel	to	use.	

	

Table	89	—	Channel	vector	operations	by	signature	

Operation	signature	 Stack	
arguments	

Operator	definition	 Stack	results	

‘in	‘	(696e2020h)	 None	 Load	from	input	pixel	channel	number	S	
through	S+T	

in[S]	…	in[S+T]	

‘out	‘	(6f757420h)	 A0	…	AT	 Store	to	output	pixel	channel	number	S	
through	S+T.	Thus:	

out[S]=A0,	….,	out[S+T]=AT	

None	

‘tget’	(74676574h)	 None	 Get	temporary	channels	S	through	S+T	 temp[S]…	
temp[S+T]	

‘tput‘	(74707574h)	 A0	…	AT	 Put	temporary	channels	S+T	through	S.	Thus:	

temp[S]=A0,	….,	temp[S+T]=AT	

None	

‘tsav‘	(74736176h)	 A0	…	AT	 Saves	arguments	on	stack	as	temporary	
channels	S+T	through	S	without	affecting	
arguments	on	the	stack.	Thus:	

temp[S]=A0,	….,	temp[S+T]=AT	

A0	…	AT	

NOTE	 For	 the	out,	tput,	and	tsav	operators	 the	 topmost	element	on	the	stack	 is	stored	at	 the	S+T	channel	
position.	

11.2.1.4 CMM	environment	variable	operation	

The	CMM	environment	variable	operation	is	used	to	provide	environmental	data	information	that	can	
optionally	be	provided	to	the	CMM	as	input	onto	the	evaluation	stack,	thus	allowing	control	or	operations	
within	 the	 calculator	 element	 to	 be	 guided	 by	 external	 configuration.	 The	 encoding	 of	 the	 CMM	
environment	 variable	 operation	 is	 shown	 in	 Table	90	with	 the	 description	 of	 the	 CMM	 environment	
variable	operation	signature	shown	in	Table	91.	

Table	90	—	Environment	variable	operation	encoding	

Byte	position	 Field	length	
(bytes)	

Content	 Encoded	as…	

0…3	 4	 Operation	signature	 		

4…7	 4	 Environment	variable	signature	(X)	 uInt32Number	

Signature	values	for	the	environment	variable	signature	(X)	are	open	ended	and	workflow	dependent.	
Interoperable	usage	of	CMM	environment	variables	shall	use	environment	variable	signatures	that	are	
specified	in	separate	ICSs	separate	from	this	document’s	specifications	or	registered	separately	with	the	
ICC.	

Table	91	—	Environment	variable	operation	by	signature	

ICC.2:2023	

112	 ©	ICC	2023	–	All	rights	reserved	

Operation	
signature	

Stack	
arguments

Operator	definition	 Stack	results	

‘env	‘	
(656e7620h)	

None	 Places	32‐bit	floating	point	CMM	environment	
variable	value	on	stack	(denoted	by	env(X))	if	
variable	with	signature	X	is	available	and	
supported.	Additional	value	placed	to	indicate	
whether	variable	is	supported	

env(X)	1,0	

if	X	is	available	and	supported	

0,0	0,0	

otherwise	

The	env	operation	shall	consume	no	values	from	the	evaluation	stack	and	shall	always	place	two	values	
onto	 the	 evaluation	 stack.	 The	 first	 value	 placed	 on	 the	 stack	 shall	 be	 the	 32‐bit	 floating	 point	 CMM	
environment	variable	value	associated	with	the	32‐bit	environment	variable	signature	(represented	by	
the	function	env(X)	in	Table	91)	if	the	CMM	environment	variable	(X)	is	available	to	and	supported	by	the	
CMM,	or	0,0	otherwise.	The	second	value	placed	on	the	stack	shall	be	1,0	if	the	CMM	environment	variable	
X	is	available	to	and	supported	by	the	CMM,	or	0,0	otherwise.	

It	is	the	responsibility	of	the	calculatorElement	script	implementer	to	provide	appropriate	handling	of	
operations	when	a	desired	CMM	environment	variable	is	not	available	or	supported.	

All	CMM	environment	variables	that	are	supported	and	accessible	by	a	calculator	element	shall	also	be	
supported	and	accessible	by	all	of	its	sub‐element	calculator	elements	

Two	CMM	environment	variables	shall	always	be	handled	with	the	resulting	stack	values	as	shown	in	
Table	92.	

Table	92	—	Required	CMM	environment	variable	support	by	signature	

'true'	(74727565h)	 1,0	1,0	

‘ndef’	(6e646566h)	 0,0	0,0	

NOTE	 Support	 for	 and	 methods	 of	 supplying	 additional	 CMM	 environment	 values	 to	 the	 CMM	 are	
implementation	dependent.	

11.2.1.5 Sub‐element	invocation	operations	

A	 sub‐element	 invocation	 operation	 allows	 for	 processing	 elements	 associated	 with	 the	 calculator	
element	 to	 be	 selectively	 applied.	 When	 a	 sub‐processing	 element	 is	 invoked	 the	 input	 channels	
associated	with	the	processing	element	are	first	taken	from	the	evaluation	stack.	These	values	are	then	
used	by	the	sub‐element	to	perform	its	processing	to	get	output	channel	values	which	are	then	placed	
onto	the	evaluation	stack.		

Sub‐elements	are	separate	processing	elements	and	therefore	use	their	own	temporary	variables	and	
evaluation	stacks.	In	other	words,	if	a	sub‐element	is	a	calculator	element	it	shall	have	independent	scope	
from	the	calling	calculator	element.		

The	indexed	sub‐element	of	curv,	mtx,	and	clut	operators	shall	have	appropriate	type.	The	elem	operator	
performs	no	type	check	on	the	type	of	the	element.	

The	Index	parameter	specifies	the	index	of	the	element	type	to	use.	The	Index	parameter	refers	to	the	
index	of	the	positionNumber	in	the	calculator	element’s	sub‐element	positions	array	that	points	to	the	
sub‐element	in	the	data	area	for	the	calculator	element	to	be	 invoked.	The	encoding	of	a	sub‐element	
operation	 encoding	 is	 shown	 in	 Table	93	 with	 descriptions	 of	 the	 sub‐element	 operation	 signatures	
shown	in	Table	94.	

Table	93	—	Sub‐element	operation	encoding	

Byte	position	 Field	length	(bytes) Content	 Encoded	as…	

0…3	 4	 Operation	signature	 		

4…5	 2	 Zero	based	element	Index	(S)	 uInt16Number	

6…7	 2	 Reserved	(shall	be	0)	 	

ICC.2:2023	

©	ICC	2023	–	All	rights	reserved	 113	

Table	94	—	Sub‐element	operations	by	signature	

Operation	signature	 Stack	arguments	 Operator	definition	 Stack	results	

‘curv'	(63757276h)	 X1	…	XInput	 Applies	sub‐element	(S)	which	shall	be	
a	curvSetElement	

Y1	…	YOutput	

‘mtx	'	(6d747820h)	 X1	…	XInput	 Applies	sub‐element	(S)	which	shall	be	
a	matrixElement	

Y1	…	YOutput	

'clut'	(636c7574h)	 X1	…	XInput	 Applies	sub‐element	(S)	which	shall	be	
a	CLUTElement	

Y1	…	YOutput	

'calc'	(63616c63h)	 X1	…	XInput	 Applies	sub‐element	(S)	which	shall	be	
a	calculatorElement	

Y1	…	YOutput	

‘tint’	(74696e74h)	 X1	…	XInput	 Applies	sub‐element	(S)	which	shall	be	
a	tintElement	

Y1	…	YOutput	

'elem'	(656c656dh)	 X1	…	XInput	 Applies	sub‐element	(S)	(see	11.2)	 Y1	…	YOutput	

'tJab'	(744a6162h)	 X1	…	XInput	 Applies	sub‐element(S)	which	shall	be	
a	XYZToJabElement	

Y1	…	YOutput	

‘fJab’	(664a6162h)	 X1	…	XInput	 Applies	sub‐element(S)	which	shall	be	
a	JabToXYZElement	

Y1	…	YOutput	

11.2.1.6 Stack	operations	

A	stack	operation	is	used	to	manipulate	multiple	elements	of	the	evaluation	stack	directly.	The	encoding	
of	a	stack	operation	is	shown	in	Table	95	with	descriptions	of	the	stack	operation	signatures	shown	in	
Table	96.	

Table	95	—	Stack	operation	encoding	

Byte	position	 Field	
length	
(bytes)	

Content	 Encoded	as…	

0…3	 4	 Operation	signature	 		

4…5	 2	 Zero	based	index	of	last	element	(number	of	
extra	elements)	selector	S	

uInt16Number	

6…7	 2	 Number	of	extra	times	selector	T	 uInt16Number	

Table	96	—	Stack	operations	by	signature	

Operation	signature	 Stack	
arguments	

Operator	definition	 Stack	results	

'copy'	(636f7079h)	 A0	…	AS	 Duplicate	top	S+1	elements	T+1	
times	(stack	results	shown	for	T=0)	

A0	…	AS	A0	…	AS	

'rotl'	(726f746ch)	 A0	…	AS	 Rotate	left	top	S+1	elements	T+1	
positions	on	stack	(stack	results	
shown	for	T=0)	

A1	…	AS	A0	

'rotr'	(726f7472h)	 A0	…	AS	 Rotate	right	top	S+1	elements	T+1	
positions	on	stack	(stack	results	
shown	for	T=0)	

AS	A0	…	AS‐1	

'posd'	(706f7364h)	 AS	…	A0	 Duplicate	the	element	at	the	Sth	
position	from	top	of	stack	T+1	times	
(stack	results	shown	for	T=0)	

AS	…	A0	AS	

ICC.2:2023	

114	 ©	ICC	2023	–	All	rights	reserved	

‘flip’	(666c6970h)	 A0	…	AS+1	 Reverse	the	top	S+2	elements	on	the	
stack	(T	shall	be	zero)	

As+1	…	A0	

‘pop	‘	(706f7020h)	 A0	…	AS	 Remove	top	S+1	elements	on	the	
stack	(T	shall	be	zero)	

		

NOTE	 In	the	above	table	the	last	element	listed	is	the	first	item	in	the	evaluation	stack.	

11.2.1.7 Matrix	operations	

A	matrix	operation	performs	operations	to	matrix	data	or	matrix	data	plus	column	vector	data	placed	on	
the	evaluation	stack	directly.	The	encoding	of	a	matrix	operation	is	shown	in	Table	97	with	descriptions	
of	the	matrix	operation	signatures	shown	in	Table	98.	

Table	97	—	Stack	operation	encoding	

Byte	position	 Field	
length	
(bytes)	

Content	 Encoded	as…	

0…3	 4	 Operation	signature	 		

4…5	 2	 Zero	based	index	of	last	matrix	row	S	 uInt16Number	

6…7	 2	 Zero	based	index	of	last	matrix	column	T	 uInt16Number	

	

	

	

Table	98	—	Stack	operations	by	signature	

Operation	signature	 Stack	arguments Operator	definition	 Stack	results	

‘solv’	(736f6c76h)	 A0,0	…	A0,T	

…	

AS,0	…	AS,T	

Y0	…	YS	

Solve	for	x	in	matrix	vector	equation	
y=Ax	where	x	and	y	are	column	vectors	
and	A	is	a	matrix	containing	S+1	rows	
and	T+1	columns.	

Z=1	indicates	operation	was	successful	
and	supported	by	implementation.	Z=0	
results	in	contents	of	x	set	to	zero	and	
indicates	failure	to	invert	A	or	lack	of	
support	by	implementation.	

X0	…	XT	Z	

‘tran’	(7472616eh)	 A0,0	…	A0,T	

…	

AS,0	…	AS,T	

Transpose	matrix	elements	on	stack	
with	S+1	rows	and	T+1	columns	

A0,0	…	AS,0	

…	

A0,T…	AS,T	

11.2.1.8 Sequence	functional	operations	

The	sequence	functional	operations	take	two	or	more	arguments	off	the	evaluation	stack	and	place	onto	
the	evaluation	stack	a	single	value	that	represents	the	result.	The	Size	parameter	specifies	how	many	
more	 than	 two	 arguments	 to	 use.	 The	 encoding	 of	 a	 sequence	 function	 vector	 operation	 encoding	 is	
shown	in	Table	99	with	descriptions	of	the	function	operation	signatures	shown	in	Table	100.	

Table	99	—	Sequence	functional	operation	encoding	

ICC.2:2023	

©	ICC	2023	–	All	rights	reserved	 115	

Byte	position	 Field	length	
(bytes)	

Content	 Encoded	as…	

0…3	 4	 Operation	signature	 		

4…5	 2	 Additional	Size	(S)	 uInt16Number	

6…7	 2	 Reserved,	shall	be	0	 		

Table	100	—	Variable	length	functional	operations	by	signature	

Operation	signature	 Stack	arguments	 Operator	definition	 Stack	results	

'sum	'	(73756d20h)	 X0	…XS+1	 Z	=	X0	+	…	+	XS+1	 Z	

‘prod'	(70726f64h)	 X0	…	XS+1	 Z	=	X0	*	…	*	XS+1	 Z	

'min	'	(6d696e20h)	 X0	…XS+1	 Z	is	minimum	of	X0	through	XS+1	 Z	

'max	'	(6d617820h)	 X0	…XS+1	 Z	is	maximum	of	X0	through	XS+1	 Z	

'and	‘	(616e6420h)	 X0	…XS+1	 Z=1	if	ALL	X0	through	XS+1	are	
greater	than	or	equal	to	0,5.	Else	
Z=0	

Z	

'or	‘	(6f722020h)	 X0	…XS+1	 Z=1	if	ANY	X0	through	XS+1	is	
greater	than	or	equal	to	0,5.	Else	
Z=0	

Z	

11.2.1.9 Functional	vector	operations	

A	functional	vector	operation	(optionally)	takes	one	or	two	vector	arguments	off	the	evaluation	stack	and	
places	onto	the	evaluation	stack	a	single	vector	result.	The	Size	parameter	specifies	the	last	index	of	a	
vector	to	use	with	zero‐based	indexing.	The	encoding	of	a	function	vector	operation	encoding	is	shown	
in	Table	101	with	descriptions	of	the	function	operation	signatures	shown	in	Table	102.	

Table	101	—	Functional	vector	operation	encoding	

Byte	position	 Field	length	
(bytes)	

Content	 Encoded	as…	

0…3	 4	 Operation	signature	 		

4…5	 2	 Zero	based	last	index	of	vector	selector	(S)	 uInt16Number	

6…7	 2	 Reserved,	shall	be	0	 		

Table	102	—	Functional	vector	operations	by	signature	

Operation	
signature	

Stack	
arguments	

Operator	definition	 Stack	
results	

‘noop’	(6e6f6f70h)	 None	 Performs	no	operation	(S	shall	be	zero)	 None	

‘scnt’	(73636e74h)	 X1	…	XN	 Stack	size	count	(S	shall	be	zero)	 X1	…	XN	N	

'pi		'	(70692020h)	 None	 Mathematical	value	 	(S	shall	be	zero)	 	

‘+INF’	(2b494e46h)	 None	 Floating	point	value	for	positive	infinity	(S	shall	be	zero)	 +INF	

‘‐INF’	(2d494e46h)	 None	 Floating	point	value	for	negative	infinity	(S	shall	be	zero)	 ‐INF	

‘NaN	'(4e614e20h)	 None	 Floating	point	value	for	“Not	a	Number”	(S	shall	be	zero)	 NaN	

ICC.2:2023	

116	 ©	ICC	2023	–	All	rights	reserved	

Operation	
signature	

Stack	
arguments	

Operator	definition	 Stack	
results	

'add	'	(61646420h)	 X0	…	XS	Y0…YS	 Zi	=	Xi	+	Yi	(for	i=0…S)	 Z0	…	ZS	

'sub	'	(73756220h)	 X0…	XS	Y0…YS	 Zi	=	Xi	‐	Yi	(for	i=0…S)	 Z0…	ZS	

'mul	'	(6d756c20h)	 X0…	XS	Y0…YS	 Zi	=	Xi	*	Yi	(for	i=0…S)	 Z0…	ZS	

'div	’	(64697620h)	 X0…	XS	Y0…YS	 Zi	=	Xi	/	Yi	(for	i=0….S)	 Z0…	ZS	

'mod	’	(6d6f6420h)	 X0…	XS	Y0…YS	 Zi	=	Xi	‐	trunc(Xi	/	Yi)*	Yi	

(for	i=0….S)	

Z0…	ZS	

'pow	'	(706f7720h)	 X0…	XS	Y0…YS	 iY
i iZ X 	(for	i=0…S)	

Z0…	ZS	

‘gama’	(67616d61h)	 X0…	XS	Y	 Y
i iZ X 	(for	i=0…S)	 Z0…	ZS	

‘sadd’	(73616464h)	 X0…	XS	Y	 i iZ X Y 	(for	i=0…S)	 Z0…	ZS	

'ssub'	(73737562h)	 X0…	XS	Y	 Zi	=	Xi	‐	Y	(for	i=0…S)	 Z0…	ZS	

‘smul’	(736d756ch)	 X0…	XS	Y	 *i iZ X Y 	(for	i=0…S)	 Z0…	ZS	

'sdiv’	(73646976h)	 X0…	XS	Y	 Zi	=	Xi	/	Y	(for	i=0….S)	 Z0…	ZS	

‘sq		‘	(73712020h)	 X0…	XS	 Zi	=	Xi	*	Xi	(for	i=0…S)	 Z0…	ZS	

'sqrt'	(73717274h)	 X0…	XS	 i iZ X 	(for	i=0…S)	 Z0…	ZS	

‘cb		‘	(63622020h)	 X0…	XS	 Zi	=	Xi	*	Xi	*	Xi	(for	i=0…S)	 Z0…	ZS	

'cbrt'	(63627274h)	 X0…	XS	 3i iZ X 	(for	i=0…S)	 Z0…	ZS	

'abs	'	(61627320h)	 X0…	XS	 If	(Xi	<	0,0)	

Zi	=	‐	Xi	

Else	

Zi	=	Xi	

(for	i=0…S)	

Z0…	ZS	

‘neg	‘	(6e656720h)	 X0…	XS	 Zi	=	‐	Xi	(for	i=0…S)	 Z0…	ZS	

‘rond‘	(726f6e64h)	 X0…	XS	 If	(Xi	<	0,0)	

Zi	=	trunc(Xi	–	0,5)	

Else	

Zi	=	trunc(Xi	+	0,5)	

(for	i=0…S)	

Z0…	ZS	

‘flor‘	(666c6f72h)	 X0…	XS	 Zi	=	floor(Xi)	(for	i=0…S)	 Z0…	ZS	

‘ceil‘	(6365696ch)	 X0…	XS	 Zi	=	ceil(Xi)	(for	i=0…S)	 Z0…	ZS	

‘trnc‘	(74726e63h)	 X0…	XS	 Zi	=	trunc(Xi)	(for	i=0…S)	 Z0…	ZS	

‘sign‘	(7369676eh)	 X0…	XS	 If	(Xi	<	0,0)	

Zi	=	‐	1	

Else	If	(Xi	>	0,0)	

Zi	=	‐1	

Else	

Zi	=	0	

(for	i=0…S)	

Z0…	ZS	

ICC.2:2023	

©	ICC	2023	–	All	rights	reserved	 117	

Operation	
signature	

Stack	
arguments	

Operator	definition	 Stack	
results	

'exp	'	(65787020h)	 X0…	XS	 iX
iZ e 	(for	i=0…S)	

Z0…	ZS	

'log	'	(6c6f6720h)	 X0…	XS	 Zi	=	log(Xi)	(for	i=0…S)	 Z0…	ZS	

'ln		'	(6c6e2020h)	 X0…	XS	 Zi	=	ln(Xi)	(for	i=0…S)	 Z0…	ZS	

'not	'	(6e6f7420h)	 X0…	XS	 If	(Xi	<0.5i)	

Zi	=	1,0	

Else	

Zi	=	0,0	

(for	i=0…S)	

Z0…	ZS	

'sin	'	(73696e20h)	 X0…	XS	 Zi	=	sin(Xi)	(for	i=0…S)	

NOTE			X	is	in	radians	

Z0…	ZS	

'cos	'	(636f7320h)	 X0…	XS	 Zi	=	cos(Xi)	(for	i=0…S)	

NOTE			X	is	in	radians	

Z0…	ZS	

'tan	'	(74616e20h)	 X0…	XS	 Zi	=	tan(Xi)	(for	i=0…S)	

NOTE			X	is	in	radians	

Z0…	ZS	

'asin'	(6173696eh)	 X0…	XS	 1sini iZ X 	(for	i=0…S)	

NOTE			result	is	in	radians	

Z0…	ZS	

'acos'	(61636f73h)	 X0…	XS	 1cosi iZ X 	(for	i=0…S)	

NOTE			result	is	in	radians	

Z0…	ZS	

'atan'	(6174616eh)	 X0…	XS	 1tani iZ X 	(for	i=0…S)	

NOTE			result	is	in	radians	

Z0…	ZS	

'atn2'	(61746e32h)	 X0…	XS	Y0…YS	

1tan i
i

i

Y
Z

X
	(for	i=0…S)	

NOTE			result	is	in	radians	

	

Z0…	ZS	

'ctop'	(63746f70h)	 X0…	XS	Y0…YS	

2 2

1 180
tan

i i i

i
i

i

R X Y

Y
A

X

	

(for	i=0…S)	

NOTE			resulting	Ai	in	degrees	ranging	from	0	to	360	

R0…	RS	
A0…AS	

ICC.2:2023	

118	 ©	ICC	2023	–	All	rights	reserved	

Operation	
signature	

Stack	
arguments	

Operator	definition	 Stack	
results	

'ptoc'	(70746f63h)	 R0…	RS	A0…AS	

cos
180

sin
180

i i i

s i i

X R A

Y R A

	

(for	i=0…S)	

NOTE			Ai	in	degrees	ranging	from	0	to	360	

X0…	XS	
Y0…YS	

‘rnum’	(726e756dh)	 X0	…	Xs	 Checks	for	real	numbers	

If	(Xi=+INF	or	

Xi=‐INF	or	

Xi=NaN)	

Zi	=	0,0	

Else	

Zi	=	1,0	

Z0…	ZS	

'lt		'	(6c742020h)	 X0…	XS	Y0…YS	 If	(Xi	<	Yi)	

Zi	=	1,0	

Else	

Zi	=	0,0	

(for	i=0…S)	

Z0…	ZS	

'le	'	(6c652020h)	 X0…	XS	Y0…YS	 If	(Xi	≤	Yi)	

Zi	=	1,0	

Else	

Zi	=	0,0	

(for	i=0…S)	

Z0…	ZS	

'eq		'	(65712020h)	 X0…	XS	Y0…YS	 If	(Xi	=	Yi)	

Zi	=	1,0	

Else	

Zi	=	0,0	

(for	i=0…S)	

NOTE			Differences	in	encoding	might	result	in	Z=0,0.	Use	
‘near’	to	account	for	such	differences	

Z0…	ZS	

'near'	(6e656172h)	 X0…	XS	Y0…YS	 If	(Yi	‐ξ	≤	Xi	and	Xi	≤	Yi	+	ξ)	

Zi	=	1,0	

Else	

Zi	=	0,0	

(for	i=0…S)	

NOTE			ξ	=	1x10−8	to	allow	for	small	differences	in	
floating	point	encoding.	

Z0…	ZS	

'ge		'	(67652020h)	 X0…	XS	Y0…YS	 If	(Xi	≥	Yi)	 Z0…	ZS	

ICC.2:2023	

©	ICC	2023	–	All	rights	reserved	 119	

Operation	
signature	

Stack	
arguments	

Operator	definition	 Stack	
results	

Zi	=	1,0

Else	

Zi	=	0,0	

(for	i=0…S)	

'gt		'	(67742020h)	 X0…	XS	Y0…YS	 If	(Xi	>	Yi)	

Zi	=	1,0	

Else	

Zi	=	0,0	

(for	i=0…S)	

Z0…	ZS	

'vmin'	(766d696eh)	 X0	…	XS	Y0…YS	 Zi	=	min(Xi	,	Yi)	(for	i=0…S)	 Z0	…	ZS	

'vmax'	(766d6178h)	 X0	…	XS	Y0…YS	 Zi	=	max(Xi	,	Yi)	(for	i=0…S)	 Z0	…	ZS	

'vand'	(76616e64h)	 X0	…	XS	Y0…YS	 if	(Xi	≥	0,5	and	Yi	≥	0,5)	

Zi	=	1,0	

Else	

Zi	=	0	

(for	i=0…S)	

Z0	…	ZS	

'vxor'	(76786f72h)	 X0	…	XS	Y0…YS	 if	((Xi	≥	0,5	and	Yi	<	0,5)	or		

					(Xi	<	0,5	and	Yi	≥	0,5))	

Zi	=1,0	

Else	

Zi	=0	

(for	i=0…S)	

Z0	…	ZS	

	 	 	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

'vor	'	(766f7220h)	 X0	…	XS	Y0…YS	 if	(Xi	≥	0,5	or	Yi	≥	0,5)	 Z0	…	ZS	

ICC.2:2023	

120	 ©	ICC	2023	–	All	rights	reserved	

Operation	
signature	

Stack	
arguments	

Operator	definition	 Stack	
results	

Zi	=1,0

Else	

Zi	=0	

(for	i=0…S)	

‘tLab’	(744c6162h)	 X0…XS	Y0	…	YS	
Z0	…	ZS	

16

500

200

i i

i i i

i i i

L f Y

a f X f Y

b f Y f Z

	

(for	i=0…S)	

Where:	

31
3

3

6
																			when	

29
()

841 4 6
	 				when	

108 29 29

t t

f t

t t

	

NOTE			Xi,	Yi,	Zi	represent	normalized	values.	

L0…LS	a0	…	
aS	b0…bS	

‘tXYZ’	(7458595ah)	 L0…LS	a0	…	aS	
b0…bS	

1

1

1

16

116

16

116 500

16

116 200

i
i

i i
i

i i
i

L
Y f

L a
X f

L b
Z f

	

(for	i=0…S)	

where:	

3

1

6
																			when	

29

108 4 6
			when	

841 29 29

t t

f t
t t

	

NOTE			Xi,	Yi,	Zi	represent	normalized	values.	

X0…XS	Y0	…	
YS	Z0	…	ZS	

‘fJab’	(664a6061h)	 J0…JS	a0	…	aS	
b0…bS	

See	Annex	C.	 X0…XS	Y0	…	
YS	Z0	…	ZS	

‘tJab’	(744a6061h)	 X0…XS	Y0	…	YS	
Z0	…	ZS	

See	Annex	C.	 J0…JS	a0	…	aS	
b0…bS	

NOTE	 The	last	element	listed	in	the	argument	stack	is	the	first	item	in	the	evaluation	stack.	

11.2.1.10 Conditional	operations	

The	conditional	operations	allow	the	encoding	and	conditional	evaluation	of	operation	streams	based	
upon	 comparing	 the	 topmost	 evaluation	 stack	 entry	 to	 0,5.	 An	 'if		'	 (69662020h)	 operation	 with	 its	
associated	stream	of	operations	can	optionally	be	immediately	followed	by	an	‘else’	operation	with	its	
stream	of	associated	operations.	

ICC.2:2023	

©	ICC	2023	–	All	rights	reserved	 121	

Only	one	associated	 stream	of	operations	 shall	 be	 evaluated	depending	upon	 the	 value	on	 top	of	 the	
evaluation	stack.	

If	 the	 topmost	value	 is	greater	 than	or	equal	 to	0,5	or	 ‘NaN	’	 then	the	stream	associated	with	 the	 'if		'	
operation	shall	be	evaluated.	

If	the	topmost	value	is	less	than	0,5	and	an	‘else’	operation	immediately	succeeds	an	'if		'	operation,	then	
the	stream	of	operations	associated	with	the	succeeding	‘else’	operation	shall	be	evaluated.	

If	 the	 topmost	 value	 is	 less	 than	 0,5	 and	 an	 ‘else’	 operation	 does	 not	 immediately	 succeed	 an	 'if		'	
operation,	the	stream	of	operations	associated	with	the	'if		'	operation	shall	be	skipped.	

An	‘else’	operation	shall	always	be	preceded	by	an	'if		'	operation.	

Before	evaluating	either	the	associated	'if		'	or	‘else’	operation	streams	(or	skipping	the	associated	'if		'	
stream	of	operations)	the	topmost	value	shall	be	removed	from	the	stack	and	no	further	arguments	are	
placed	on	the	stack	before	evaluating	the	selected	operation	stream.	

The	number	of	operations	in	an	'if		'	or	‘else’	associated	operation	stream	shall	be	zero	or	more.	

All	associated	streams	of	operations	shall	result	in	the	same	number	of	values	on	the	evaluation	stack.	

The	encoding	of	the	'if		'	conditional	operation	is	shown	in	Table	103,	and	the	encoding	of	an	'if		'	with	
accompanying	‘else’	conditional	operation	is	shown	in	Table	104.	

Table	103	—	Conditional	if	operation	encoding	

Byte	position	 Field	length	
(bytes)	

Content	 Encoded	as…	

0…3	 4	 'if		'	(69662020h)	 		

4…7	 4	 Number	of	operations	(T)	to	evaluate	if	stack	
argument	is	greater	than	or	equal	to	0,5	or	NaN	

uInt32Number	

8…7	+	8T	 8T	 Operations	to	evaluate	if	stack	argument	was	
greater	than	or	equal	to	0,5	

		

Table	104	—	Conditional	if	with	else	operation	encoding	

Byte	position	 Field	length	
(bytes)	

Content	 Encoded	as…	

0…3	 4	 'if		'	(69662020h)	 		

4…7	 4	 Number	of	operations	(T)	to	evaluate	if	stack	
argument	is	greater	than	or	equal	to	0,5	or	NaN	

uInt32Number	

8…11	 4	 'else'	(656c7365h)	 		

12…15	 4	 Number	of	operations	(U)	to	evaluate	if	either	
the	previous	'if		'	conditional	operation	found	a	
stack	argument	less	than	0,5	

uInt32Number	

8…7	+	8T	 8T	 Operations	to	evaluate	if	stack	argument	was	
greater	than	or	equal	to	0,5	

		

8+8T…7	+	8T+8U	 8U	 Operations	to	evaluate	if	either	the	previous	
'if		'	conditional	operation	found	a	stack	
argument	less	than	0,5	

		

11.2.1.11 												Selection	operations	

The	selection	operations	allow	the	encoding	and	conditional	evaluation	of	operation	streams	based	upon	
the	rounded	integer	value	of	the	topmost	evaluation	stack	entry	to	select	a	single	stream	of	associated	

ICC.2:2023	

122	 ©	ICC	2023	–	All	rights	reserved	

operations	to	be	evaluated.	The	selection	'sel	'	(73656c20h)	operation	shall	be	immediately	followed	by	
one	or	more	‘case’	(63617365h)	operations	with	associated	‘case’	streams	of	operations.	Additionally,	a	
‘dflt’	(64666c74h)	operation	with	its	stream	of	associated	operations	can	follow	immediately	after	the	
last	‘case’	operation	which	has	an	associated	stream	of	operations.	

At	most	only	one	associated	stream	of	operations	shall	be	evaluated	depending	upon	the	rounded	integer	
value	of	the	topmost	evaluation	stack	entry.	

The	list	of	case	following	a	 'sel	'	operation	can	be	considered	as	a	zero‐based	array	of	case	streams	of	
length	N+1.	

All	associated	streams	of	operations	shall	result	in	the	same	number	of	values	on	the	evaluation	stack.	

Evaluation	of	a	'sel	'	operation	shall	be	performed	by	removing	the	top	value	from	the	evaluation	stack	
and	 rounding	 to	 its	 nearest	 integer	 value	 (in	 identical	manner	 as	 the	 ‘rond’	 operation)	 to	 define	 the	
selection	index	S.	

Then,	if	S	is	in	the	range	between	and	including	zero	and	N	then	S	shall	be	used	to	index	the	subsequent	
zero‐based	array	of	‘case’	operations	to	select	which	associated	stream	of	operations	to	evaluate.	If	S	is	
less	than	zero	or	greater	than	or	equal	to	N	and	a	‘dflt’	operation	with	its	associated	stream	of	operations	
follows	the	list	of	case	streams	then	the	stream	of	operations	associated	with	the	‘dflt’	operation	shall	be	
evaluated.	Otherwise	if	S	is	less	than	zero	or	greater	than	or	equal	to	N	and	no	‘dflt’	operation	follows	the	
last	‘case’	stream	then	no	stream	of	operations	shall	be	evaluated	and	the	next	operation	to	be	evaluated	
shall	be	the	operation	immediately	after	last	‘case’	stream.	

A	'sel	'	operation	shall	always	be	followed	by	one	or	more	‘case’	operations.	

A	‘case’	operation	shall	always	be	preceded	by	a	'sel	'	or	‘case’	operation.	

A	‘dflt’	operation	shall	always	be	preceded	by	a	‘case’	operation.	

The	topmost	value	shall	be	removed	from	the	stack	before	evaluating	either	the	associated	‘case’	or	‘dflt’	
operation	streams	(if	one	of	these	streams	is	selected),	and	no	further	arguments	shall	be	placed	on	the	
stack	before	evaluating	the	selected	operation	stream.	

The	number	of	associated	operations	for	either	a	‘case‘	or	‘dflt’	operation	stream	shall	be	zero	or	more.	

The	encoding	of	 the	 'sel	'	conditional	operation	with	 ‘case’	operations	and	 ‘dflt’	operation	 is	shown	in	
Table	105;	the	encoding	of	the	'sel	'	conditional	operation	with	‘case	operations	and	no	‘dflt’	operation	is	
shown	in	Table	106.	

Table	105	—	Selection	'sel	'	operation	with	‘dflt’	encoding	

Byte	position	 Field	length	
(bytes)	

Content	 Encoded	as…	

0…3	 4	 'sel	'	(73656c20h)	 		

4…7	 4	 Reserved:	shall	be	zero	 		

8..11	 4	 'case'	(63617365h)	 		

12…15	 4	 Number	of	operations	(U0)	to	evaluate	if	the	rounded	
stack	argument	evaluated	by	the	'sel	'	operation	
selected	case	0	to	be	evaluated.	

uInt32Number	

16..19	 4	 'case'	(63617365h)	 		

20…23	 4	 Number	of	operations	(U1)	to	evaluate	if	the	rounded	
stack	argument	evaluated	by	the	'sel	'	operation	
selected	case	1	to	be	evaluated.	

uInt32Number	

…	 		 		 		

12+8N...	

15+8N	

4	 'case'	(63617365h)	 		

ICC.2:2023	

©	ICC	2023	–	All	rights	reserved	 123	

16+8N…	

19+8N	

4	 Number	of	operations	(UN)	to	evaluate	if	the	rounded	
stack	argument	evaluated	by	the	'sel	'	operation	
selected	case	N	to	be	evaluated.	

uInt32Number	

20+8N..	

23+8N	

4	 'dflt'	(64666c74h)	 		

24+8N…	

27+8N	

4	 Number	of	operations	(T)	to	evaluate	if	the	rounded	
stack	argument	is	less	than	zero	or	greater	than	or	
equal	to	N.	

uInt32Number	

28+8N…	

27+8N	+	8U0	

8U0	 Operations	to	evaluate	if	the	rounded	stack	
argument	evaluated	by	a	'sel	'	operation	selected	
case	0	to	be	evaluated	

		

28+8N+8U0…	

27+8N+8U0+8U1	

8U1	 Operations	to	evaluate	if	the	rounded	stack	
argument	evaluated	by	the	'sel	'	operation	
selected	case	1	to	be	evaluated	

		

…	 		 		 		

28+8N+

N

0

8U i
i

…	

27+8N+

N

0

8U i
i

	

8UN	 Operations	to	evaluate	if	the	rounded	stack	
argument	evaluated	by	the	'sel	'	operation	
selected	case	N	to	be	evaluated	

		

32+8N+

N

0

8U i
i

…	

31+8N+

N

0

8U i
i

+8T	

8T	 Operations	to	evaluate	if	the	rounded	argument	is	
less	than	zero	or	greater	than	N	

		

Table	106	—	Selection	'sel	'	operation	without	‘dflt’	encoding	

Byte	position	 Field	length	
(bytes)	

Content	 Encoded	as…	

0…3	 4	 'sel	'	(73656c20h)	 		

4…7	 4	 Reserved:	shall	be	zero	 		

8..11	 4	 'case'	(63617365h)	 		

12…15	 4	 Number	of	operations	(U0)	to	evaluate	if	the	
rounded	stack	argument	evaluated	by	the	'sel	'	
operation	selected	case	0	to	be	evaluated.	

uInt32Number	

16..19	 4	 'case'	(63617365h)	 		

20…23	 4	 Number	of	operations	(U1)	to	evaluate	if	the	
rounded	stack	argument	evaluated	by	the	'sel	'	
operation	selected	case	1	to	be	evaluated.	

uInt32Number	

…	 		 		 		

12+8N..	

15+8N	

4	 'case'	(63617365h)	 		

ICC.2:2023	

124	 ©	ICC	2023	–	All	rights	reserved	

16+8N…	

19+8N	

4	 Number	of	operations	(UN)	to	evaluate	if	the	
rounded	stack	argument	evaluated	by	the	'sel	'	
operation	selected	case	N	to	be	evaluated.	

uInt32Number	

16+8N…	

19+8N	+	8U0	

8U0	 Operations	to	evaluate	if	the	rounded	stack	
argument	evaluated	by	a	'sel	'	operation	selected	
case	0	to	be	evaluated	

		

Table	106	(continued)	

16+8N+8U0…	

19+8N+8U0+8U1	

8U1	 Operations	to	evaluate	if	the	rounded	stack	
argument	evaluated	by	the	'sel	'	operation	
selected	case	1	to	be	evaluated	

	

		

…	 		 		 		

16+8N+

N

0

8U i
i

…	

19+8N+

N

0

8U i
i

	

8UN	 Operations	to	evaluate	if	the	rounded	stack	
argument	evaluated	by	the	'sel	'	operation	
selected	case	N	to	be	evaluated	

		

11.2.2 curveSetElement	

11.2.2.1 General	

The	Curve	Set	element	encodes	multiple	one‐dimensional	curves.	The	encoding	is	shown	in	Table	107.	

Table	107	—	curveSetElement	encoding	

Byte	position	 Field	
length	
(bytes)	

Content	 Encoded	as…	

0…3	 4	 ‘cvst’	(63767374h)	type	signature	 		

4…7	 4	 Reserved,	shall	be	0	 		

8…9	 2	 Number	of	input	channels	(P)	 uInt16Number	

10…11	 2	 Number	of	output	channels	(Q)	 uInt16Number	

12..11+8P	 8P	 Curve	positions	(offset	and	size)	 positionNumber[…]	

12+8P	to	end	 		 Data	 		

Encoding	values	for	both	input	and	output	channels	is	for	consistency	with	other	processing	elements.	
Since	each	one‐dimensional	curve	maps	a	single	input	to	a	single	output,	the	number	of	outputs	shall	be	
the	same	as	the	number	of	inputs.	Thus,	the	number	of	output	channels	(Q)	shall	be	the	same	value	as	the	
number	of	input	channels	(P).	

The	output	value	for	an	input	shall	be	specified	by	the	first	segment	in	the	segment	list	that	contains	that	
input.	Successive	break‐points	shall	not	be	decreasing.	

Each	 channel	 shall	 have	 a	 curve	 position	 element.	 Offset	 locations	 are	 relative	 to	 the	 start	 of	 the	
containing	curveSetElement.	Thus	the	offset	of	first	stored	curve	in	the	curve	set	shall	be	12+8P.	

The	one‐dimensional	 curves	 are	 stored	 sequentially.	Each	 curve	 shall	 start	on	 a	4‐byte	boundary.	To	
achieve	this,	each	curve	shall	be	followed	by	up	to	three	00h	pad	bytes	as	needed.	

ICC.2:2023	

©	ICC	2023	–	All	rights	reserved	 125	

It	 is	permitted	to	share	data	between	one‐dimensional	curves.	For	example,	 the	offsets	 for	some	one‐
dimensional	curves	can	be	identical.	

Each	curve	can	be	defined	by	a	singleSampledCurve,	sampledCalculatorCurve	or	a	segmentedCurve.	

	

	

11.2.2.2 singleSampledCurve	

The	singleSampledCurve	curve	type	allows	for	efficiently	defining	a	single	sampled	curve	segment	with	
simple	 endpoint	 extension	 parameters.	 The	 encoding	 of	 an	 extended	 CLUT	 Element	 is	 defined	 in	
Table	108.	

Table	108	—	singleSampledCurve	segment	encoding	

Byte	position	 Field	
length	
(bytes)	

Content	 Encoded	as…	

0…3	 4	 'sngf'	(736e6766h)	type	signature	 		

4…7	 4	 Reserved,	shall	be	0	 		

8…11	 4	 Number	of	data	entries(N)	 uInt32Number	

12..15	 4	 Input	value	of	first	entry(F)	 float32Number	

16..19	 4	 Input	value	of	last	entry(L)	 float32Number	

20..21	 2	 Lookup	extension	type(E)	 uInt16Number	

22..23	 2	 Data	encoding	type	 uInt16Number	as	a	
valueEncodingType	

24…end	 		 Data	 Defined	by	data	encoding	
type	

The	number	of	Data	entries	shall	be	greater	than	or	equal	to	two.	The	first	Data	entry	shall	correspond	to	
the	input	value	of	the	first	entry.	The	last	Data	entry	shall	correspond	to	the	input	value	of	the	last	entry.	
The	value	stored	for	(F)	shall	be	less	than	the	value	stored	for	(L).	If	more	than	two	Data	entries	exist	then	
each	 intermediate	 entry	 shall	 correspond	 to	 equidistant	 sampling	 between	 (F)	 and	 (L).	 Linear	
interpolation	shall	be	used	to	determine	the	output	value	for	intermediate	input	values.	

The	Lookup	extension	type	defines	how	to	determine	output	values	for	input	values	that	are	less	than	(F)	
or	greater	than	(L).	

If	the	lookup	extension	type	(E)	is	zero	(0)	then	clipping	shall	be	performed	by	using	the	value	of	the	first	
entry	if	the	input	value	is	less	than	(F)	or	using	the	value	of	the	last	entry	if	the	input	value	is	greater	than	
(L).	

IF	the	lookup	extension	type	(E)	is	one	(1)	then	linear	extrapolation	shall	be	used.	If	the	input	value	is	
less	than	(F)	then	the	output	shall	be	determined	by	the	corresponding	output	value	of	a	line	defined	by	
the	first	and	second	data	entries	(and	their	corresponding	input	values).	If	the	input	value	is	greater	than	
(L)	then	the	output	value	shall	be	determined	by	the	corresponding	output	value	of	a	line	defined	by	the	
last	two	data	entries	(and	their	corresponding	input	values).	

NOTE	 ISO	15076‐1	does	not	include	a	definition	for	the	use	of	a	singleSampledCurve.	

11.2.2.3 sampledCalculatorCurve		

The	sampledCalculatorCurve	curve	type	allows	for	the	encoding	of	a	1‐dimensional	curve	as	an	arbitrary	
function	 using	 an	 embedded	 element	 of	 type	 calculatorElement.	 	 This	 allows	 for	 more	 optimal	

ICC.2:2023	

126	 ©	ICC	2023	–	All	rights	reserved	

implementation	as	the	embedded	calculator	element	can	be	applied	at	transform	startup	to	populate	a	
sampled	1‐dimensional	lookup	table	that	is	then	used	for	performing	curve	transforms.			

This	provides	the	mechanism	to	leverage	the	features	of	calculator	elements	for	defining	1‐dimensional	
transforms	while	retaining	the	transform	performance	of	applying	a	sampled	lookup	table.	

The	encoding	of	a	sampledCalculatorCurve	is	shown	in	table	A.	

Table	109	–	sampledCalculatorCurve	encoding	

Byte	Position	 Field	
Length	
(bytes)	

Content	 Encoded	as…	

0..3	 4	 ‘clcf’	(636c6366h)	type	signature	 	

4..7	 4	 Reserved,	must	be	set	to	0	 	

8..12	 4	 Recommended	number	of	interpolation	
samples	for	the	curve	(R)	

uInt32Number	

12..15		 4	 Starting	input	range	value	of	curve	(S)	 float32Number	

16..19	 4	 Ending	input	range	value	of	curve	(E)	 float32Number	

20.21	 2	 Lookup	Extension	type	(L)	 uInt16Number	

22.23	 2	 Reserved,	must	be	set	to	0	 	

16+20..end		 	 Curve	Definition	 calculatorElement	

	

The	output	value	for	an	input	shall	be	the	result	of	applying	a	sampled	lookup	table	that	is	populated	
using	 the	 associated	 calculatorElement.	 The	 first	 element	 of	 the	 populated	 lookup	 table	 shall	 be	
associated	with	the	starting	input	range	value	of	the	curve	(S).		The	last	element	of	the	populated	lookup	
table	shall	be	associated	with	the	ending	input	range	value	of	the	curve	(E).	

The	 number	 of	 entries	 in	 the	 populated	 lookup	 table	 for	 the	 curve	 should	 be	 determined	 by	 the	
recommended	number	of	entry	values	(R).		The	value	for	R	shall	be	greater	than	or	equal	to	2.	

Input	values	for	each	intermediate	entry	in	the	populated	lookup	table	shall	be	associated	with	a	linear	
sampling	of	the	values	between	(S)	and	(E).	

The	lookup	extension	type	(L)	defines	how	to	determine	output	values	for	input	values	that	are	less	than	
(S)	or	greater	than	(E).	

If	the	lookup	extension	type	(L)	is	zero	(0)	then	clipping	shall	be	performed	by	using	the	value	of	the	first	
entry	if	the	input	value	is	less	than	(S)	or	using	the	value	of	the	last	entry	if	the	input	value	is	greater	than	
(E).	

If	the	lookup	extension	type	(L)	is	one	(1)	then	linear	extrapolation	shall	be	used.	If	the	input	value	is	less	
than	(S)	then	the	output	shall	be	determined	by	the	corresponding	output	value	of	a	line	defined	by	the	
first	and	second	data	entries	(and	their	corresponding	input	values).	If	the	input	value	is	greater	than	(E)	
then	the	output	value	shall	be	determined	by	the	corresponding	output	value	of	a	line	defined	by	the	last	
two	data	entries	(and	their	corresponding	input	values).	

The	encoding	of	the	calculatorElement	data	as	defined	by	section	11.2.1.	

The	embedded	calculatorElement	shall	use	one	input	channel	and	one	output	channel.	

11.2.2.4 segmentedCurve	

A	segmentedCurve	 is	 stored	using	one	or	more	curve	segments,	with	break‐points	 specified	between	
curve	segments.	The	first	curve	segment	always	starts	at	−∞,	and	the	last	curve	segment	always	ends	at	
+∞.	The	 irst	and	last	curve	segments	shall	be	speci ied	in	terms	of	a	formula,	whereas	the	other	segments	
shall	be	specified	either	in	terms	of	a	formula,	or	by	a	sampled	curve.	

ICC.2:2023	

©	ICC	2023	–	All	rights	reserved	 127	

If	a	curve	has	a	single	curve	segment,	no	break‐points	shall	be	specified,	and	the	curve	shall	be	specified	
in	terms	of	a	formula.	

If	a	curve	has	more	than	one	curve	segment,	break‐points	shall	be	specified	between	curve	segments.	If	
there	are	n	segments,	n−1	break‐points	are	specified.	The	encoding	for	such	a	curve	is	shown	in	Table	109.	

	

Table	109	—	segmentedCurve	encoding	

Byte	position	 Field	length	
(bytes)	

Content	 Encoded	as…	

0..3	 4	 ‘curf’	(63757266h)	type	signature	 		
4..7	 4	 Reserved,	shall	be	0	 		
8..9	 2	 Number	of	segment(s)	(N)	 uInt16Number	
10..11	 2	 Reserved,	shall	be	0	 		
12..4N+7	 4	×	(N‐1)	 N‐1	Break‐Points	 float32Number[…]	
4N+8..end	 		 Segments	1	to	N	 		

Break‐points	separate	two	curve	segments.	The	first	curve	segment	is	defined	between	−∞	and	break‐
point	1	(included).	The	kth	curve	segment	(k	in	the	range	2	to	N−1)	is	de ined	between	the	break‐point	
k−1	(not	included)	and	the	break‐point	k	(included).	The	Nth	curve‐segment	is	defined	between	break‐
point	 N−1	 (not	 included)	 and	 +∞.	 Curve	 segments	 that	 are	 speci ied	 in	 terms	 of	 a	 formula	 shall	 be	
encoded	as	shown	in	Table	110.	

Table	110	—	Curve	segments	encoding	

Byte	position	 Field	length	
(bytes)	

Content	 Encoded	as…	

0..3	 4	 ‘parf’	(70617266h)	type	signature	 		
4..7	 4	 Reserved,	shall	be	0	 		
8..9	 2	 Encoded	value	of	the	function	type	 uInt16Number	
10..11	 2	 Reserved,	shall	be	0	 		
12..end	 See	Table	111	 Parameters	(see	Table	111)	 float32Number[…]	

The	encoding	for	the	function	type	field	and	the	parameters	is	shown	in	Table	111.	

Table	111	—	Formula	curve	segments	function	encoding	

Field	length	
(bytes)	

Function	type	 Encoded	value	 Parameters	

16	 Y	=	(a	*	X	+	b)γ	+	c	 0000h	 γ,	a,	b,	c	

20	 Y	=	a	*	log	(b	*	X	γ	+	c)	+	d	 0001h	 γ,	a,	b,	c,	d	

20	 Y	=	a	*	b(c*X+d)	+	e	 0002h	 a,	b,	c,	d,	e	

20	 Y	=	a	*	(b	*	X	+	c)γ	+	d	 0003h	 γ,	a,	b,	c,	d	

20	 ∗ ∗ 	 0004h	 γ	a,	b,	c,	d	

24	 ∗ ∗ ⁄ 	 0005h	 γ,	a,	b,	c,	d,	e	

24	
∗

∗ , 0
∗ 	

0006h	 ω,	γ,	a,	b,	c,	d,	e	

24	
∗

∗

1 ∗ 	
0007h	 ω,	γ,	a,	b,	c,	d	

NOTE	 ISO	15076‐1	 does	 not	 include	 definition	 for	 a	 curve	 segment	 function	 encodings	 of	 0003h	 through	
0007h.	

ICC.2:2023	

128	 ©	ICC	2023	–	All	rights	reserved	

The	functional	inputs	and	outputs	are	defined	over	the	values	that	can	be	represented	as	float32Number.	
The	curve‐segment	shall	be	defined	to	result	in	float32Number	values	for	the	entire	curve‐segment.	

Curve	segments	that	are	specified	as	sampled	curves	shall	be	encoded	as	shown	in	Table	112.	

Table	112	—	Sampled	curve	segment	encoding	

Byte	position	 Field	length	
(bytes)	

Content	 Encoded	as…	

0..3	 4	 ‘samf’	(73616D66h)	type	signature	 		

4..7	 4	 Reserved,	shall	be	0	 		

8..11	 4	 Count	(N)	specifying	the	number	of	entries	that	
follow	

uInt32Number	

12..end	 4	×	N	 Curve	entries	 float32Number[…]	

The	count	(N)	shall	be	greater	than	or	equal	to	1.	
The	 curve	 samples	 shall	 be	 equally‐spaced	within	 the	 segment,	 and	 shall	 include	one	break‐point,	 as	
previously	 described.	 If	 the	 sampled	 curve	 represents	 the	 curve‐segment	 between	 break‐point	
k	(BPk)	and	 break‐point	 k+1	 (BP,	 k+1),	 the	 jth	 sample	 (j	 ∈	 [1,	 N])	 shall	 correspond	 to	 the	 input	 value	
BP,	k	+	j	(BP,	k+1	−	BP,	k)	/	N.	Thus	BP,	k	is	excluded.	

NOTE	 The	first	point	used	for	 interpolation	of	a	sampled	curve	segment	is	not	directly	stored	in	a	sampled	
curve	segment.	

11.2.3 CLUTElement	

The	 CLUT	 appears	 as	 an	 n‐dimensional	 array,	 with	 each	 dimension	 having	 a	 number	 of	 entries	
corresponding	to	the	number	of	grid	points.	

The	CLUT	values	are	arrays	of	float32Number.	

The	CLUT	is	organized	as	a	P‐dimensional	array	with	a	variable	number	of	grid	points	in	each	dimension,	
where	p	 is	 the	number	 of	 input	 channels	 in	 the	 transform.	The	dimension	 corresponding	 to	 the	 first	
channel	 varies	 least	 rapidly	 and	 the	 dimension	 corresponding	 to	 the	 last	 input	 channel	 varies	most	
rapidly.	Each	grid	point	value	is	a	Q‐float32Number	array,	where	Q	is	the	number	of	output	channels.	The	
first	sequential	float32Number	of	the	entry	contains	the	function	value	for	the	first	output	function,	the	
second	sequential	float32Number	of	the	entry	contains	the	function	value	for	the	second	output	function	
and	so	on	until	all	of	the	output	functions	have	been	supplied.	Formula	(9)	gives	the	computation	for	the	
byte	size	of	the	CLUT.	

 NGrid1×NGrid2×...×	NGridP	×	number	of	output	channels	 Q 	×	4	 (9)	

When	used,	the	byte	assignment	and	encoding	for	the	CLUT	shall	be	as	given	in	Table	113.	

Table	113	—	CLUTElement	encoding	

Byte	
position	

Field	length	
(bytes)	

Content	 Encoded	as…	

0..3	 4	 ‘clut’	(636C7574h)	type	signature	 		

4..6	 3	 Reserved,	shall	be	0	 		

7	 1	 Interpolation	Hint	 interpolationHintType

8..9	 2	 Number	of	input	channels	(P)	 uInt16Number	

10..11	 2	 Number	of	output	channels	(Q)	 uInt16Number	

ICC.2:2023	

©	ICC	2023	–	All	rights	reserved	 129	

12..27	 16	 Number	of	grid	points	in	each	dimension.	Only	the	
first	P	entries	are	used,	where	P	is	the	number	of	
input	channels.	Unused	entries	shall	be	00h.	

uInt8Number	

28..end	 See	Formula	(9)	 CLUT	data	points	(arranged	as	described	in	the	text)	 float32Number[…]	

The	input	range	for	the	CLUT	is	0,0	to	1,0.	For	any	input	value	outside	this	range,	the	nearest	range	limit	
value	 shall	 be	 the	 input	 value.	 The	 range	 of	 the	 Output	 Channels	 is	 the	 range	 of	 values	 that	 can	 be	
represented	as	float32Number.	

If	the	number	of	grid	points	in	a	particular	dimension	of	the	CLUT	is	two,	the	data	for	those	points	shall	
be	set	so	that	the	correct	results	are	obtained	when	linear	interpolation	is	used	to	generate	intermediate	
values.	CLUT	elements	require	a	minimum	of	two	grid	points	for	each	dimension.	

When	the	interpolation	hint	field	is	non	zero	the	CMM	should	utilize	the	interpolation	mechanism	implied	
by	the	value	of	the	interpolationTypeNumber	(see	4.2.x)	when	applying	a	CLUTElement	type	processing	
element.	

11.2.4 emissionCLUTElement	

The	emissionCLUTElement	encodes	 spectral	 emission	 information	as	entries	of	 a	 colour	 lookup	 table	
(CLUT)	 that	 are	 first	 converted	 to	 colorimetric	 information	before	 applying	 interpolation	 to	 perform	
colour	transformations.	

The	emissionCLUTElement	allows	for	the	encoding	of	a	colour	lookup	table	(CLUT)	using	flexible	and	
more	efficient	encoding	of	values.	Values	in	the	CLUT	can	be	encoded	using	uInt8Number,	uInt16Number,	
float16Number,	 and	 float32Number	 types.	 The	 encoding	 of	 an	 emission	 CLUT	 Element	 is	 defined	 in	
Table	114.	

Table	114	—	emissionCLUTElement	encoding	

Byte	position	 Field	length	
(bytes)	

Content	 Encoded	as…	

0…3	 4	 'eclt'	(65636c74h)	type	signature	 		

4…6	 3	 Reserved,	shall	be	0	 		

7	 1	 Interpolation	Hint	 interpolationHintType	

8…9	 2	 Number	of	input	channels	(P)	 uInt16Number	

10…11	 2	 Number	of	output	channels	(Q)	 uInt16Number	

12…17	 6	 Spectral	data	wavelength	range:	
start	(F),	end(E),	steps(S)	

spectralRange	

18..19	 2	 CLUT	Encoding	type	 uInt16Number	as	a	
valueEncodingType	

20..35	 16	 Array	containing	number	of	grid	
points	for	each	input	channel	(G)	

uInt8Number[16]	

36…36+M‐1	 M	 Data	for	CLUT	 Defined	by	CLUT	Encoding	type	

36+M..36+M+S‐1	 S	 Spectral	emission	of	White	 Defined	by	CLUT	Encoding	type	

The	number	of	input	channels	(P)	shall	be	greater	than	or	equal	to	one	and	less	than	or	equal	to	16.	

The	number	of	output	channels	(Q)	shall	be	three.	

The	 CLUT	 appears	 as	 a	 P‐dimensional	 array,	 with	 each	 dimension	 having	 a	 number	 of	 entries	
corresponding	to	the	number	of	grid	points.	

The	CLUT	values	are	arrays	of	numbers	defining	emission	vectors	determined	by	the	CLUT	Encoding	type	
in	Formula	(10).	

ICC.2:2023	

130	 ©	ICC	2023	–	All	rights	reserved	

matrix	array	=	[e1,	e2,	…,	eS]	 (10)	

The	spectral	data	wavelength	range	field	encoded	as	a	spectralRange	shall	define	the	starting	wavelength	
(F),	ending	wavelength	(E),	and	number	of	steps	(S)	defined	for	the	reference	white	emission	vector	and	
spectral	CLUT	elements.	The	number	of	steps	shall	be	two	or	greater.	

The	CLUT	is	organized	as	a	P‐dimensional	array	with	a	variable	number	of	grid	points	in	each	dimension,	
where	P	 is	 the	number	of	 input	 channels	 in	 the	 transform.	The	dimension	 corresponding	 to	 the	 first	
channel	 varies	 least	 rapidly	 and	 the	 dimension	 corresponding	 to	 the	 last	 input	 channel	 varies	most	
rapidly.	Each	grid	point	value	is	an	S‐number	array,	where	S	is	the	number	of	steps	in	the	spectral	range.	
The	first	sequential	entry	contains	the	function	value	for	the	first	emission	array,	the	second	sequential	
entry	contains	the	function	value	for	the	second	emission	array,	and	so	on	until	all	of	the	emission	arrays	
have	been	supplied.	Formula	(11)	gives	the	computation	for	the	byte	size	of	the	CLUT.	

 G 0 	×	G 1 	×...	×	G P 1 	×	number	of	spectral	steps	 S 	×	number	of	encoding	type	bytes 	 (11)	

The	reference	white	emission	vector	shall	be	organized	as	an	array	of	s	elements	with	the	first	element	
corresponding	to	the	start	wavelength	(F),	and	the	last	element	corresponding	to	the	ending	wavelength	
(E)	with	the	intervening	S‐2	elements	corresponding	to	evenly	spaced	wavelengths	between	the	starting	
and	ending	wavelengths.	The	array	is	organized	as	shown	in	Formula	(12):	

white	array	=	[w1,	w2,	…,	wS]	 (12)	

The	colorimetric	 conversion	of	 the	emissive	CLUT	shall	be	determined	by	applying	white	normalized	
observer	CMFs	associated	with	the	PCC	to	each	CLUT	value	array,	resulting	in	a	CLUT	containing	value	
arrays	of	 tristimulus	values.	This	CLUT	shall	 then	be	used	 for	 transforming	 input	 channels	 to	 output	
channels	with	the	output	channels	being	defined	by	the	converted	colorimetric	arrays	in	the	CLUT,	as	
shown	in	Formulae	(13)	to	(15).	

1
1

2
2

3
S

e
O

e
O kC

O
e

,	 (13)	

,1 ,2 ,

,1 ,2 ,

,1 ,2 ,

x x x S

y y y S

z z z S

c c c

C c c c

c c c

,	 (14)	

 ,
1

1
S

y i i
i

k

c w

	 (15)	

If	the	observer	CMFs	have	a	different	sampling	range	they	shall	first	be	resampled	to	the	spectral	range	
defined	 by	 the	 processing	 element.	 For	 CIE	 relative	 colorimetric	 processing,	 normalization	 shall	 be	
performed	by	dividing	by	the	scalar	product	of	the	reference	white	vector	and	the	second	CMF	(cy).		

When	the	interpolation	hint	field	is	non	zero	the	CMM	should	utilize	the	interpolation	mechanism	implied	
by	the	value	of	the	interpolationTypeNumber	(see	4.2.x)	when	applying	an	emissionCLUTElement	type	
processing	element.	

11.2.5 emissionMatrixElement	

The	emissionMatrixElement	encodes	spectral	emission	information	for	chromatic	primaries	and	offset	
that	 shall	 be	 first	 converted	 to	 colorimetric	 information	which	 forms	 a	matrix	 that	 is	 used	 for	 pixel	
information.	

ICC.2:2023	

©	ICC	2023	–	All	rights	reserved	 131	

The	emission	matrix	element	encoding	is	shown	in	Table	115.	

Table	115	—	emissionMatrixElement	encoding	

Byte	
position	

Field	length	
(bytes)	

Content	 Encoded	as…	

0..3	 4	 ‘emtx’	(656d7478h)	type	signature	 		

4..7	 4	 Reserved,	shall	be	0	 		

8..9	 2	 Number	of	input	channels	(P)	 uInt16Number	

10..11	 2	 Number	of	output	channels	(Q)	 uInt16Number	

12..17	 6	
Spectral	data	wavelength	range:	start	(F),	end	(E),	
steps(S)	

spectralRange	

	

18..19	 2	 Absolute	flag	 uInt16Number	

20..20+	
4×S‐1	

4xS	 Spectral	emission	of	White	 float32Number[…]	

20+4×S..end	 4x(Q+1)xS	 Spectral	Matrix	Elements	 float32Number[…]	

The	number	of	input	channels	(P)	shall	match	the	number	of	input	channels	to	the	processing	element.	

The	number	of	output	channels	(Q)	shall	be	three.	

The	spectral	data	wavelength	range	field	encoded	as	a	spectralRange	shall	define	the	starting	wavelength	
(F),	ending	wavelength	(E),	and	number	of	steps	(S)	defined	for	the	reference	white	emission	vector	and	
spectral	matrix	elements.	The	number	of	steps	shall	be	two	or	greater.	

The	reference	white	emission	vector	shall	be	organized	as	an	array	of	S	elements	with	the	first	element	
corresponding	to	the	start	wavelength	(F),	and	the	last	element	corresponding	to	the	ending	wavelength	
(E)	with	the	intervening	S‐2	elements	corresponding	to	evenly	spaced	wavelengths	between	the	starting	
and	ending	wavelengths.	The	array	is	organized	as	shown	in	Formula	(16):	

white	array	=	[w1,	w2,	…,	wS]	 (16)	

The	spectral	matrix	encoding	shall	be	organized	as	an	array	of	S	×	Q	elements,	and	Q	is	the	number	of	
output	channels	to	the	matrix.	Wavelengths	shall	be	assigned	to	the	elements	of	each	row	with	the	first	
element	corresponding	to	 the	start	wavelength	(F),	and	the	 last	element	corresponding	to	 the	ending	
wavelength	(E)	with	the	intervening	S‐2	elements	corresponding	to	evenly	spaced	wavelengths	between	
the	starting	and	ending	wavelengths.	Each	matrix	array	element	is	a	float32Number.	The	matrix	array	is	
organized	as	shown	in	Formula	(17):	

matrix	array	=	[e11,	e12,	…,	e1S,	e21,	e22,	…,	e2S,	e31,	e32,	…,	e3S,	e1,	e2,	…,	eS]	 (17)	

The	elements	of	 this	array	shall	 first	be	converted	to	colorimetric	vectors	that	 form	a	matrix	(M)	and	
offset	vector,	and	then	the	matrix	M	and	offset	vector	shall	be	used	to	perform	colour	transformations	by	
the	processing	element	as	shown	in	Formula	(18):	

1 1 1

2 2 2

3 3 3

Y X O

Y M X O

Y X O

	 (18)	

The	range	of	the	input	values	X1,	X2,	…,	XP	and	output	values	Y1,	Y2,	…,	YQ	is	the	range	of	values	that	can	be	
represented	as	float32Number.	

The	colorimetric	matrix	M	and	offset	vector	shall	be	determined	by	applying	white	normalized	observer	
CMFs	 associated	 the	 PCC.	 If	 the	 observer	 CMFs	 have	 a	 different	 sampling	 range	 they	 shall	 first	 be	
resampled	to	the	spectral	range	defined	by	the	processing	element	as	shown	in	Formulae	(19)	to	(21).	

ICC.2:2023	

132	 ©	ICC	2023	–	All	rights	reserved	

11 21 1

12 12 2

1 2

P

P

S S PS

e e e

e e e
M kC

e e e

,		 (19)	

1
1

2
2

3
S

e
O

e
O kC

O
e

,	 (20)	

,1 ,2 ,

,1 ,2 ,

,1 ,2 ,

x x x S

y y y S

z z z S

c c c

C c c c

c c c

	 (21)	

If	the	Absolute	flag	is	zero	(for	CIE	relative	colorimetric	processing)	then	normalization	scalar	k	shall	be	
performed	by	dividing	by	the	scalar	product	of	the	reference	white	vector	and	the	second	CMF	(cy)	as	
shown	in	Formula	(22):	

 ,
1

1
S

y i i
i

k

c w

	 (22)	

Otherwise,	if	the	Absolute	flag	is	set	to	1	then	the	normalization	scalar	k	shall	be	1.	

11.2.6 emissionObserverElement	

The	emissionObserverElement	transforms	input	channel	data	into	output	channel	data	as	colorimetric	
representation	of	the	incoming	spectral	emission.	

The	emission	observer	element	encoding	is	shown	in	Table	116.	

Table	116	—	emissionObserverElement	encoding	

Byte	position	 Field	
length	
(bytes)	

Content	 Encoded	as…	

0..3	 4	 ‘eobs’	(656f6273h)	type	signature	 		

4..7	 4	 Reserved,	shall	be	0	 		

8..9	 2	 Number	of	input	channels	(P)	 uInt16Number	

10..11	 2	 Number	of	output	channels	(Q)	 uInt16Number	

12..17	 6	
Spectral	 data	 wavelength	 range:	 start	 (F),	
end(E),	steps(S)	

spectralRange	

	

18..19	 2	 Absolute	flag	 uInt16Number	

20..20+	4×S	‐	1	 4×S	 Spectral	emission	of	white	 float32Number[…]	

The	number	of	input	channels	(P)	shall	match	the	number	of	input	channels	to	the	processing	element.	

The	number	of	output	channels	(Q)	shall	be	three.	

ICC.2:2023	

©	ICC	2023	–	All	rights	reserved	 133	

The	spectral	data	wavelength	range	field	encoded	as	a	spectralRange	shall	define	the	starting	wavelength	
(F),	ending	wavelength	(E),	and	number	of	steps	(S)	defined	for	the	reference	white	emission	vector	and	
spectral	matrix	elements.	The	number	of	steps	shall	be	two	or	greater.	

The	reference	white	emission	vector	shall	be	organized	as	an	array	of	S	elements	with	the	first	element	
corresponding	to	the	start	wavelength	(F),	and	the	last	element	corresponding	to	the	ending	wavelength	
(E)	with	the	intervening	S‐2	elements	corresponding	to	evenly	spaced	wavelengths	between	the	starting	
and	ending	wavelengths.	The	array	is	organized	as	shown	in	Formula	(23):	

white	array	=	[w1,	w2,	…,	wS]	 (23)	

The	 colorimetric	 output	 channels	 shall	 be	 determined	 by	 applying	white	 normalized	 observer	 CMFs	
associated	the	PCC.	If	the	observer	CMFs	have	a	different	sampling	range	they	shall	first	be	resampled	to	
the	 spectral	 range	 defined	 by	 the	 processing	 element.	 For	 CIE	 relative	 colorimetric	 processing,	
normalization	shall	be	performed	by	dividing	by	the	scalar	product	of	the	reference	white	vector	and	the	
second	CMF	(cy).	

The	 conversion	 of	 input	 emission	 spectral	 channel	 data	 to	 colorimetric	 output	 channel	 data	 shall	 be	
calculated	as	shown	in	Formulae	(24)	to	(26):	

1
1

2
2

3
S

X
Y

X
Y kC

Y
X

,	 (24)	

,1 ,2 ,

,1 ,2 ,

,1 ,2 ,

x x x S

y y y S

z z z S

c c c

C c c c

c c c

,	 (25)	

 ,
1

1
S

y i i
i

k

c w

	 (26)	

11.2.7 extendedCLUTElement	

The	extendedCLUTElement	allows	for	the	encoding	of	a	colour	lookup	table	(CLUT)	using	a	flexible	and	
more	efficient	encoding	of	values.	Values	in	the	CLUT	can	be	encoded	using	uInt8Number,	uInt16Number,	
float16Number,	 and	 float32Number	 types.	 The	 encoding	 of	 an	 extended	 CLUT	 Element	 is	 defined	 in	
Table	117.	

Table	117	—	extendedCLUTElement	encoding	

Byte	position	 Field	
length	
(bytes)	

Content	 Encoded	as…	

0…3	 4	 'xclt'	(78636c74h)	type	
signature	

		

4…6	 3	 Reserved,	shall	be	0	 		

7	 1	 Interpolation	Hint	 interpolationHintType	

8…9	 2	 Number	of	input	channels	(P)	 uInt16Number	

10…11	 2	 Number	of	output	channels	(Q)	 uInt16Number	

12..15	 4	 CLUT	encoding	type	 uInt32Number	as	a	
valueEncodingType	

ICC.2:2023	

134	 ©	ICC	2023	–	All	rights	reserved	

	

16..31	 16	 Number	of	grid	points	for	each	
input	channel	(G)	

uInt8Number[16]	

32…end	 		 Data	for	CLUT	 Defined	by	CLUT	Encoding	
type	

The	number	of	input	channels	(P)	shall	be	greater	than	or	equal	to	1	and	less	than	or	equal	to	16.	

The	 CLUT	 appears	 as	 an	 n‐dimensional	 array,	 with	 each	 dimension	 having	 a	 number	 of	 entries	
corresponding	to	the	number	of	grid	points.	

The	CLUT	values	are	arrays	of	numbers	determined	by	the	CLUT	encoding	type.	

The	CLUT	is	organized	as	a	P‐dimensional	array	with	a	variable	number	of	grid	points	in	each	dimension,	
where	P	 is	 the	number	of	 input	 channels	 in	 the	 transform.	The	dimension	 corresponding	 to	 the	 first	
channel	 varies	 least	 rapidly	 and	 the	 dimension	 corresponding	 to	 the	 last	 input	 channel	 varies	most	
rapidly.	Each	grid	point	value	is	a	Q‐number	array,	where	Q	is	the	number	of	output	channels.	The	first	
sequential	entry	contains	 the	 function	value	 for	 the	 first	output	 function,	 the	second	sequential	entry	
contains	the	function	value	for	the	second	output	function	and	so	on	until	all	of	the	output	functions	have	
been	supplied.	Formula	(27)	gives	the	computation	for	the	byte	size	of	the	CLUT.	

 NGrid1	×	NGrid2	×...	×	NGridP	×	number	of	output	channels	 Q

	×	number	of	encoding	type	bytes
	 (27)	

When	the	interpolation	hint	field	is	non	zero	the	CMM	should	utilize	the	interpolation	mechanism	implied	
by	the	value	of	the	interpolationTypeNumber	(see	4.2.x)	when	applying	an	extendedCLUTElement	type	
processing	element.	

11.2.8 inverseEmissionMatrixElement	

The	 inverseEmissionMatrixElement	 encodes	 spectral	 emission	 row	 vector	 information	 for	 three	
trichromatic	primaries	and	offset	that	shall	be	first	converted	to	colorimetric	column	vector	information	
which	forms	a	matrix	that	is	inverted	before	applying	pixel	information.	

The	inverse	emission	matrix	element	shall	be	encoded	as	shown	in	Table	118.	

	

Table	118	—	inverseEmissionMatrixElement	encoding	

Byte	
position	

Field	
length	
(bytes)	

Content	 Encoded	as…	

0..3	 4	 ‘iemx’	(69656d78h)	type	signature	 		

4..7	 4	 Reserved,	shall	be	0	 		

8..9	 2	 Number	of	input	channels	(P)	 uInt16Number	

10..11	 2	 Number	of	output	channels	(Q)	 uInt16Number	

12..17	 6	
Spectral	data	wavelength	range:	start	(F),	end	
(E),	steps(S)	 spectralRange	

18..19	 2	 Reserved,	shall	be	0	 		

20..20+	
4×S	‐	1	

4×S	 Spectral	emission	of	white	 float32Number[…]	

20+	4×S	..	
end	

4×	(Q+1)	
×S	

Spectral	matrix	elements	 float32Number[…]	

ICC.2:2023	

©	ICC	2023	–	All	rights	reserved	 135	

The	number	of	input	channels	(P)	shall	be	3.	

The	number	of	output	channels	(Q)	shall	be	3.	

The	spectral	data	wavelength	range	field	encoded	as	a	spectralRange	shall	define	the	starting	wavelength	
(F),	ending	wavelength	(E),	and	number	of	steps	(S),	defined	for	the	reference	white	emission	vector	and	
spectral	matrix	elements.	The	number	of	steps	shall	be	two	or	greater.	

The	reference	white	emission	vector	shall	be	organized	as	an	array	of	S	elements,	with	the	first	element	
corresponding	to	the	start	wavelength	(F),	and	the	last	element	corresponding	to	the	ending	wavelength	
(E),	and	with	 the	 intervening	S‐2	elements	corresponding	 to	evenly	spaced	wavelengths	between	 the	
starting	and	ending	wavelengths.	The	array	is	organized	as	shown	in	Formula	(28):	

white	array	=	[w1,	w2,	…,	wS]	 (28)	

The	spectral	matrix	encoding	shall	be	organized	as	an	array	of	S	×	Q	element,	and	Q	is	the	number	of	
output	channels	to	the	matrix.	Wavelengths	shall	be	assigned	to	the	elements	of	each	row	with	the	first	
element	corresponding	to	 the	start	wavelength	(F),	and	the	 last	element	corresponding	to	 the	ending	
wavelength	(E)	with	the	intervening	S‐2	elements	corresponding	to	evenly	spaced	wavelengths	between	
the	starting	and	ending	wavelengths.	Each	matrix	array	element	is	a	float32Number.	The	matrix	array	is	
organized	as	shown	in	Formula	(29):	

matrix	array	=	[e11,	e12,	…,	e1S,	e21,	e22,	…,	e2S,	e31,	e32,	…,	e3S,	e1,	e2,	…,	eS]	 (29)	

The	elements	of	 this	array	shall	 first	be	converted	to	colorimetric	vectors	that	 form	a	matrix	(M)	and	
offset	vector,	and	then	the	inverse	of	the	colorimetric	matrix	M‐1	and	offset	vector	shall	be	used	to	perform	
colour	transformations	by	the	processing	element	as	shown	in	Formula	(30):	

1 1 1
1

2 2 2

3 3 3

Y X O

Y M X O

Y X O

	 (30)	

The	range	of	the	input	values	X1,	X2,	…,	XP	and	output	values	Y1,	Y2,	…,	YQ	is	the	range	of	values	that	can	be	
represented	as	float32Number.	

The	colorimetric	matrix	M	and	offset	vector	shall	be	determined	by	applying	white	normalized	observer	
CMFs	 associated	 the	 PCC.	 If	 the	 observer	 CMFs	 have	 a	 different	 sampling	 range	 they	 shall	 first	 be	
resampled	 to	 the	 spectral	 range	 defined	 by	 the	 processing	 element.	 For	 CIE	 relative	 colorimetric	
processing,	normalization	shall	be	performed	by	dividing	by	the	scalar	product	of	the	reference	white	
vector	and	the	second	CMF	(cy),	as	shown	in	Formulae	(31)	to	(33).	

11 21 31

12 22 32

1 2 3S S S

e e e

e e e
M kC

e e e

,		 (31)	

1
1

2
2

3
S

e
O

e
O kC

O
e

,	 (32)	

,1 ,2 ,

,1 ,2 ,

,1 ,2 ,

x x x S

y y y S

z z z S

c c c

C c c c

c c c

	 (33)	

ICC.2:2023	

136	 ©	ICC	2023	–	All	rights	reserved	

If	the	Absolute	flag	is	zero	(for	CIE	relative	colorimetric	processing)	then	normalization	scalar	k	shall	be	
calculated	by	dividing	by	the	scalar	product	of	the	reference	white	vector	and	the	second	CMF	(cy)	as	
shown	in	Formula	(34):	

 ,
1

1
S

y i i
i

k

c w

	 (34)	

Otherwise,	if	the	Absolute	flag	is	set	to	1	then	the	normalization	scalar	k	shall	be	1.	

11.2.9 JabToXYZElement	

The	XYZToJabElement	allows	for	the	encoding	of	appearance	parameters	for	the	purpose	of	converting	
from	colorimetry	under	the	viewing	conditions	to	CIECAM02	Cartesian	appearance	correlates	Jab.	

The	encoding	of	a	JabToXYZElement	is	shown	in	Table	119.	

Table	119	—	JabToXYZElement	encoding	

Byte	position	 Field	length	(bytes)	 Content	 Encoded	as…	

0…3	 4	 ‘JtoX’	(4a746f58h)	type	signature	 		

4…7	 4	 Reserved,	shall	be	0	 		

8…9	 2	 Number	of	input	channels	(P)	 uInt16Number	

10…11	 2	 Number	of	output	channels	(Q)	 uInt16Number	

12…23	 12	 White	point	XYZ	 floatXYZNumber

24…27	 4	 Luminance	in	cd/m2	 float32Number	

28…31	 4	 Background	luminant	in	cd/m2	 float32Number	

32…35	 4	 Impact	of	surround	(ranging	from	0,0	to	1,0)	 float32Number	

36..39	 4	 Chromatic	induction	factor	 float32Number	

40…43	 4	 Adaptation	factor	 float32Number	

Both	the	number	of	input	channels	(P)	and	number	of	output	channels	(Q)	shall	be	three.	

The	logic	to	convert	XYZToJab	is	given	in	Annex	C.	

11.2.10 matrixElement	

The	matrix	is	organized	as	an	array	of	P	×	Q	elements,	where	P	is	the	number	of	input	channels	to	the	
matrix,	and	Q	is	the	number	of	output	channels.	Each	matrix	elements	is	a	float32Number.	The	array	is	
organized	as	shown	in	Formula	(35):	

array	=	[e11,	e12,	…,	e1P,	e21,	e22,	…,	e2P,	…,	eQ1,	eQ2,	…,	eQP,	e1,	e2,	…,	eQ]	 (35)	

The	matrix	element	encoding	is	shown	in	Table	120.	

Table	120	—	Matrix	Element	encoding	

Byte	
position	

Field	length	
(bytes)	

Content	 Encoded	as…	

0..3	 4	 ‘matf’	(6D617466h)	type	signature	 		

4..7	 4	 Reserved,	shall	be	0	 		

8..9	 2	 Number	of	input	channels	(P)	 uInt16Number	

10..11	 2	 Number	of	output	channels	(Q)	 uInt16Number	

ICC.2:2023	

©	ICC	2023	–	All	rights	reserved	 137	

12..end	 4x(P+1)xQ	 Matrix	elements	 float32Number[…]	

The	matrix	is	used	to	convert	data	to	a	different	colour	space,	according	to	Formula	(36):	

1 11 12 1 11

2 21 22 2 22

1 2

...

...

...

P

P

Q Q Q QP QP

Y e e e eX

Y e e e eX

Y e e e eX

	 (36)	

The	range	of	the	input	values	X1,	X2,	…,	XP	and	output	values	Y1,	Y2,	…,	YQ	is	the	range	of	values	that	can	be	
represented	as	float32Number.	

11.2.11 sparseMatrixElement	

The	sparseMatrixElement	is	organized	as	a	P‐dimensional	LUT	with	a	variable	number	of	grid	points	in	
each	dimension,	where	P	is	the	number	of	input	channels	in	the	transform.	The	dimension	corresponding	
to	the	first	channel	varies	least	rapidly	and	the	dimension	corresponding	to	the	last	input	channel	varies	
most	rapidly.	Each	grid	point	value	is	a	sparse	matrix	of	B	bytes.	

When	used,	the	byte	assignment	and	encoding	for	the	sparseMatrixElement	shall	be	as	given	in	Table	121.	

Table	121	—	sparseMatrixElement	encoding	

Byte	position	 Field	
length	
(bytes)	

Content	 Encoded	as…	

0…3	 4	 'smet'	(736d6574h)	type	signature	 		

4…7	 4	 Reserved,	shall	be	0	 		

8…9	 2	 Number	of	input	channels	(P)	 uInt16Number	

10…11	 2	 Number	of	equivalent	output	channels	
reserved	for	internal	sparse	matrix	
encoding	(Q)	

uInt16Number	

12..13	 2	 Sparse	matrix	LUT	encoding	type	 sparseMatrixEncodingType	

Byte	position	 Field	
length	
(bytes)	

Content	 Encoded	as…	

14..15	 2	 Reserved,	shall	be	0	 		

16..31	 16	 Number	of	grid	points	for	each	input	
channel	(G)	

uInt8Number[16]	

32…end	 		 LUT	of	sparse	matrices	 sparseMatrixUInt8[]	or	

sparseMatrixUInt16[]	or	

sparseMatrixFloat16[]	or	

sparseMatrixFloat32[]	

The	equation	for	computing	the	number	of	sparse	matrices	in	the	LUT	of	sparse	matrices	is	as	shown	in	
Formula	(37):	

numMatrices	=	NGrid1	*	NGrid2	*...	*	NGridP	 (37)	

The	sparse	matrices	encoded	in	the	LUT	of	sparse	matrices	shall	use	compact	padding	resulting	in	the	
Matrix	Entry	Data	Values	and	end	of	each	sparse	matrix	being	aligned	on	a	4‐byte	boundary.	

ICC.2:2023	

138	 ©	ICC	2023	–	All	rights	reserved	

All	sparse	matrices	in	the	sparseMatrixElement	shall	have	the	same	number	of	rows	and	columns.	

11.2.12 reflectanceCLUTElement	

The	reflectanceCLUTElement	encodes	spectral	reflectance	information	as	entries	of	a	colour	lookup	table	
(CLUT)	 that	 are	 first	 converted	 to	 colorimetric	 information	before	 applying	 interpolation	 to	 perform	
colour	transformations.	

The	reflectanceCLUTElement	allows	for	the	encoding	of	a	colour	lookup	table	(CLUT)	using	flexible	and	
more	efficient	encoding	of	values.	Values	in	the	CLUT	can	be	encoded	using	uInt8Number,	uInt16Number,	
float16Number,	 and	 float32Number	 types.	 The	 encoding	 of	 a	 reflectanceCLUTElement	 is	 defined	 in	
Table	122.	

Table	122	—	reflectanceCLUTElement	encoding	

Byte	position	 Field	
length	
(bytes)	

Content	 Encoded	as…	

0…3	 4	 'rclt'	(72636c74h)	type	signature	 		

4…6	 3	 Reserved,	shall	be	0	 		

7	 1	 Interpolation	Hint	 interpolationHintType	

8…9	 2	 Number	of	input	channels	(P)	 uInt16Number	

10…11	 2	 Number	of	output	channels	(Q)	 uInt16Number	

12..15	 4	 Flags	 uInt16Number	

16..21	
6	

Spectral	data	wavelength	range:	
start	(F),	end	(E),	steps	(S)	

spectralRange	

22..23	 2	 CLUT	Encoding	type	(T)	 uInt16Number	as	a	valueEncodingType	

24..39	 16	 Number	of	grid	points	for	each	
input	channel	(G)	

uInt8Number[16]	

40…40+M‐1	 M	 Data	for	CLUT	 Defined	by	CLUT	Encoding	type	(T)	

40+M..40+M+N‐1	 N	 Spectral	reflectance	of	white	 Defined	by	CLUT	Encoding	type	(T)	

The	number	of	input	channels	(P)	shall	be	greater	than	or	equal	to	one	and	less	than	or	equal	to	16.	

The	number	of	output	channels	(Q)	shall	be	3.	

The	 CLUT	 appears	 as	 an	 n‐dimensional	 array,	 with	 each	 dimension	 having	 a	 number	 of	 entries	
corresponding	to	the	number	of	grid	points.	

The	CLUT	values	are	arrays	of	numbers	defining	reflectance	vectors	determined	by	the	CLUT	Encoding	
type	(T),	as	shown	in	Formula	(38).	

matrix	array	=	[r1,	r2,	…,	rS]	 (38)	

The	spectral	data	wavelength	range	field	encoded	as	a	spectralRange	shall	define	the	starting	wavelength	
(F),	ending	wavelength	(E),	and	number	of	steps	(S)	defined	for	the	reference	white	media	vector	and	
spectral	CLUT	elements.	The	number	of	steps	shall	be	two	or	greater.	

The	CLUT	is	organized	as	a	P‐dimensional	array	with	a	variable	number	of	grid	points	in	each	dimension,	
where	P	 is	 the	number	of	 input	 channels	 in	 the	 transform.	The	dimension	 corresponding	 to	 the	 first	
channel	 varies	 least	 rapidly	 and	 the	 dimension	 corresponding	 to	 the	 last	 input	 channel	 varies	most	
rapidly.	Each	grid	point	value	is	an	S‐number	array,	where	S	is	the	number	of	steps	in	the	spectral	range.	
The	first	sequential	entry	contains	the	function	value	for	the	first	reflectance	array,	the	second	sequential	
entry	contains	the	function	value	for	the	second	reflectance	array	and	so	on	until	all	of	the	reflectance	
arrays	have	been	supplied.	Formula	(39)	gives	the	computation	for	the	byte	size	of	the	CLUT.	

ICC.2:2023	

©	ICC	2023	–	All	rights	reserved	 139	

NGrid1	×	NGrid2	×...	×	NGridP	×	number	of	spectral	steps	(S)	×	number	of	encoding	type	bytes	 (39)	

The	reference	white	reflectance	vector	shall	be	organized	as	an	array	of	s	elements	with	the	first	element	
corresponding	to	the	start	wavelength	(F),	and	the	last	element	corresponding	to	the	ending	wavelength	
(E)	with	the	intervening	S‐2	elements	corresponding	to	evenly	spaced	wavelengths	between	the	starting	
and	ending	wavelengths.	The	array	is	organized	as	shown	in	Formula	(40):	

white	array	=	[w1,	w2,	…,	wS]	 (40)	

The	 colorimetric	 conversion	 of	 the	 reflectance	 CLUT	 shall	 be	 determined	 by	 applying	 normalized	
observer	CMFs	associated	the	PCC	to	each	CLUT	value	array	resulting	in	a	CLUT	containing	value	arrays	
of	tristimulus	values.	This	CLUT	shall	then	be	used	for	transforming	input	channels	to	output	channels	
with	the	output	channels	being	defined	by	the	converted	colorimetric	arrays	in	the	CLUT,	as	shown	in	
Formulae	(41)	and	(42).	

1
1

2
2

3
S

r
O

r
O kC

O
r

,	 (41)	

,1 1 ,2 2 ,

,1 1 ,2 2 ,

,1 1 ,2 2 ,

x x x S S

y y y S S

z z z S S

c l c l c l

C c l c l c l

c l c l c l

,	and	 (42)	

 ,
1

1
S

y i i
i

k

c w

	

where	

		 cx,	cy	and	cz	 are	normalized	observer	colour	matching	functions	with	S entries.	

The	spectral	reflectances	and	observer	CMFs	shall	be	resampled	if	they	differ	from	the	sampling	range	of	
the	illuminant.	

For	relative	colorimetric	processing	(when	the	Absolute	flag	is	zero)	the	illuminant	white	point	from	the	
PCC	and	media	white	point	(calculated	based	on	the	white	array,	observer	and	illuminant	from	the	PCC	
used	to	determine	the	initial	reflectance	CLUT	colorimetry)	shall	be	used	additionally	to	normalize	each	
of	the	entries	in	the	CLUT,	as	shown	in	Formulae	(43)	to	(46).	

1 1

2 2

3 3

'

'

'

O O

O M O

O O

,	 (43)	

,

,

,

,

,
,

0 0

0 0

0 0

w x

w x

w y

w y

w z
w z

l
m

l
M m

l
m

,	 (44)	

ICC.2:2023	

140	 ©	ICC	2023	–	All	rights	reserved	

, ,
1

S

w x x i i
i

l c l ,	

, ,
1

S

w y y i i
i

l c l ,	

 , ,
1

S

w z z i i
i

l c l ,	and	 (45)	

1
,

2
,

,

w x

w y

w z
S

w
m

w
m kC

m
w

	 (46)	

where	

		 l	 is	the	spectral	power	distribution	of	the	PCC	illuminant	white	point.

	

When	the	interpolation	hint	field	is	non	zero	the	CMM	should	utilize	the	interpolation	mechanism	implied	
by	the	value	of	the	interpolationTypeNumber	(see	4.2.x)	when	applying	a	reflectanceCLUTElement	type	
processing	element.	

11.2.13 reflectanceObserverElement	

The	reflectanceObserverElement	transforms	input	channel	data	into	output	channel	data	as	colorimetric	
representation	of	the	incoming	spectral	reflectance.	

The	emission	observer	element	encoding	is	shown	in	Table	123.	

Table	123	—	reflectanceObserverElement	encoding	

Byte	position	 Field	length	
(bytes)	

Content	 Encoded	as…	

0..3	 4	 ‘robs’	(726f6273h)	type	signature	 		

4..7	 4	 Reserved,	shall	be	0	 		

8..9	 2	 Number	of	input	channels	(P)	 uInt16Number	

10..11	 2	 Number	of	output	channels	(Q)	 uInt16Number	

12..17	 6	 Spectral	data	wavelength	range:	start	(F),	
end(E),	steps(S)	

spectralRange	

18..19	 2	 Absolute	flag	 uInt16Number	

20..20+	4×S	‐	1	 4×S	 Spectral	reflectance	of	white	 float32Number[…]	

The	number	of	input	channels	(P)	shall	match	the	number	of	input	channels	to	the	processing	element.	

The	number	of	output	channels	(Q)	shall	be	three.	

The	spectral	data	wavelength	range	field	encoded	as	a	spectralRange	shall	define	the	starting	wavelength	
(F),	ending	wavelength	(E),	and	number	of	steps	(S)	defined	for	the	reference	white	emission	vector	and	
spectral	matrix	elements.	The	number	of	steps	shall	be	two	or	greater.	

The	reference	white	reflectance	vector	shall	be	organized	as	an	array	of	S	elements	with	the	first	element	
corresponding	to	the	start	wavelength	(F),	and	the	last	element	corresponding	to	the	ending	wavelength	
(E)	with	the	intervening	S‐2	elements	corresponding	to	evenly	spaced	wavelengths	between	the	starting	
and	ending	wavelengths.	The	array	is	organized	as	shown	in	Formula	(47):	

white	array	=	[w1,	w2,	…,	wS]	 (47)	

The	colorimetric	conversion	of	incoming	reflectance	vectors	shall	be	determined	by	applying	normalized	
observer	CMFs	associated	the	PCC	to	each	CLUT	value	array	resulting	in	a	CLUT	containing	value	arrays	
of	tristimulus	values.	This	CLUT	shall	then	be	used	for	transforming	input	channels	to	output	channels	

ICC.2:2023	

©	ICC	2023	–	All	rights	reserved	 141	

with	the	output	channels	being	defined	by	the	converted	colorimetric	arrays	in	the	CLUT,	as	shown	in	
Formulae	(48)	to	(50).	

1
1

2
2

3
S

r
O

r
O kC

O
r

,	 (48)	

,1 1 ,2 2 ,

,1 1 ,2 2 ,

,1 1 ,2 2 ,

x x x S S

y y y S S

z z z S S

c l c l c l

C c l c l c l

c l c l c l

,	and	 (49)	

 ,
1

1
S

y i i
i

k

c w

	 (50)	

The	spectral	reflectances	and	observer	CMFs	shall	be	resampled	if	they	differ	from	the	sampling	range	of	
the	illuminant.	

For	relative	colorimetric	processing	(when	the	Absolute	flag	is	zero)	the	illuminant	white	point	from	the	
PCC	and	media	white	point	(calculated	based	on	the	white	array,	observer	and	illuminant	from	the	PCC	
used	to	determine	the	initial	reflectance	colorimetry)	shall	be	used	to	additionally	normalize	the	output	
colorimetry,	as	shown	in	Formulae	(51)	to	(54).	

1 1

2 2

3 3

'

'

'

O O

O M O

O O

,	 (51)	

,

,

,

,

,
,

0 0

0 0

0 0

w x

w x

w y

w y

w z
w z

l
m

l
M m

l
m

,	 (52)	

, ,
1

S

w x x i i
i

l c l ,	

, ,
1

S

w y y i i
i

l c l ,	

 , ,
1

S

w z z i i
i

l c l ,	and	 (53)	

1
,

2
,

,

w x

w y

w z
S

w
m

w
m kC

m
w

	 (54)	

11.2.14 tintArrayElement	

The	tint	tintArrayElement	allows	for	the	encoding	of	a	one‐dimensional	input	to	n‐dimensional	output	
colour	lookup	transform	using	flexible	encoding	of	values.	

NOTE	 This	 processing	 element	 differs	 from	 the	 segmentedCurve,	 which	 defines	 independent	 1‐dimension	
transformations	for	n‐dimensional	input,	thus	resulting	in	an	N‐dimension	to	N‐dimension	transform.	

ICC.2:2023	

142	 ©	ICC	2023	–	All	rights	reserved	

Values	 in	 the	 tint	 array	 can	 be	 encoded	 using	 uInt8Number,	 uInt16Number,	 float16Number,	 and	
float32Number	types.	The	range	of	uInt8Number	and	uInt16Number	values	shall	correspond	to	output	
channel	values	ranging	from	0,0	to	1,0.	The	encoding	of	a	tintArrayElement	is	defined	in	Table	124.	

Table	124	—	tintArrayElement	encoding	

Byte	position	 Field	
length	
(bytes)	

Content	 Encoded	as…	

0…3	 4	 'tint'	(74696e74h)	type	signature	 		

4…7	 4	 Reserved,	shall	be	0	 		

8…9	 2	 Number	of	input	channels	(P)	 uInt16Number	

10…11	 2	 Number	of	output	channels	(Q)	 uInt16Number	

12..15	 4	 Tint	encoding	type	 uInt32Number	as	a	
valueEncodingType	

16..19	 4	 Reserved,	shall	be	0	 		

20…end	 		 Tint	array	 Defined	by	Tint	Encoding	type	

The	number	of	input	channels	(P)	shall	be	one.	

The	number	of	entries	in	the	tint	array	shall	be	evenly	divisible	by	the	number	of	Output	Channels	(Q)	
and	there	shall	be	at	least	2Q	entries	in	the	TintArray.	

The	first	Q	values	in	the	tint	array	shall	define	the	output	channel	values	for	an	input	tint	of	0,0.	The	last	
Q	values	 in	 the	tint	array	shall	define	the	output	channel	values	 for	an	 input	 tint	of	1,0.	 Intermediate	
entries	in	the	tint	array	shall	define	output	values	for	a	uniform	sampling	of	the	input	tint	value.	

Output	values	for	intermediate	tint	values	shall	be	defined	using	linear	interpolation	of	corresponding	
channel	entries.	

If	an	input	tint	is	less	than	0,0	then	the	output	shall	be	for	an	input	tint	of	0,0.	If	an	input	tint	is	greater	
than	1,0	then	the	output	shall	be	for	an	input	tint	of	1,0.	

11.2.15 toneMapElement	

The	toneMapElement	allows	for	luminance‐based	tone	mapping	to	be	applied	to	a	set	of	input	channels.	
The	luminance	will	have	been	determined	prior	to	applying	this	element	as	the	last	input	channel	value.	
Tone	mapping	involves	applying	a	curve	to	the	luminance	value	and	then	a	mapping	function	is	applied	
to	each	of	the	non‐luminance	input	values	along	with	the	adjusted	luminance.	

The	number	of	output	channels	(P)	shall	be	equal	to	one	less	than	the	number	of	input	Channels	(Q).	

The	encoding	of	a	toneMapElement	shall	be	as	found	in	Table	124.	

Table	124	—	toneMappingElement	encoding	

Byte	position	 Field	
length	
(bytes)	

Content	 Encoded	as…	

0…3	 4	 'tmap'	(746d6170h)	type	signature	 		

4…7	 4	 Reserved,	shall	be	0	 		

8…9	 2	 Number	of	input	channels	(P)	 uInt16Number	

10…11	 2	 Number	of	output	channels	(Q)	 uInt16Number	

12..19	 8	 Luminanc	curve	position	(offset	and	
size	

positionNumber	

ICC.2:2023	

©	ICC	2023	–	All	rights	reserved	 143	

20..19+8Q	 8Q	 Output	channel	tone	mapping	
function	positions	

positionNumber	

20+8Q..end	 	 Data	 	

The	toneMapElement	is	applied	to	input	channels	as	follows:	

First	the	luminance	curve	is	applied	to	the	last	input	channel	(index	P‐1)	to	get	a	mapped	luminance	value	
(M).	 	 The	 luminance	 curve	 shall	 be	 encoded	 as	 a	 singleSampledCurve	 (see	 11.2.2.2),	 a	
sampledCalculatorCurve	(see	11.2.2.3),	or	a	segmentedCurve	(see	11.2.2.4).	

Then	 output	 channel	 values	 are	 determined	 by	 applying	 respective	 output	 channel	 tone	 mapping	
functions	to	the	first	(Q)	input	channels	along	with	(M)	value.		(see	functions	in	Table	124c).	

Table	124b	—	Tone	mapping	function	

Byte	position	 Field	length	
(bytes)	

Content	 Encoded	as…	

0..3	 4	 ‘mapf’	(6d617066h	type	signature	 		
4..7	 4	 Reserved,	shall	be	0	 		
8..9	 2	 Encoded	value	of	the	mapping	function	type	 uInt16Number	
10..11	 2	 Reserved,	shall	be	0	 		
12..end	 See		 Parameters	(see	Table	124c)	 float32Number[…]	

	

The	encoding	for	the	mapping	function	type	field	and	the	parameters	is	shown	in	Table	124c.	

Table	124c	—	Mapping	function	type	encoding	

Field	length	
(bytes)	

Function	type	 Encoded	value	 Parameters	

16	 Y=a*M*(X	+	b)	+	c	 0000h	 a,	b	

	

The	encoding	of	the	luminance	curve	shall	be	padded	with	up	to	3	zero	bytes	to	result	in	4	byte	alignement	

The	encoding	of	a	channel	tone	mapping	function	shall	be	as	found	in	Table	124b.	

Output	 tone	 mapping	 functions	 can	 be	 shared	 between	 output	 channels	 by	 having	 identical	
positionNumber	values.		Otherwise,	there	shall	be	no	overlaps	of	or	voids	between	the	luminance	curve	
and	the	ouput	tone	mapping	functions.	

11.2.16 XYZToJabElement	

The	XYZToJabElement	allows	for	the	encoding	of	appearance	parameters	for	the	purpose	of	converting	
from	colorimetry	under	the	viewing	conditions	to	CIECAM02	Cartesian	appearance	correlates	Jab.	

The	encoding	of	an	XYZToJabElement	is	shown	in	Table	125.	

	

	

Table	125	—	XYZToJabElement	encoding	

Byte	position	 Field	length	
(bytes)	

Content	 Encoded	as…	

0…3	 4	 ‘XtoJ’	(58746f4ah)	type	signature	 		

4…7	 4	 Reserved,	shall	be	0	 		

ICC.2:2023	

144	 ©	ICC	2023	–	All	rights	reserved	

8…9	 2	 Number	of	input	channels	(P)	 uInt16Number	

10…11	 2	 Number	of	output	channels	(Q)	 uInt16Number	

12…23	 12	 White	Point	XYZ	 floatXYZNumber	

24…27	 4	 Luminance	in	cd/m2	 float32Number	

28…31	 4	 Background	luminance	in	cd/m2	 float32Number	

32…35	 4	 Impact	of	surround	

(ranging	from	0,0	to	1,0)	

float32Number	

36..39	 4	 Chromatic	induction	factor	 float32Number	

40…43	 4	 Adaptation	factor	 float32Number	

Both	the	number	of	input	channels	(P)	and	number	of	output	channels	(Q)	shall	be	three.	
The	logic	to	convert	XYZToJab	is	given	in	Annex	C.	

11.2.17 “Future”	expansion	elements	

The	‘bACS’	and	‘eACS’	element	types	were	provided	in	version	4.3	as	placeholders	for	future	expansion.	
The	intent	of	these	elements	has	been	superseded	by	the	full	specification	of	a	spectrally‐based	PCS	in	
this	document.	If	used,	these	elements	shall	be	considered	as	pass	through	elements	with	no	modification	
of	channel	data.	Their	encoding	shall	be	as	shown	in	Table	126	and	Table	127.	

Table	126	—	bACS	element	encoding	

Byte	position	 Field	length	
(bytes)	

Content	 Encoded	as…	

0…3	 4	 ‘bACS’	(62414353h)	type	signature	 		

4…7	 4	 Reserved,	shall	be	0	 		

8…9	 2	 Number	of	input	channels	(P)	 uInt16Number	

10…11	 2	 Number	of	output	channels	(Q)	 uInt16Number	

12…15	 4	 Signature	 		

Table	127	—	eACS	element	encoding	

Byte	position	 Field	length	
(bytes)	

Content	 Encoded	as…	

0…3	 4	 ‘eACS’	(65414353h)	type	signature	 		

4…7	 4	 Reserved,	shall	be	0	 		

8…9	 2	 Number	of	input	channels	(P)	 uInt16Number	

10…11	 2	 Number	of	output	channels	(Q)	 uInt16Number	

12…15	 4	 Signature	 		

For	both	the	‘bACS’	and	‘eACS’	element	types	the	number	of	input	channels	(P)	shall	be	the	same	as	the	
number	of	output	channels	(Q).	

ICC.2:2023	

©	ICC	2023	–	All	rights	reserved	 145	

12 Struct	tag	type	definitions	

12.1 General	

The	tagStructType	tag	type	provides	the	means	of	associating	multiple	tag	elements	into	a	single	data	
structure	with	 each	 contained	 sub‐tag	 element	 having	 a	 unique	 signature.	 Each	 tagStructType	 has	 a	
Structure	Type	Identifier	that	shall	be	used	to	identify	the	possible	sub‐tag	element	s	and	the	purposes	
for	each	sub‐tag	element	in	the	structure.	

The	public	tagStructType	tag	structure	types	defined	by	the	ICC	are	listed	in	12.2	in	alphabetical	order.	

12.2 Struct	tag	type	listing	

12.2.1 brdfTransformStructure	

12.2.1.1 General	

Structure	Type	Identifier:	'brdf'	(62726466h).	

The	brdfTransformStructure	defines	information	used	to	transform	device	values	to	BRDF	parameters	
that	 can	 be	 used	 to	 simulate	 colour	 appearance	 under	 various	 viewing/illumination	 geometries.	
Table	128	shows	publically	defined	element	sub‐tag	members	of	a	brdfStructure.	Descriptions	for	each	
sub‐tag	member	can	be	found	in	12.2.1.2.	

Table	128	—	brdfTransformStructure	element	sub‐tags	

Id	 Signature	 Description	 Sub‐tag	type	 Use	

brdfTypeMbr	 'type'	
(74797065h)	

Type	of	BRDF	colour	
–	‘mono’	or	‘colr’	
(see	12.2.1.2.1)	

signature	 Required	

brdfFunctionMbr	 'func'	
(66756e63h)	

BRDF	function	
signature	(see	
12.2.1.2.2)	

signature	 Required	

brdfParamsPerChannel
Mbr	

'nump'	
(6e756d70h)	

Number	of	BRDF	
parameters	stored	
per	output	channel	
in	xform	(see	
12.2.1.2.3)	

uInt16Number	 Required	

brdfTransformMbr	 'xfrm'	
(7866726dh)	

The	transform	(see	
12.2.1.2.4)	

multiProcessElement	 Required	

12.2.1.2 brdfTransformStructure	sub‐tag	member	elements	

12.2.1.2.1 brdfTypeMbr	

Tag	element	signature:	'type'	(74797065h).	

Permitted	tag	element	types:	signature.	

Element	usage:	required.	

The	brdfTransformStructure	brdfTypeMbr	element	defines	the	type	of	BRDF	transform.	

If	the	brdfTypeMbr	sub‐tag	contains	the	signature	‘mono’	(6d6f6e6fh)	then	the	brdfTransform	sub‐tag	
shall	be	assumed	to	define	output	BRDF	parameters	using	only	a	single	channel	of	data.	The	total	number	
of	parameters	shall	be	defined	by	the	value	stored	in	the	paramsPerChannel	sub‐tag	element.	

If	 the	brdfTypeMbr	 sub‐tag	 contains	 the	 signature	 ‘colr’	 (636f6c72h)	 then	 the	brdfTransform	 sub‐tag		
shall		be		assumed		to	define		output		BRDF		parameters		for		each		channel	defined	by	the	associated	PCS		

ICC.2:2023	

146	 ©	ICC	2023	–	All	rights	reserved	

elements	in	the	header.	The	total	number	of	parameters	for	each	output	entry	shall	be	defined	as	the	
number	of	PCS	channels	multiplied	by	the	value	stored	in	the	paramsPerChannel	sub‐tag	element.	

12.2.1.2.2 brdfFunctionMbr	

Tag	element	signature:	'func'	(66756e63h).	

Permitted	tag	element	types:	signature.	

Element	usage:	required.	

The	brdfTransformStructure	brdfFunctionMbr	element	shall	contain	a	signature	representing	the	BRDF	
function	to	be	used.	Table	129	shows	the	signatures	and	function	types	that	are	defined.	Additional	BRDF	
function	 signatures	 may	 be	 registered	 at	 the	 ICC	 signature	 registry	 at	 http://www.color.org	 (see	
Clause	5).	

Table	129	—	brdfTransformStructure	brdfTypeMbr	signatures	

Signature	 Description	 Implied	number	
of	parameters	

‘BPh0‘	(42506830h)	 Blinn‐Phong	with	monochrome	parameters	 4	

‘BPh1’	(42506831h)	 Blinn‐Phong	with	full	colour	parameters	 3	

‘CT10’	(43543130h)	 Cook‐Torrance	with	1	lobe	and	monochrome	parameters	 6	

‘CT20’	(43543230h)	 Cook‐Torrance	with	2	lobes	and	monochrome	parameters	 9	

‘CT30’	(43543330h)	 Cook‐Torrance	with	3	lobes	and	monochrome	parameters	 11	

‘CT11’	(43543131h)	 Cook‐Torrance	with	1	lobe	and	full	colour	parameters	 5	

‘CT21’	(43543231h)	 Cook‐Torrance	with	2	lobes	and	full	colour	parameters	 8	

‘CT31’	(43543331h)	 Cook‐Torrance	with	3	lobes	and	full	colour	parameters	 10	

‘War0’	(57617230h)	 Ward	with	monochrome	parameters	 5	

‘War1’	(57617231h)	 Ward	with	full	colour	parameters	 4	

‘La10’	(4c613130h)	 Lafortune	with	1	lobe	and	monochrome	parameters?	 9	

‘La20’	(4c613230h)	 Lafortune	with	2	lobes	and	monochrome	parameters?	 16	

‘La30’	(4c613330h)	 Lafortune	with	3	lobes	and	monochrome	parameters?	 23	

‘La11’	(4c613131h)	 Lafortune	with	1	lobe	and	chromatic	parameters?	 5	

‘La21’	(4c613231h)	 Lafortune	with	2	lobes	and	chromatic	parameters?	 9	

‘La31’	(4c613331h)	 Lafortune	with	3	lobes	and	chromatic	parameters?	 13	

The	lighting	equation	used	by	the	Blinn‐Phong	reflectance	model	is	as	shown	in	Formula	(55):	

 , ,
lights

n
P d m m d s m m s

m

I k L N i k N H i 	 (55)	

where	

		 im,d	 is	the	intensity	of	the	diffuse	component	of	light	in	normalised	digital		counts;	

		 im,s	 is	the	intensity	of	the	specular	component	of	light	in	normalised	digital		counts;	

		 mL 	 is	the	direction	vector	from	the	light	to	the	location	on	the	surface;	

ICC.2:2023	

©	ICC	2023	–	All	rights	reserved	 147	

		 N 	 is	the	normal	for	the	location	on	the	surface;	

		 mH 	 is	the	direction	vector	midway	between	L	and	the	viewpoint	vector	V;	

		 IP	 is	the	total	light	reflected	from	the	surface	of	the	object	towards	the	viewer	in	normalised	
digital	counts.	

The	following	are	the	Blinn‐Phong	parameters	that	specify	the	material:	

		 kd	 is	the	diffuse	reflection	constant	for	the	material;	

		 ks	 is	the	specular	reflection	constant	for	the	material;	

		 n	 is	the	shininess	constant	for	the	material.	

For	 the	 full	 colour	Blinn‐Phong	 function	 the	 three	parameters	 shall	 be	kd,	ks,	 and	n.	 The	order	of	 the	
parameters	in	the	transform	shall	be:	

kd,	ks,	n.		

The	monochrome	 function	 combines	 the	 output	 of	 the	 absolute	 transform	with	 three	 parameters	 to	
compute	the	Blinn‐Phong	parameters	kd	and	ks,	as	shown	in	Formulae	(56)	and	(57).	

kd	=	IdB	 (56)	

ks	=	lsB	+	Igs	 (57)	

where	

		 B	 is	the	output	of	the	absolute	transform;	

		 ld	 is	the	diffuse	scaling	factor;	

		 ls	 is	the	specular	scaling	factor;	

		 lgs	 is	a	global	specular	component.	

The	order	of	the	four	parameters	in	the	transform	shall	be	ld,	ls,	lgs,	n.	

The	documentation	for	the	Blinn‐Phong	reflectance	model	can	be	found	in	James	F.	Blinn,	‘Models	of	light	
reflection	 for	 computer	 synthesized	pictures’.	Proc.	4th	annual	 conference	on	computer	graphics	 and	
interactive	techniques,	1977,	pp.	192–198.	

The	lighting	equation	used	by	the	Cook‐Torrance	reflectance	model	is	as	shown	in	Formulae	(58)	to	(60):	

 ,
lights

P m d m s s m
m

I i k L N k 	 (58)	

where	

 ,
m m m

s m
m

F D G

N L N V
	

and:	

2 2
min l , ,m m

m
m m

N H N V N Hm N L
G

V H V H
	 (59)	

ICC.2:2023	

148	 ©	ICC	2023	–	All	rights	reserved	

2tan

2 4

1

cos

m
m

m
m

D e
m

	 (60)	

where	

		 im	 is	the	average	incident	light	intensity,	in	normalised	digital	counts;	

		 Lm	 is	the	direction	vector	from	the	light	to	the	location	on	the	surface;	

	 Fm	 is	the	Fresnel	term	for	the	material;	

		 N	 is	the	normal	for	the	location	on	the	surface;	

		 Hm	 is	the	direction	vector	midway	between	L	and	the	viewpoint	vector	V;	

		 V	 is	the	viewpoint	vector;	

		 α	 is	the	angle	between	N	and	H.	

Fm	describes	how	light	is	reflected	from	each	smooth	microfacet,	and	can	be	obtained	from	the	Fresnel	
equations.	The	parameters	to	the	Fresnel	Equations	are	index	of	refraction	(n),	extinction	coefficient	(k),	
and	angle	of	illumination.	

The	parameters	for	the	Cook‐Torrance	model	are	summarized	thus:	

		 kd	 is	the	diffuse	reflection	constant	for	the	material;	

		 ks	 is	the	specular	reflection	constant	for	the	material;	

		 m	 is	the	rms	slope;	

		 n	 is	the	index	of	refraction;	

		 k	 is	the	extinction	coefficient	(or	attenuation	coefficient)	in	m‐1.	

The	order	of	the	parameters	in	the	transform	for	the	full	colour	function	shall	be	kd,	ks,	m,	n,	k.	

The	monochrome	 function	 combines	 the	 output	 of	 the	 absolute	 transform	with	 three	 parameters	 to	
compute	the	Cook‐Torrance	parameters	kd	and	ks,	as	shown	in	Formulae	(61)	and	(62):	

kd	=	ldB	 (61)	

ks	=	lsB	+	lgs	 (62)	

The	order	of	the	parameters	for	the	monochrome	single	lobe	Cook‐Torrance	function	shall	be	ld,	ls,	lgs,	m,	
n,	k.	

For	multi‐lobe	versions	of	the	function	D	is	defined	according	to	Formula	(63):	

 j j
j

D w D m 	 (63)	

where	

		 mj	 is	the	rms	slope	for	the	jth	lobe;	

		 wj	 is	the	weighting	for	the	lobe.	

	

	

ICC.2:2023	

©	ICC	2023	–	All	rights	reserved	 149	

The	parameters	for	the	full	colour	two	lobed	Cook‐Torrance	function	shall	be	present	in	the	following	
order:	kd,	ks,	m1,	w1,	m2,	w2,	n,	k.	

The	parameters	for	the	monochrome	two	lobed	Cook‐Torrance	function	shall	be	present	in	the	following	
order:	ld,	ls,	lgs,	m1,	w1,	m2,	w2,	n,	k.	

The	parameters	for	the	full	colour	three	lobed	Cook‐Torrance	function	shall	be	present	in	the	following	
order:	kd,	ks,	m1,	w1,	m2,	w2,	m3,	w3,	n,	k.	

The	 parameters	 for	 the	 monochrome	 three	 lobed	 Cook‐Torrance	 function	 shall	 be	 present	 in	 the	
following	order:	ld,	ls,	lgs,	m1,	w1,	m2,	w2,	m3,	w3,	n,	k.	

Documentation	 for	 the	Cook‐Torrance	model	 can	be	 found	 in	R.	Cook	and	K.	Torrance,	 ‘A	 reflectance	
model	 for	 computer	 graphics’	 http://inst.eecs.berkeley.edu/~cs283/sp13/lectures/cookpaper.pdf.	
Computer	Graphics	(SIGGRAPH	'81	Proceedings),	Vol.	15,	No.	3,	July	1981,	pp.	301–316.	

The	lighting	equation	used	by	the	isotropic	Ward	reflectance	model	is	as	shown	in	Formulae	(64):	

 ,
lights

P m d m s s m
m

I i k L N k 	 (64)	

where	

		

2 2

,
1

exp 2
4 1

m m

x x
s m

x y mm m

H X H Y

N L
H NN L N R

;	

		 Rm	 is	the	vector	of	light	reflection	for	light	m;	

		 X	and	Y	 are	orthogonal	vectors	in	the	normal	plane	which	specify	anisotropic	directions.	

The	parameters	αx	and	αy	control	the	shininess	in	two	dimensions.	When	these	parameters	are	not	equal	
the	Ward	model	is	anisotropic	and	when	they	are	equal	the	model	is	isotropic.	

The	parameters	for	the	full	colour	Ward	function	shall	be	present	in	the	following	order:	kd,	ks,	αx,	αy.	

The	monochrome	 function	 combines	 the	 output	 of	 the	 absolute	 transform	with	 three	 parameters	 to	
compute	the	Ward	parameters	kd	and	ks	as	shown	in	Formulae	(65)	and	(66):	

kd	=	ldB	 (65)	

ks	=	lsB	+	lgs	 (66)	

The	order	of	the	parameters	for	the	monochrome	Ward	function	shall	be:	ld,	ls,	lgs,	m,	n,	k.	

Documentation	 for	 the	Ward	model	 can	 be	 found	 in	 G.	Ward,	 ‘Measuring	 and	Modeling	 Anisotropic	
Reflection.’	Computer	Graphics,	Vol.	26,	No.	2,	July	1992,	pp.	265–272.	

The	lighting	equation	used	by	the	Lafortune	BRDF	model	is	as	shown	in	Formula	(67):	

 ,
lights

p m d m s m
m

I i k L N 	 (67)	

where	

	

ICC.2:2023	

150	 ©	ICC	2023	–	All	rights	reserved	

	

 , , , , , , ,
lobes

in
s m x i x m x y i y m y z i z m z

i

C C C ;	

		 Lm	=	[μx,m,	μy,m,	μz,m];	

		 νx,	νy	and	νz	are	the	components	of	the	viewing	vector	V	in	the	x,	y	and	z	dimensions,	respectively.	

The	monochrome	 function	 combines	 the	 output	 of	 the	 absolute	 transform	with	 three	 parameters	 to	
compute	the	Lafortune	parameters	kd	and	Cx,Cy,	and	Cz,	as	shown	in	Formulae	(68)	to	(71):	

kd	=	ldB	 (68)	

 , , , , ,x i s x i gs x iC l B l 	 (69)	

 , , , , ,y i s y i gs y iC l B l 	 (70)	

 , , , , ,z i s z i gs z iC l B l 	 (71)	

The	parameters	for	the	full	colour	single	lobe	Lafortune	function	shall	be	present	in	the	following	order:	
Kd,	Cx,	Cy,	Cz,	n.	

The	parameters	for	the	full	colour	single	lobe	Lafortune	function	shall	be	present	in	the	following	order:	
Kd,	ld,	ls,x,	ls,y,	ls,z,	lgs,x,	lgs,y,	lgs,z,	n.	

The	parameters	for	the	full	colour	two	lobe	Lafortune	function	shall	be	present	in	the	following	order:	Kd,	
Cx,1,	Cy,1,	Cz,1,	n,1,	Cx,2,	Cy,2,	Cz,2,	n,2.	

The	parameters	for	the	full	colour	two	lobe	Lafortune	function	shall	be	present	in	the	following	order:	Kd	
,ld,	ls,x,1,	ls,y,1,	ls,z,1,	lgs,x,1,	lgs,y,1,	lgs,z,1,	n1,	ls,x,2,	ls,y,2,	ls,z,2,	lgs,x,2,	lgs,y,2,	lgs,z,2,	n2.	

The	parameters	for	the	full	colour	three	lobe	Lafortune	function	shall	be	present	in	the	following	order:	
Kd,	Cx,1,	Cy,1,	Cz,1,	n,1,	Cx,2,	Cy,2,	Cz,2,	n,2,	Cx,3,	Cy,3,	Cz,3,	n,3.	

The	parameters	for	the	full	colour	three	lobe	Lafortune	function	shall	be	present	in	the	following	order:	
Kd,	ld,	ls,x,1,	ls,y,1,	ls,z,1,	lgs,x,1,	lgs,y,1,	lgs,z,1,	n1,	ls,x,2,	ls,y,2,	ls,z,2,	lgs,x,2,	lgs,y,2,	lgs,z,2,	n2,	ls,x,3,	ls,y,2,	ls,z,3,	lgs,x,3,	lgs,y,3,	lgs,z,3,	n3.	

Documentation	for	the	Lafortune	model	can	be	found	in	Eric	P.	F.	Lafortune,	Sing‐Choong	Foo,	Kenneth	
E.	Torrance	and	Donald	P.	Greenberg,	‘Non‐linear	approximation	of	reflectance	functions.’	SIGGRAPH	97	
Conference	Proceedings,	Annual	Conference	Series,	pp.	117–126.	

The	 value	 in	 the	 brdfParamsPerChannel	 sub‐tag	 shall	 be	 greater	 than	 or	 equal	 to	 the	 number	 of	
parameters	needed	by	the	BRDF.	

12.2.1.2.3 brdfParamsPerChannelMbr	

Tag	element	signature:	'nprm'	(6e70726dh).	

Permitted	tag	element	types:	uInt16Number.	

Element	usage:	required.	

The	brdfTransformStructure	brdfParamsPerChannelMbr	element	shall	contain	an	integer	specifying	the	
number	 of	 parameters	 that	 are	 stored	 for	 each	 output	 channel.	 This	 integer	 shall	match	 the	 implied	
number	of	parameters	indicated	in	Table	129.	

	

ICC.2:2023	

©	ICC	2023	–	All	rights	reserved	 151	

12.2.1.2.4 brdfTransformMbr	

Tag	element	signature:	'xfrm'	(7866726dh).	

Permitted	tag	element	type:	multiProcessElementsType.	

Element	usage:	required.	

The	 brdfTransformStructure	 brdfTransformMbr	 element	 shall	 contain	 a	 multiProcessElementsType	
subtag	that	provides	a	transform	from	device	values	to	BRDF	parameters	for	each	output	channel.	If	the	
brdfTransformStructure	brdfTypeMbr	element	contains	the	‘mono’	signature	then	the	transform	element	
shall	provide	only	a	single	set	of	BRDF	parameters	representing	the	reflectance	properties	of	the	material.	
Otherwise	 the	 transform	 element	 shall	 provide	 a	 set	 of	 BRDF	 parameters	 for	 each	 channel	 in	 the	
associated	PCS	with	the	brdfTransformStructure	tag.	

12.2.2 colorantInfoStructure	

12.2.2.1 General	

Structure	Type	signature	identifier:	‘cinf’	(63696e66h).	

A	 colorInfoStructure	 is	 used	 by	 the	 colorantTableTag	 and	 colorantOutTableTag	 to	 define	 relevant	
information	about	the	colorants	used	by	the	profile.	Publically	defined	elements	for	sub‐tag	members	of	
a	colorantInfoStructure	are	shown	in	Table	130.	Descriptions	for	each	sub‐tag	member	can	be	found	in	
12.2.2.2.	

Table	130	—	colorantInfoStructure	element	sub‐tags	

Member	 Signature	 Description	 Sub‐tag	type	 Use	

cinfNameMbr	 'name'	
(6e616d65h)	

Name	of	named	
colour	(see	
12.2.2.2.1)	

utf8Type	 Shall	be	present	

cinfLocalizedNames
Mbr	

'lcnm'	
(6c636e6dh)	

Localized	names	of	
Named	colour	(see	
12.2.2.2.2)	

multiLocalizedUnicodeT
ype	

May	be	present	

cinfPcsDataMbr	 'pcs	'	
(70637320h)	

PCS	values	
associated	with	
colour	(see	
12.2.2.2.3)	

uInt8Number	

uInt16Number	

float16Number	

float32Number	

May	be	present	

cinfSpectralDataMbr	 'spec'	
(73706563h)	

Spectral	values	
associated	with	
colour	(see	
12.2.2.2.4)	

uInt8Number	

uInt16Number	

float16Number	

float32Number	

sparseMatrixArrayType	

May	be	present	
when	non‐zero	
spectralPCS	defined	
in	profile	header	

12.2.2.2 colorantInfoStructure	sub‐tag	member	elements	

12.2.2.2.1 cinfNameMbr	

Tag	element	signature:	'name'	(6e616d65h).	

Permitted	tag	element	types:	utf8Type.	

Element	usage:	required.	

The	colorantInfoStructure	cinfNameMbr	element	contains	the	unique	name	of	the	colour	to	associate	with	
the	structure	data.	

ICC.2:2023	

152	 ©	ICC	2023	–	All	rights	reserved	

12.2.2.2.2 cinfLocalizedNameMbr	

Tag	element	signature:	'lcnm'	(6c636e6dh).	

Permitted	tag	element	types:	multiLocalizedUnicodeType.	

Element	usage:	optional.	

The	colorantInfoStructure	cinfLocalizedNameMbr	element	contains	the	localized	versions	of	the	name	of	
the	colour	to	associate	with	the	structure	data	that	can	be	used	to	display	the	name	for	various	locales.	

12.2.2.2.3 cinfPcsDataMbr	

Tag	element	signature:	'pcs	'	(70637320h).	

Permitted	tag	element	types:	uInt8Number,	uInt16Number,	float16Number,	or	float32Number.	

Element	usage:	required	if	PCS	values	defined	in	profile	header.	

The	 colorantInfoStructure	 cinfPcsDataMbr	 element	 shall	 contain	 a	 set	 of	 colorimetric	 PCS	 values	 to	
associate	with	the	colorantInfoStructure.	The	number	of	entries	and	encoding	of	the	values	in	the	pcsData	
element	tag	shall	agree	with	the	number	of	entries	and	encoding	implied	by	the	pcsColorSpace	entry	in	
the	 profile	 header.	 If	 either	 the	 pcsColorSpace	 is	 zero	 or	 the	profile	 is	 a	 DeviceLink	 profile	 then	 the	
number	of	entries	shall	be	three	and	the	encoding	shall	be	assumed	to	be	PCSLAB	for	the	1931	standard	
observer	under	D50	illumination.	

12.2.2.2.4 cinfSpectralDataMbr	

Tag	element	signature:	'spec'	(73706563h).	

Permitted	 tag	 element	 types:	 uInt8Number,	 uInt16Number,	 float16Number,	 float32Number	 or	
sparseMatrixArrayType.	

Element	usage:	required	if	spectralPCS	value	is	defined	in	profile	header.	

The	colorantInfoStructure	cinfSpectralDataMbr	element	shall	contain	a	set	of	spectral	values	to	associate	
with	 the	 colorantInfoStructure.	 If	 the	 spectralPCS	 entry	 in	 the	 profile	 header	 is	 a	
sparseMatrixReflectanceData	colour	space	then	the	element	type	shall	be	a	sparseMatrix.	Otherwise,	the	
number	of	entries	 in	 the	cinfSpectralDataMbr	element	 tag	shall	be	the	same	as	 the	number	of	entries	
implied	by	the	spectralPCS	entry	in	the	profile	header.	

12.2.3 colorEncodingParamsStructure	

12.2.3.1 General	

Structure	Type	signature	identifier:	‘cept’	(63657074h).	

A	 colorEncodingParametersStructure	 is	 used	 by	 the	 colorEncodingParametersTag	 to	 define	 encoding	
parameters	 for	 the	 three	 component	 colour	 space.	 Publically	 defined	 element	 sub‐tag	members	 of	 a	
colorEncodingParametersStructure	are	shown	in	Table	131.	Descriptions	for	each	sub‐tag	member	can	
be	found	in	12.2.3.2.	

	

	

	

	

	

	

	

ICC.2:2023	

©	ICC	2023	–	All	rights	reserved	 153	

Table	131	—	colorEncodingParamsStructure	element	sub‐tags	

Id	 Signature	 Description	 Sub‐tag	type	

ceptBluePrimaryXYZMbr	 'bXYZ'	
(6258595ah)	

nCIEXYZ	values	of	blue	colour	
space	encoding	primary	

float32Number	
array	

ceptGreenPrimaryXYZMbr	 'gXYZ'	
(6758595ah)	

nCIEXYZ	values	of	green	colour	
space	encoding	primary	

float32Number	
array	

ceptRedPrimaryXYZMbr	 'rXYZ'	
(7258595ah)	

nCIEXYZ	values	of	red	colour	
space	encoding	primary	

float32Number	
array	

ceptTransferFunctionMbr	 ‘func’	
(66756e63h)	

colour	component	transfer	
function	

segmentedCurve	
Type	

ceptLumaChromaMatrixMbr	 'lmat'	
(6c6d6174h)	

matrix	that	converts	RGB	values	
to	luma‐chroma	values	

float32Number	
array	

ceptWhitePointLuminanceMbr	 'wlum'	
(776c756dh)	

colour	space	white	point	
luminance	in	cd/m2	

float32Number	

ceptWhitePointChromaticityMbr	 'wXYZ'	
(7758595ah)	

colour	space	white	point	
chromaticity	

float32Number	
array	

ceptEncodingRangeMbr	 'eRng'	
(65526e67h)	

Describes	the	range	of	the	
encoding	data	

float32Number	
array	

ceptBitDepthMbr	 'bits'	
(62697473h)	

bit	depths	for	encoding	 uInt8Number	
array	

ceptImageStateMbr	 'imst'	
(696d7374h)	

image	state	associated	with	the	
encoding	

signature	

ceptImageBackgroundMbr	 'ibkg'	
(69626b67h)	

reference	viewing	environment	
image	background	(proximal	
field)	in	cd/m2	

float32Number	

ceptViewingSurroundMbr	 'srnd'	
(73726e64h)	

reference	viewing	environment	
viewing	surround	in	cd/m2	

float32Number	

ceptAmbientIlluminanceMbr	 'ailm'	
(61696c6dh)	

reference	viewing	environment	
ambient	illuminance	in	lux	

float32Number	

ceptAmbientWhitePointLuminanceMbr	 'awlm'	
(61776c6dh)	

reference	viewing	environment	
adapted	white	point	luminance	
in	cd/m2	

float32Number	

ceptAmbientWhitePointChromaticityMbr	 'awpc'	
(61777063h)	

reference	medium	white	point	
chromaticity	

float32Number	
array	

ceptViewingFlareMbr	 ‘flar’	
(666c6172h)	

Viewing	Flare	as	percent	of	
white	point	luminance	
(excluding	viewing	flare	and	
veiling	flare	

float32Number	

ceptValidRelativeLuminanceRangeMbr	 ‘lrng’	
(6c726e67h)	

Describes	the	valid	relative	
luminance	range	

float32Number	
array	

ceptMediumWhitePointLuminanceMbr	 'mwpl'	
(6d77706ch)	

reference	medium	white	point	
luminance	in	cd/m2	

float32Number	

ceptMediumWhitePointChromaticityMbr	 'mwpc'	
(6d777063h)	

reference	medium	adapted	
white	point	chromaticity	

float32Number	
array	

ceptMediumBlackPointLuminanceMbr	 'mbpl'	
(6d62706ch)	

reference	medium	black	point	
luminance	in	cd/m2	

float32Number	

ceptMediumBlackPointChromaticityMbr	 'mbpc'	
(6d627063h)	

reference	medium	black	point	
chromaticity	

float32Number	
array	

12.2.3.2 colorEncodingParamsStructure	sub‐tag	member	elements	

12.2.3.2.1 ceptBluePrimaryXYZMbr	

Tag	Element	Signature:	'bXYZ'	(6258595ah).	

	

ICC.2:2023	

154	 ©	ICC	2023	–	All	rights	reserved	

Permitted	tag	type:	float32Number	array.	

Element	usage:	optional.	

The	colorEncodingParamsStructure	ceptBluePrimaryXYZMbr	element	represents	the	nCIEXYZ	values	of	
blue	colour	space	encoding	primary	encoded	using	either	2	or	3	numbers.	The	first	value	represents	the	
x	chromaticity.	The	second	value	represents	the	y	chromaticity.	The	third	value	(if	present)	represents	
the	z	chromaticity.	If	only	two	numbers	are	present	the	z	chromaticity	is	assumed	to	be	the	value	of	one	
minus	the	sum	of	the	two	numbers.	If	three	values	are	present	the	sum	of	the	three	values	shall	be	1,0.	

12.2.3.2.2 ceptGreenPrimaryXYZMbr	

Tag	Element	Signature:	'gXYZ'	(6758595ah)	

Permitted	tag	type:	float32Number	array	

The	colorEncodingParamsStructure	ceptGreenPrimaryXYZMbr	element	represents	the	nCIEXYZ	values	of	
green	 colour	 space	 encoding	 primary	 encoded	 using	 either	 two	 or	 three	 numbers.	 The	 first	 value	
represents	 the	 x	 chromaticity.	 The	 second	 value	 represents	 the	 y	 chromaticity.	 The	 third	 value	 (if	
present)	represents	the	z	chromaticity.	If	only	two	numbers	are	present	the	z	chromaticity	is	assumed	to	
be	the	value	of	one	minus	the	sum	of	the	two	numbers.	If	three	values	are	present	the	sum	of	the	three	
values	shall	be	1,0.	

12.2.3.2.3 ceptRedPrimaryXYZMbr	

Tag	Element	Signature:	'rXYZ'	(7258595ah).	

Permitted	tag	types:	float32Number	array.	

The	colorEncodingParamsStructure	ceptRedPrimaryXYZMbr	element	represents	the	nCIEXYZ	values	of	
blue	 colour	 space	 encoding	 primary	 encoded	 using	 either	 two	 or	 three	 numbers.	 The	 first	 value	
represents	 the	 x	 chromaticity.	 The	 second	 value	 represents	 the	 y	 chromaticity.	 The	 third	 value	 (if	
present)	represents	the	z	chromaticity.	If	only	two	numbers	are	present	the	z	chromaticity	is	assumed	to	
be	the	value	of	one	minus	the	sum	of	the	two	numbers.	If	three	values	are	present	the	sum	of	the	three	
values	shall	be	1,0.	

12.2.3.2.4 ceptTransferFunctionMbr	

Tag	Element	Signature:	‘func’	(66756e63h).	

Permitted	tag	type:	segmentedCurveType.	

The	colorEncodingParamsStructure	ceptTransferFunctionMbr	element	describes	the	colour	component	
transfer	function.	

12.2.3.2.5 ceptLumaChromaMatrixMbr	

Tag	Element	Signature:	'lmat'	(6c6d6174h).	

Permitted	tag	type:	float32Number	array.	

The	colorEncodingParamsStructure	ceptLumaChromaMatrixMbr	element	contains	nine	float32Number	
values	that	define	a	matrix	that	converts	RGB	values	to	luma‐chroma	values.	

12.2.3.2.6 ceptWhitePointLuminanceMbr	

Tag	Element	Signature:	'wlum'	(776c756dh).	

Permitted	tag	type:	float32Number.	

ICC.2:2023	

©	ICC	2023	–	All	rights	reserved	 155	

The	 colorEncodingParamsStructure	 ceptWhitePointLuminanceMbr	 element	 describes	 the	 white	 point	
luminance	in	cd/m2.	

12.2.3.2.7 ceptWhitePointChromaticityMbr	

Tag	Element	Signature:	'wXYZ'	(7758595ah).	

Permitted	tag	type:	float32Number	array.	

The	colorEncodingParamsStructure	ceptWhitePointChromaticityMbr	element	value	describes	the	white	
point	 chromaticity	 encoded	 using	 either	 two	 or	 three	 numbers.	 The	 first	 value	 represents	 the	 x	
chromaticity.	The	second	value	represents	the	y	chromaticity.	The	third	value	(if	present)	represents	the	
z	chromaticity.	If	only	two	numbers	are	present	the	z	chromaticity	is	assumed	to	be	the	value	of	one	minus	
the	sum	of	the	two	numbers.	If	three	values	are	present	the	sum	of	the	three	values	shall	be	1,0.	

12.2.3.2.8 ceptEncodingRangeMbr	

Tag	Element	Signature:	'eRng'	(65526e67h).	

Permitted	tag	types:	float32Number	array.	

The	 colorEncodingParamsStructure	 ceptEncodingRangeMbr	 element	 contains	 two	 floating	 point	
numbers	describing	the	range	of	the	encoding	data	where	the	first	number	defines	the	minimum	range	
value	and	the	second	number	defines	the	maximum	range	value.	

12.2.3.2.9 ceptBitDepthMbr	

Tag	Element	Signature:	'bits'	(62697473h).	

Permitted	tag	types:	uInt8Number	array.	

The	 colorEncodingParamsStructure	 ceptBitDepthMbr	 element	 contains	 one	 or	 more	 bit	 depths	 for	
encoding.	A	value	of	zero	indicates	floating	point	support.	

12.2.3.2.10 ceptImageStateMbr	

Tag	Element	Signature:	'imst'	(696d7374h).	

Permitted	tag	types:	signatureType.	

The	 colorEncodingParamsStructure	 ceptImageStateMbr	 element	 describes	 the	 image	 state	 associated	
with	 the	 encoding.	 The	 signature	 values	 shall	 be	 any	 of	 the	 valid	 signatures	 defined	 for	 the	
colorimetricIntentImageStateTag	defined	in	9.2.54	with	the	addition	of	signatures	defined	in	Table	132.	

Table	132	—	imageStateData	element	signatures	

Image	state	 Signature	 Hexadecimal	encoding

Display	output	referred	colorimetry	 ‘dorc’	 646f7263h	

12.2.3.2.11 ceptImageBackgroundMbr	

Tag	Element	Signature:	'ibkg'	(69626b67h).	

Permitted	tag	types:	float32Number.	

The	colorEncodingParamsStructure	ceptImageBackgroundMbr	element	describes	the	image	background	
(proximal	field)	in	cd/m2	of	the	reference	viewing	environment.	

	

ICC.2:2023	

156	 ©	ICC	2023	–	All	rights	reserved	

12.2.3.2.12 ceptViewingSurroundMbr	

Tag	Element	Signature:	'srnd'	(73726e64h).	

Permitted	tag	types:	float32Number.	

The	colorEncodingParamsStructure	ceptViewingSurroundMbr	element	describes	the	viewing	surround	
in	cd/m2	of	the	reference	viewing	environment.	

12.2.3.2.13 ceptAmbientIlluminanceMbr	

Tag	Element	Signature:	'ailm'	(61696c6dh).	

Permitted	tag	types:	float32Number.	

The	 colorEncodingParamsStructure	 ceptAmbientIlluminanceMbr	 element	 describes	 the	 ambient	
illuminance	in	lux	of	the	reference	viewing	environment.	

12.2.3.2.14 ceptAmbientWhitePointLuminanceMbr	

Tag	Element	Signature:	'awlm'	(61776c6dh).	

Permitted	tag	types:	float32Number.	

The	 colorEncodingParamsStructure	 ceptAmbientWhitePointLuminanceMbr	 element	 describes	 the	
adapted	white	point	luminance	in	cd/m2	of	the	reference	viewing	environment.	

12.2.3.2.15 ceptAmbientWhitePointChromaticityMbr	

Tag	Element	Signature:	'awpc'	(61777063h).	

Permitted	tag	types:	float32Number	array.	

The	 colorEncodingParamsStructure	 ceptAmbientWhitePointChromaticityMbr	 element	 describes	 the	
white	point	chromaticity	of	the	reference	medium,	encoded	using	either	two	or	three	numbers.	The	first	
value	represents	the	x	chromaticity.	The	second	value	represents	the	y	chromaticity.	The	third	value	(if	
present)	represents	the	z	chromaticity.	If	only	two	numbers	are	present	the	z	chromaticity	is	assumed	to	
be	the	value	of	one	minus	the	sum	of	the	two	numbers.	If	three	values	are	present	the	sum	of	the	three	
values	shall	be	1,0.	

12.2.3.2.16 ceptMediumWhitePointLuminanceMbr	

Tag	Element	Signature:	'mwpl'	(6d77706ch).	

Permitted	tag	types:	float32Number.	

The	colorEncodingParamsStructure	ceptMediumWhitePointLuminanceMbr	element	describes	the	white	
point	luminance	in	cd/m2	of	the	reference	medium.	

12.2.3.2.17 ceptMediumWhitePointChromaticityMbr	

Tag	Element	Signature:	'mwpc'	(6d777063h).	

Permitted	tag	types:	float32Number	array.	

The	 colorEncodingParamsStructure	 ceptMediumWhitePointChromaticityMbr	 element	 describes	 the	
adapted	white	point	chromaticity	of	the	reference	medium,	encoded	using	either	two	or	three	numbers.	
The	first	value	represents	the	x	chromaticity.	The	second	value	represents	the	y	chromaticity.	The	third	
value	(if	present)	represents	the	z	chromaticity.	If	only	two	numbers	are	present	the	z	chromaticity	is	
assumed	to	be	the	value	of	one	minus	the	sum	of	the	two	numbers.	If	three	values	are	present	the	sum	of	
the	three	values	shall	be	1,0.	

ICC.2:2023	

©	ICC	2023	–	All	rights	reserved	 157	

12.2.3.2.18 ceptMediumBlackPointLuminanceMbr	

Tag	Element	Signature:	'mbpl'	(6d62706ch).	

Permitted	tag	types:	float32Number.	

The	 colorEncodingParamsStructure	 ceptMediumBlackPointLuminanceMbr	 element	 describes	 the	
reference	medium’s	black	point	luminance	in	cd/m2.	

12.2.3.2.19 ceptMediumBlackPointChromaticityMbr	

Tag	Element	Signature:	'mbpc'	(6d627063h).	

Permitted	tag	types:	float32Number	array.	

The	colorEncodingParamsStructure	ceptMediumBlackPointChromaticityMbr	element	describes	the	black	
point	chromaticity	of	the	reference	medium,	encoded	using	either	two	or	three	numbers.	The	first	value	
represents	 the	 x	 chromaticity.	 The	 second	 value	 represents	 the	 y	 chromaticity.	 The	 third	 value	 (if	
present)	represents	the	z	chromaticity.	If	only	two	numbers	are	present	the	z	chromaticity	is	assumed	to	
be	the	value	of	one	minus	the	sum	of	the	two	numbers.	If	three	values	are	present	the	sum	of	the	three	
values	shall	be	1,0.	

12.2.4 measurementInfoStructure	

12.2.4.1 General	

Structure	Type	Identifier:	'meas'	(6d656173h).	

The	 measurementInfoStructure	 is	 used	 by	 the	 measurementInfoTag	 (see	 9.2.86)	 and	 the	
measurementInputInfoTag	(see	9.2.87)	which	define	aspects	of	 the	measurement	data	 in	the	PCS	and	
input	 side	 of	 abstract	 profiles,	 respectively.	 Publically	 defined	 element	 sub‐tag	 members	 of	 a	
measurementInfoStructure	are	shown	in	Table	133.	Descriptions	for	each	sub‐tag	member	can	be	found	
in	12.2.4.2.	

Table	133	—	measurementInfoStructure	element	tags	

Id	 Signature	 Description	 Sub‐tag	type	 Use	

measBackingMbr	 ‘mbak’	
(6d62616bh)	

Measurement	backing	
(see	12.2.4.2.1)	

uInt32Number	 May	be	
present	

measFlareMbr	 ‘mflr’	
(6d666c72h)	

Measurement	flare	(see	
12.2.4.2.2)	

float32Number	 May	be	
present	

measGeometryMbr	 ‘mgeo’	
(6d67656fh)	

Measurement	geometry	

(see	12.2.4.2.3)	

uInt32Number	 May	be	
present	

measIlluminantMbr	 ‘mill’	
(6d696c6ch)	

Measurement	illuminant	
spectral	power	
distribution	(SPD)	(see	
12.2.4.2.4)	

array	of	
float16Number,	

array	of	
float32Number	

May	be	
present	

measIlluminantRangeMbr	 ‘miwr’	
(6d697772h)	

Spectral	range	of	
measurement	illuminant	
spectral	power	
distribution	(SPD)	
functionally	based	
spectral	BRDF	(see	
12.2.4.2.5)	

spectralRange	 May	be	
present	

measModeMbr	 ‘mmod’	
(6d6d6f64h)	

Measurement	mode	(see	
12.2.4.2.6)	

uInt32Number	 May	be	
present	

ICC.2:2023	

158	 ©	ICC	2023	–	All	rights	reserved	

12.2.4.2 measurementInfoStructure	sub‐tag	member	elements	

12.2.4.2.1 measBackingMbr	

Tag	signature:	‘mbak’	(6d62616bh).	

Permitted	tag	types:	uInt32Number.	

The	measurementInfoStructure	measBackingMbr	element	defines	the	backing	used	for	reflectance‐based	
measurements.	If	the	element	is	not	present	the	backing	shall	be	assumed	to	be	white.	The	encoding	for	
the	measurement	backing	is	shown	in	Table	134.	

Table	134	—	measBackingMbr	encoding	

Geometry	 Hexadecimal	encoding	

Undefined	 00000000h	

White	backing	 00000001h	

Black	backing	 00000002h	

Media	(self)	backing	 00000003h	

12.2.4.2.2 measFlareMbr	

Tag	signature:	‘mflr’	(6d666c72h).	

Permitted	tag	types:	float32Number.	

The	 measurementInfoStructure	measFlareMbr	 element	 defines	 the	 level	 of	 flare	 involved	 to	 make	 a	
measurement.	If	the	element	is	not	present,	the	flare	shall	be	assumed	to	be	zero.	The	encoded	value	for	
the	measFlareMbr	variable	shall	range	from	0,0	to	1,0.	

12.2.4.2.3 measGeometryMbr	

Tag	signature:	‘mgeo’	(6d67656fh).	

Permitted	tag	types:	uInt32Number.	

The	 measurementInfoStructure	 measGeometryMbr	 element	 defines	 the	 geometry	 used	 to	 make	 a	
measurement.	If	the	element	is	not	present	the	geometry	shall	be	assumed	to	be	0°:45°.	The	encoding	for	
the	measurement	geometry	is	shown	in	Table	135.	

Table	135	—	measGeometryMbr	encoding	

Geometry	 Hexadecimal	encoding	

Unknown	 00000000h	

0°:45°	or	45°:0°	 00000001h	

0°:d	or	d:0°	 00000002h	

12.2.4.2.4 measIlluminantMbr	

Tag	signature:	‘mill’	(6d696c6ch).	

Permitted	tag	types:	uInt32Number.	

The	 measurementInfoStructure	 measIlluminantMbr	 element	 defines	 the	 actual	 spectral	 power	
distribution	 (SPD)	 of	 the	 illuminant	 used	 to	make	measurements.	 It	 contains	 an	 array	 of	 values	 that	
defines	the	spectral	output	for	each	of	the	wavelengths	defined	by	the	measIlluminantRangeMbr		sub‐
tag.	The	measureIlluminantMbr	element	shall	contain	the	same	number	of	elements	as	are	defined	by	the	

ICC.2:2023	

©	ICC	2023	–	All	rights	reserved	 159	

steps	value	of	the	measIlluminantRangeMbr	sub‐tag.	If	the	element	is	not	present	the	exact	SPD	of	the	
measurement	illuminant	shall	be	assumed	to	be	unknown.	

12.2.4.2.5 measIlluminantRangeMbr	

Tag	signature:	‘miwr’	(6d697772h).	

Permitted	tag	types:	spectralRange.	

The	 measurementInfoStructure	 measIlluminantRangeMbr	 element	 defines	 the	 starting	 wavelength,	
ending	wavelength	and	number	of	steps	for	the	actual	spectral	power	distribution	(SPD)	of	the	illuminant	
(defined	 in	 a	 measIlluminantMbr	 sub‐tag	 element)	 used	 to	 make	 measurements.	 The	
measIlluminantRangeMbr	tag	shall	be	present	when	a	measIlluminantMbr	sub‐tag	is	present.	The	value	
of	wavelength	steps	in	the	measIlluminantRangeMbr	shall	be	the	same	as	the	number	of	elements	in	the	
measIlluminantMbr	sub‐tag.	

12.2.4.2.6 measModeMbr	

Tag	signature:	‘mmod’	(6d6d6f64h).	

Permitted	tag	types:	uInt32Number.	

The	measurementInfoStructure	measModeMbr	element	defines	the	measurement	mode	used	to	make	a	
measurement	(as	defined	by	ISO	13655‐2009).	If	the	element	is	not	present	the	measurement	mode	shall	
be	assumed	to	be	M1.	The	encoding	for	the	measurement	geometry	is	shown	in	Table	136.	

Table	136	—	measModeMbr	Encoding	

Measurement	Mode	 Hexadecimal	encoding	

Undefined	 00000000h	

M0	–	Default	(tungsten)	 00000001h	

M1	–	D50	 00000002h	

M2	–	UV‐Cut	 00000003h	

M3	–	Polarizing	filter	 00000004h	

12.2.5 namedColorStructure	

12.2.5.1 General	

Structure	Type	Identifier:	'nmcl'	(6e6d636ch).	

The	namedColorStructure	is	used	by	the	namedColorTag	(see	9.2.99),	which	contains	a	namedColorArray	
(see	 13.2.1)	 defined	 as	 a	 tagArrayType	 with	 a	 single	 tintZeroStructure	 followed	 by	 additional	
namedColorStructure	elements.	Publically	defined	element	sub‐tag	members	of	a	namedColorStructure	
are	shown	in	Table	137.	Descriptions	for	each	sub‐tag	member	can	be	found	in	12.2.5.2.	

	

	

	

	

	

	

	

ICC.2:2023	

160	 ©	ICC	2023	–	All	rights	reserved	

Table	137	—	namedColorStructure	element	sub‐tags	

Id	 Signature	 Description	 Sub‐tag	type	 Use	

nmclBrdfColorimetricM
br	

‘bcol’	
(62636f6ch)	

Functionally	based	
colorimetric	BRDF	
(see	12.2.5.2.1)	

multiProcessElementsType	 May	be	present

nmclBrdfColorimetricP
aramsMbr	

‘bcpr’	
(62637072h)	

Colorimetric	
parametric	BRDF	
specification	(see	
12.2.5.2.2)	

tagStructType	of	type	
brdfTransformStructure	

May	be	present

nmclBrdfSpectralMbr	 ‘bspc’	
(62737063h)	

Functionally	based	
spectral	BRDF	(see	
12.2.5.2.3)	

multiProcessElementsType	 May	be	present

nmclBrdfSpectralParam
sMbr	

‘bspr’	
(62737072h)	

Spectral	
parametric	BRDF	
specification	(see	
12.2.5.2.4)	

tagStructType	of	type	
brdfTransformStructure	

May	be	present

nmclDeviceDataMbr	 'dev	'	
(64657620h)	

Device	values	used	
to	reproduce	
colour	(see	
12.2.5.2.7)	

uInt8Number	

uInt16Number	

float16Number	

float32Number	

May	be	present

nmclLocalizedNamesM
br	

'lcnm'	
(6c636e6dh)	

Localized	names	of	
named	colour	(see	
12.2.5.2.6)	

multiLocalizedUnicodeType	 May	be	present

nmclNameMbr	 'name'	
(6e616d65h)	

Name	of	named	
colour	(see	
12.2.5.2.5)	

utf8Type	 May	be	present

nmclNormalMapMbr	 ‘nmap’	
(6e6d6170h)	

Surface	normal	
map	(see	
12.2.5.2.8)	

embeddedNormalImageTy
pe	

May	be	present

nmclPcsDataMbr	 'pcs	'	
(70637320h)	

PCS	values	
associated	with	
colour	(see	
12.2.5.2.9)	

uInt8Number	

uInt16Number	

float16Number	

float32Number	

Shall	be	
present	if	PCS	
field	is	non‐
zero	in	profile	
header	

nmclSpectralDataMbr	 'spec'	
(73706563h)	

Spectral	values	
associated	with	
colour	(see	
12.2.5.2.10)	

uInt8Number	

uInt16Number	

float16Number	

float32Number	

sparseMatrixArrayType	

Shall	be	
present	if	
spectralPCS	
field	is	non‐
zero	in	profile	
header	

	

	

	

	

	

	 	 	 	

	 	 	 	 	

ICC.2:2023	

©	ICC	2023	–	All	rights	reserved	 161	

Table	137	(continued)	

nmclSpectralOverBlack
DataMbr	

'spcb'	
(73706362h)	

Spectral	values	
associated	with	
colour	overprinted	
on	black	medium	
(see	12.2.5.2.11)	

uInt8Number	

uInt16Number	

float16Number	

float32Number	

sparseMatrixArrayType	

May	be	present	
–	if	present	
spectralPCS	
field	shall	be	
non‐zero	in	
profile	header	

nmclSpectralOverGrayD
ataMbr	

'spcg'	
(73706367h)	

Spectral	values	
associated	with	
colour	overprinted	
on	gray	medium	
(see	12.2.5.2.12)	

uInt8Number	

uInt16Number	

float16Number	

float32Number	

sparseMatrixArrayType	

May	be	present	
–	if	present	
spectralPCS	
field	shall	be	
non‐zero	in	
profile	header	

nmclTintValuesMbr	 'tint'	
(74696e74h)	

Tint	values	of	
named	colour	(see	
12.2.5.2.13)	

uInt8Number	

uInt16Number	

float32Number	

May	be	present

12.2.5.2 namedColorStructure	sub‐tag	member	elements	

12.2.5.2.1 nmclBrdfColorimetricMbr	

Tag	signature:	‘bcol’	(62636f6ch).	

Permitted	tag	types:	multiProcessElementsType.	

The	namedColorStructure	nmclBrdfColorimetricMbr	element	defines	a	transform	in	relation	to	viewing	
and	lighting	angles.	Specifically,	it	describes	the	colour	transform	from	viewing	angle,	lighting	angle	and	
tint	to	the	colorimetric‐based	PCS	specified	by	the	PCS	field	in	the	profile	header.	

The	number	of	input	channels	to	the	multiProcessElementsType‐based	tag	shall	be	five.	The	order	and	
encoding	 of	 the	 BRDF	 and	 device	 channels	 provided	 to	 the	multiProcessElementsType	 are	 shown	 in	
Table	138.	

Table	138	—	BRDF	device	channel	encoding	

Input	
channel	
index	

Channel	identification	 Encoding	type	

0	 Viewing	azimuth	angle	Φr	 azimuthNumber	

1	 Viewing	zenith	angle	θr	 zenithNumber	

2	 Lighting	azimuth	angle	Φi	 azimuthNumber	

3	 Lighting	zenith	angle	θi	 zenithNumber	

4	 Tint	 		

The	domain	of	Tint	values	input	to	this	multiProcessElementsType	based	tag	shall	include	the	tint	value	
of	zero.	There	shall	therefore	be	no	reference	or	use	of	a	tnt0BrdfColorimetricMbr	subtag	[i.e	a	sub‐tag	
with	a	tag	signature	of	‘bcol’	(62636f6ch)]	in	the	tintZeroStructure.	

The	output	channels	are	defined	by	the	encoding	implied	by	the	PCS	field	in	the	profile	header.	

12.2.5.2.2 nmclColorimetricParametersMbr	

Tag	signature:	‘bcpr’	(62637072h).	

Permitted	tag	types:	tagStructType	of	type	brdfTransformStructure.	

ICC.2:2023	

162	 ©	ICC	2023	–	All	rights	reserved	

The	 namedColorStructure	 nmclColorimetricParametersMbr	 element	 defines	 colorimetric	 BRDF	
parameters.	Specifically,	it	specifies	a	transform	from	tint	to	colorimetric	BRDF	parameters.	See	12.2.1	
for	a	description	of	the	brdfTransformStructure.	A	monochrome	brdfTransformStructure	shall	use	the	
nmclPcsDataMbr	sub‐tag	as	the	source	of	PCS	colour.	A	monochrome	brdfTransformStructure	shall	not	
be	encoded	in	the	profile	if	the	nmclPcsDataMbr	sub‐tag	is	not	present.	

12.2.5.2.3 nmclBrdfSpectralMbr	

Tag	signature:	‘bspc’	(62737063h).	

Permitted	tag	types:	multiProcessElementsType.	

The	namedColorStructure	nmclBrdfSpectralMbr	element	defines	a	transform	in	relation	to	viewing	and	
lighting	angles.	Specifically,	it	describes	the	colour	transform	from	viewing	angle,	lighting	angle,	and	tint	
to	the	spectrally‐based	PCS	specified	by	the	spectralPCS	field	in	the	profile	header.	

The	number	of	input	channels	to	the	multiProcessElementsType‐based	tag	shall	be	five.	The	order	and	
encoding	 of	 the	 BRDF	 and	 device	 channels	 provided	 to	 the	multiProcessElementsType	 are	 shown	 in	
Table	138.	

The	domain	of	Tint	values	input	to	this	multiProcessElementsType	based	tag	shall	include	the	tint	value	
of	zero.	There	shall	therefore	be	no	reference	or	use	of	a	tnt0BrdfSpectralMbr	sub‐tag	(i.e	a	sub‐tag	with	
a	tag	signature	of	‘bcpr’	(62637072h))	in	the	tintZeroStructure.	

The	output	channels	are	defined	by	the	encoding	implied	by	the	spectralPCS	field	in	the	profile	header.	

12.2.5.2.4 nmclBrdfSpectralParamsMbr	

Tag	signature:	‘bspr’	(62737072h).	

Permitted	tag	types:	tagStructType	of	type	brdfTransformStructure.	

The	namedColorStructure	nmclBrdfSpectralMbr	element	defines	spectral	BRDF	parameters.	Specifically,	
it	 specifies	 a	 transform	 from	 tint	 to	 spectral	 BRDF	 parameters.	 See	 12.2.1	 for	 a	 description	 of	 the	
brdfTransformStructure.	 A	 monochrome	 brdfTransformStructure	 shall	 use	 the	 namedColorStructure	
nmclSpectralDataMbr	sub‐tag	as	the	source	of	PCS	colour.	A	monochrome	brdfTransformStructure	shall	
not	be	encoded	in	the	profile	if	the	namedColorStructure	nmclSpectralDataMbr	sub‐tag	is	not	present.	

12.2.5.2.5 nmclNameMbr	

Tag	element	signature:	'name'	(6e616d65h).	

Permitted	tag	element	types:	utf8Type.	

Element	usage:	required.	

The	namedColorStructure	nmclNameMbr	element	contains	the	unique	name	of	the	colour	to	associate	
with	the	structure	data.	

12.2.5.2.6 nmclLocalizedNameMbr	

Tag	element	signature:	'lcnm'	(6c636e6dh).	

Permitted	tag	element	types:	multiLocalizedUnicodeType.	

Element	usage:	optional.	

The	namedColorStructure	nmclLocalizedNameMbr	element	contains	the	localized	versions	of	the	name	
of		the		colour		to		associate		with		the		structure		data		that		can		be		used		to		display		the		name		for		various	
locales.	

ICC.2:2023	

©	ICC	2023	–	All	rights	reserved	 163	

12.2.5.2.7 nmclDeviceDataMbr	

Tag	element	signature:	'dev	'	(64657620h).	

Permitted	tag	element	types:	uInt8Number	or	uInt16Number,	float16Numbmer,	or	float32Number.	

Element	usage:	optional.	

The	namedColorStructure	nmclDeviceDataMbr	element	shall	contain	a	tint	array	of	device	values	for	each	
non‐zero	tint	used	to	produce	the	named	colour.	The	number	of	entries	in	the	deviceData	element	tag	
shall	 agree	 with	 the	 number	 of	 entries	 implied	 by	 the	 dataColorSpace	 entry	 in	 the	 profile	 header	
multiplied	by	the	number	of	tints	being	defined.	If	no	namedColorStructure	nmclTintValuesMbr	element	
member	is	present	then	tints	are	assumed	to	be	equally	spaced.	Otherwise,	tint	spacing	values	for	each	
nmclDeviceDataMbr	 vector	 are	 provided	 in	 the	 namedColorStructure	 nmclTintValuesMbr	 element.	
Intermediate	 device	 tint	 values	 can	 be	 determined	 using	 linear	 interpolation.	 The	 value	 for	 the	
deviceData	 zero	 tint	 is	 defined	 in	 the	 associated	 tintZeroStructure	 of	 first	 element	 of	 the	 containing	
tagArrayType.	Linear	interpolation	is	assumed	between	the	zero	tint	(defined	in	the	tintZeroStructure	
tnt0DeviceDataMbr	 sub‐tag	 in	 12.2.7.2.1)	 and	 the	 first	 tint	 vector	 in	 the	 namedColorStructure	
nmclrDeviceDataMbr	sub‐tag.	

12.2.5.2.8 nmclNormalMapMbr	

Tag	element	signature:	'nmap	'	(6e6d6170h).	

Permitted	tag	element	type:	embeddedNormalImageType.	

Element	usage:	optional.	

The	 namedColorStructure	 nmclNormalMapMbr	 element	 provides	 a	 normal	 map	 image	 that	 can	 be	
associated	with	the	named	colour.	

12.2.5.2.9 nmclPcsDataMbr	

Tag	element	signature:	'pcs	'	(70637320h).	

Permitted	tag	element	types:	uInt8Number,	uInt16Number,	float16Number,	or	float32Number.	

Element	usage:	required	if	PCS	values	defined	in	profile	header.	

The	namedColorStructure	nmclPcsDataMbr	element	shall	contain	a	tint	array	of	pcsData	values	for	each	
non‐zero	tint	used	to	produce	the	named	colour.	The	number	of	entries	in	the	pcsData	element	tag	shall	
agree	with	the	number	of	entries	implied	by	the	PCS	entry	in	the	profile	header	multiplied	by	the	number	
of	tints	being	defined.	If	no	namedColorStructure	nmclrTintValuesMbr	element	is	present	then	tints	are	
assumed	 to	 be	 equally	 spaced.	 Otherwise,	 tint	 spacing	 values	 for	 each	 nmclPcsDataMbr	 vector	 are	
provided	 in	 the	 namedColorStructure	 nmclrTintValuesMbr	 (See	 12.2.5.2.13)	 element.	 Intermediate	
pcsData	tint	values	can	be	determined	using	linear	interpolation.	The	value	for	the	pcsData	zero	tint	is	
defined	 in	 the	 associated	 tintZeroStructure	 of	 the	 containing	 tagArrayType.	 Linear	 interpolation	 is	
assumed	between	the	zero	tint	(defined	in	the	tintZeroStructure	tnt0PcsDataMbr	sub‐tag	in	12.2.7.2.2)	
and	the	first	tint	vector	in	the	namedColorStructure	nmclPcsDataMbr	sub‐tag.	

12.2.5.2.10 nmclSpectralDataMbr	

Tag	element	signature:	'spec'	(73706563h).	

Permitted	 tag	 element	 types:	 uInt8Number,	 uInt16Number,	 float16Number,	 float32Number,	 or	
sparseMatrixArrayType.	

Element	usage:	required	if	spectralPCS	value	is	non‐zero	in	profile	header.	

The	namedColorStructure	nmclSpectralDataMbr	element	shall	contain	a	tint	array	of	spectralData	values	
for	each	non‐zero	tint	used	to	produce	the	named	colour.	If	the	spectralPCS	entry	in	the	profile	header		

ICC.2:2023	

164	 ©	ICC	2023	–	All	rights	reserved	

is	a	sparseMatrixReflectanceData	colour	space	then	the	element	 type	shall	be	sparseMatrixArrayType	
array.	Otherwise,	the	number	of	entries	in	the	spectralData	element	tag	shall	be	the	same	as	the	number	
of	entries	implied	by	the	spectralPCS	entry	in	the	profile	header	multiplied	by	the	number	of	tints	being	
defined.	If	no	namedColorStructure	nmclTintValuesMbr	element	member	is	present	then	tints	shall	be	
assumed	to	be	equally	spaced.	Otherwise,	tint	spacing	values	for	each	nmclSpectralDataMbr	vector	shall	
be	 provided	 in	 the	 namedColorStructure	 nmclTintValuesMbr	 (See	 12.2.5.2.13)	 element.	 Intermediate	
spectralData	tint	values	can	be	determined	using	linear	interpolation.	The	value	for	the	spectralData	zero	
tint	is	defined	in	the	associated	tintZeroStructure	of	the	containing	tagArrayType.	Linear	interpolation	is	
assumed	 between	 the	 zero	 tint	 (defined	 in	 the	 tintZeroStructure	 tnt0SpectralDataMbr	 sub‐tag	 in	
12.2.7.2.3)	and	the	first	tint	vector	in	the	namedColorStructure	nmclSpectralDataMbr	sub‐tag.	

12.2.5.2.11 nmclSpectralOverBlackDataMbr	

Tag	element	signature:	'spcb'	(73706362h).	

Permitted	 tag	 element	 types:	 uInt8Number,	 uInt16Number,	 float16Number,	 float32Number,	 or	
sparseMatrixArrayType.	

Element	usage:	option	–	when	used,	spectralPCS	value	shall	be	non‐zero	in	profile	header.	

The	 namedColorStructure	 nmclSpectralOverBlackDataMbr	 element	 shall	 contain	 a	 tint	 array	 of	
spectralOverBlackData	 values	 for	 each	 non‐zero	 tint	 used	 to	 produce	 the	 named	 colour	 over	 a	 black	
medium.	If	the	spectralPCS	entry	in	the	profile	header	is	a	sparseMatrixReflectanceData	colour	space	then	
the	 element	 type	 shall	 be	 sparseMatrixArrayType	 array.	 Otherwise,	 the	 number	 of	 entries	 in	 the	
nmclSpectralOverBlackDataMbr	element	tag	shall	be	the	same	as	the	number	of	entries	implied	by	the	
spectralPCS	 entry	 in	 the	 profile	 header	 multiplied	 by	 the	 number	 of	 tints	 being	 defined.	 If	 no	
namedColorStructure	 nmclTintValuesMbr	 element	 member	 is	 present,	 then	 tints	 are	 assumed	 to	 be	
equally	 spaced.	 Otherwise,	 tint	 spacing	 values	 for	 each	 nmclSpectralOverBlackDataMbr	 vector	 are	
provided	 in	 the	 namedColorStructure	 nmclrTintValusMbr	 (see	 12.2.5.2.13)	 element.	 Intermediate	
spectralOverBlackData	 tint	 values	 can	 be	 determined	 using	 linear	 interpolation.	 The	 value	 for	 the	
spectralOverBlackData	 zero	 tint	 is	 defined	 in	 the	 associated	 tintZeroStructure	 of	 the	 containing	
tagArrayType.	Linear	interpolation	is	assumed	between	the	zero	tint	(defined	in	the	tintZeroStructure	
tnt0SpectralOverBlackDataMbr	sub‐tag	in	12.2.7.2.4)	and	the	first	tint	vector	in	the	namedColorStructure	
nmclSpectralOverBlackDataMbr	Sub‐tag.	

12.2.5.2.12 nmclSpectralOverGrayDataMbr	

Tag	element	signature:	'spcg'	(73706367h).	

Permitted	 tag	 element	 types:	 uInt8Number,	 uInt16Number,	 float16Number,	 float32Number,	 or	
sparseMatrixArrayType.	

Element	usage:	option	–	when	used,	spectralPCS	value	shall	be	non‐zero	in	profile	header.	

The	 namedColorStructure	 nmclSpectralOverGrayDataMbr	 element	 shall	 contain	 a	 tint	 array	 of	
spectralOverGrayData	 values	 for	 each	 non‐zero	 tint	 used	 to	 produce	 the	 named	 colour	 over	 a	 gray	
medium.	If	the	spectralPCS	entry	in	the	profile	header	is	a	sparseMatrixReflectanceData	colour	space	then	
the	 element	 type	 shall	 be	 sparseMatrixArrayType	 array.	 Otherwise,	 the	 number	 of	 entries	 in	 the	
nmclSpectralOverGrayDataMbr	element	 tag	shall	be	the	same	as	 the	number	of	entries	 implied	by	the	
spectralPCS	 entry	 in	 the	 profile	 header	 multiplied	 by	 the	 number	 of	 tints	 being	 defined.	 If	 no	
namedColorStructure	 nmclTintValuesMbr	 element	 is	 present,	 then	 tints	 are	 assumed	 to	 be	 equally	
spaced.	 Otherwise,	 tint	 spacing	 values	 for	 each	 spectralOverBlackData	 vector	 are	 provided	 in	 the	
namedColorStructure	nmclTintValuesMbr	(see	12.2.5.2.13)	element.	Intermediate	spectralOverGrayData	
tint	values	can	be	determined	using	linear	interpolation.	The	value	for	the	spectralOverGrayData	zero	tint	
is	 defined	 in	 the	 associated	 tintZeroStructure	 of	 the	 containing	 tagArrayType.	 Linear	 interpolation	 is	
assumed	between	the	zero	tint	(defined	in	the	tintZeroStructure	tnt0SpectralOverGrayDataMbr	sub‐tag	
in	12.2.7.2.5)	and	the	first	tint	vector	in	the	namedColorStructure	nmclSpectralOverGrayDataMbr	sub‐tag.	

ICC.2:2023	

©	ICC	2023	–	All	rights	reserved	 165	

12.2.5.2.13 nmclTintValuesMbr	

Tag	element	signature:	'tint'	(74696e74h).	

Permitted	tag	element	types:	uInt8Number	or	uInt16Number	or	float32Number.	

Element	usage:	optional.	

The	namedColorStructure	nmclTintValuesMbr	element	can	contain	an	array	of	tint	values	for	each	tint	
defined	for	a	named	colour.	Each	element	in	the	array	defines	the	associated	tint	value	for	each	position	
in	the	vector	arrays	of	sub‐tag	elements	in	a	namedColorStructure.	

The	 number	 of	 values	 this	 array	 shall	 correspond	 to	 the	 number	 of	 vector	 entries	 in	 the	
nmclDeviceDataMbr	 (12.2.5.2.7),	 nmclPcsDataMbr	 (12.2.5.2.9),	 nmclSpectralDataMbr	 (12.2.5.2.10)	
nmclSpectralOverBlackDataMbr	(12.2.5.2.11),	or	nmclSpectralOverGrayDataMbr	(12.2.5.2.12)	sub‐tags	(if	
they	exist).	 If	 the	namedColorStructure	nmclTintValuesMbr	element	is	not	present	 for	a	named	colour	
then	 equal	 spacing	 of	 tint	 values	 is	 assumed	 for	 the	 nmclDeviceDataMbr,	 nmclPcsDataMbr,	
nmclSpectralDataMbr,	nmclSpectralOverBlackDataMbr,	and	nmclSpectralOverGrayDataMbr	sub‐tags.	

The	nmclTintValuesMbr	array	shall	be	a	monotonically	increasing	array	that	represents	tint	values	for	the	
first	non‐zero	tint	through	a	maximum	amount	of	the	named	colour.	The	named	colour	tint	can	ranging	
from	1	to	255	for	uInt8Number	encoding,	1	to	65	535	for	uInt16Number	encoding	or	greater	than	0,0	to	
1,0	for	float16Number	and	float32Number	encoding.	The	zero	tint	value	shall	be	defined	in	the	associated	
tintZeroStructure	of	the	containing	tagArrayType.	

12.2.6 pccStructure		

12.2.6.1 General	

Structure	Type	Identifier:	'pcc	'	(70636320h).	

The	pccStructure	is	used	by	the	sourcePccTag	(see	9.2.X)	to	define	alternate	default	profile	conditions	for	
the	 source	 PCS	 of	 abstract	 profiles.	 Publicly	 defined	 element	 sub‐tag	members	 of	 a	 pccStructure	 are	
shown	in	Table	Y.	Descriptions	for	each	sub‐tag	member	can	be	found	in	12.2.Z.2.	

Table	139	—	pccStructure	element	tags	

Id	 Signature	 Description	 Sub‐tag	type	 Use	

pccCustomToStandardPcc
Mbr	

‘c2sp’	
(63327370h)	

Alternate	transform	to	
convert	custom	(PCC)	
colorimetry	to	standard	
colorimetry	(see	
12.2.Z.2.1)	

multiProcessElements
Type	

Required	if	
pccCustom
ToStandard
PCCMbr	
defines	
non‐
standard	
PCS	

pccIlluminantMbr	 ‘iXYZ’	
(6958595ah)	

Alternate	illuminant	XYZ	
colorimetry	(see	
12.2.Z.2.2)	

XYZNumber	 Required	

pccMediaWhitePointMbr	 ‘mwpt’	
(6d777074h)	

Alternate	Media	White	
Point	XYZ	(see	
12.2.Z.2.3)	

XYZNumber	 Required	

pccSpectralViewingConditi
onsMbr	

‘svcn’	
(7376636eh)	

Alternate	spectral	
viewing	conditions	(see	
12.2.Z.2.4)	

spectralViewindCondi
tionsType	

May	be	
present	

pccStandardToCustomPcc
Mbr	

‘s2cp’	
(73326370h)	

Alternate	transform	to	
convert	standard	
colorimetry	to	custom	

multiProcessElements
Type	

Required	if	
pccCustom
ToStandard
PCCMbr	

ICC.2:2023	

166	 ©	ICC	2023	–	All	rights	reserved	

(PCC)	colorimetry	(see	
12.2.Z.2.5)	

defines	
non‐
standard	
PCS	

	

12.2.6.2 pccStructure	sub‐tag	member	elements	

12.2.6.2.1 pccCustomToStandardPccMbr	

Tag	signature:	‘c2sp’	(63327370h).	

Permitted	tag	types:	multiProcessElementsType.	

The	alternate	pccCustomToStandardPccMember	element	 shall	provide	an	alternate	default	 transform	
needed	 to	 convert	 from	 the	 colorimetry	 defined	 by	 the	 observer	 and	 illuminant	 defined	 in	 the	
pccSpectralViewingConditionsMbr	 element	 to	 the	 colorimetry	 defined	 by	 the	 CIE	 1931	 Standard	
Colorimetric	Observer	with	a	D50	 illuminant.	The	multiProcessElementsType	structure	 shall	define	a	
sequence	of	one	or	more	transforms	that	performs	this	conversion.	

The	number	of	both	the	input	and	output	channels	of	the	transform	shall	be	three.	

12.2.6.2.2 pccIlluminantMbr	

Tag	signature:	‘iXYZ’	(6958595ah).	

Permitted	tag	types:	XYZNumber.	

The	pccIlluminantMbr	element	shall	contain	the	nCIEXYZ	values	of	an	alternate	PCS	 illuminant.	 If	 the	
alternate	PCS	illuminant	is	D50,	the	values	shall	be	X	=	0,964	2,	Y	=	1,0	and	Z	=	0,824	9	encoded	as	an	
XYZNumber.	If	the	alternate	PCS	illuminant	is	not	D50,	the	values	shall	correspond	to	the	colorimetry	of	
the	 illuminant	 as	 computed	 using	 the	 illuminant	 and	 observer	 values	 specified	 in	 the	
pccSpectralViewingConditionsMbr	element,	as	described	in	12.2.Z.4.	

See	Annex	A	for	further	details.	

NOTE	 These	values	are	the	nCIEXYZ	values	of	CIE	illuminant	D50.	

The	precise	value	of	the	alternate	PCS	illuminant	depends	on	the	precision	and	method	of	computation.	
CIE	Publication	15[11]	gives	a	different	value	for	Z,	which	corresponds	to	an	nCIEXYZ	value	of	0,825	1.	
Such	close	approximations	should	be	considered	as	D50.	

12.2.6.2.3 pccMediaWhitePointMbr	

Tag	signature:	‘mwpt’	(6d777074h).	

Permitted	tag	types:	XYZNumber.	

The	pccMediaWhitePointMbr	element	shall	be	used	for	generating	the	ICC‐absolute	colorimetric	intent,	
conversion	when	an	alternate	PCC	structure	is	used.		This	member	specifies	the	chromatically	adapted	
nCIEXYZ	 tristimulus	 values	 of	 the	 media	 white	 point	 based	 on	 the	 observer	 and	 illuminant	 of	 the	
pccSpectralViewingConditionsMbr	element.	The	pccMediaWhitePointMbr	is	used	for	generating	either	
the	ICC‐absolute	colorimetric	intent	using	an	ICC‐relative	intent	tag	when	an	ICC‐absolute	colorimetric	
intent	tag	is	not	used	or	the	ICC‐relative	colorimetric	intent	using	an	ICC‐absolute	intent	tag	when	an	ICC‐
relative	colorimetric	intent	tag	is	not	used.		

12.2.6.2.4 pccSpectralViewingConditionsMbr	

Tag	signature:	‘svcn’	(7376636eh).	

Permitted	tag	types:	spectralViewingConditionsType.	

The	 pccIlluminantMbr	 element	 shall	 define	 the	 reference	 colorimetric	 observer	 and	 the	 reference	
illuminant	for	alternate	PCS	definition.	When	this	element	is	present	it	describes	the	viewing	conditions	

ICC.2:2023	

©	ICC	2023	–	All	rights	reserved	 167	

associated	with	both	an	alternate	colorimetric	and	spectral	PCS.	The	content	of	this	structure	is	described	
in	10.2.21.	

The	colorimetric	observer	type	and	illuminant	type	fields	of	this	structure	provide	information	that	shall	
be	used	for	the	purposes	of	matching	viewing	conditions	of	profiles	and	determining	the	alternate	PCS	
conversion	transforms	to	use	for	alternate	PCS	processing.	The	correlated	colour	temperature	field	is	also	
used	 for	 the	purposes	of	matching	viewing	conditions	when	 the	 illuminant	 type	value	 is	 “Black	body	
defined	by	CCT	“	(00000009h)	or	“Daylight	defined	by	CCT	“	(0000000Ah).	

12.2.6.2.5 pccStandardToCustomPccMbr	

Tag	signature:	‘s2cp’	(73326370h).	

Permitted	tag	types:	multiProcessElementsType.	

The	pccStandardToCustomPccMember	element	shall	provide	an	alternate	default	transform	needed	to	
convert	from	the	colorimetry	defined	by	the1931	standard	colorimetric	observer	with	a	D50	illuminant	
to	 the	 colorimetry	 defined	 by	 the	 observer	 and	 illuminant	 defined	 in	 the	
pccSpectralViewingConditionsMbr	 element.	 The	 multiProcessElementsType	 structure	 shall	 define	 a	
sequence	of	one	or	more	transforms	that	performs	this	conversion.	

The	number	of	both	the	input	and	output	channels	of	the	transform	shall	be	three.	

12.2.7 profileInfoStructure	

12.2.7.1 General	

Structure	Type	Identifier:	'pinf'	(70696e66h).	

The	 profileInfoStructure	 is	 used	 by	 the	 profileSequenceInfoTag	 (see	 9.2.102)	 which	 contains	 a	
tagArrayType	of	profileInfoStructure	elements	as	a	profileInfoArray	(see	13.2.2).	Each	entry	in	the	array	
contains	information	about	a	profile	used	in	a	sequence	of	profiles.	This	provides	a	description	of	 the	
profile	sequence	from	source	to	destination,	typically	used	with	the	DeviceLink	profile.	Each	element	is	
optional	 and	 each	 has	 an	 assumed	 value	 defined	 for	 each	 sub‐tag	 if	 not	 present.	 Publically‐defined	
element	sub‐tag	members	of	a	profileInfoStructure	are	shown	in	Table	139.	Descriptions	for	each	sub‐
tag	member	can	be	found	in	12.2.6.2.	

Table	139	—	profileInfoStructure	element	sub‐tags	

Id	 Signature	 Description	 Sub‐tag	type	 Use	

pinfAttributesMbr	 'attr'	
(61747472h)	

Device	
attributes	(see	
12.2.6.2.1)	

uInt64Number May	be	
present	

pinfProfileDescMbr	 'pdsc'	
(70647363h)	

Profile	
description	(see	
12.2.6.2.2)	

multiLocalizedUnicodeType	 May	be	
present	

pinfProfileIDMbr	 'pid	'	
(70696420h)	

Profile	ID	(see	
12.2.6.2.3)	

uInt8Number	array	 May	be	
present	

pinfManufacturerDescMbr 'dmnd	'	
(646d6e64h)	

Device	
manufacturer	
description	(see	
12.2.6.2.4)	

multiLocalizedUnicodeType	 May	be	
present	

pinfManufacturerSigMbr	 'dmns	'	
(646d6e73h)	

Device	
manufacturer	
signature	(see	
12.2.6.2.5)	

signatureType May	be	
present	

pinfModelDescMbr	 'dmdd	'	
(646d6464h)	

Device	model	
description	(see	
12.2.6.2.6)	

multiLocalizedUnicodeType	 May	be	
present	

ICC.2:2023	

168	 ©	ICC	2023	–	All	rights	reserved	

Table	139	(continued)	

Id	 Signature	 Description	 Sub‐tag	type	 Use	

pinfModelSigMbr	 'mod	'	
(6d6f6420h)	

Device	model	
signature	(see	
12.2.6.2.7)	

signatureType May	be	
present	

pinfRenderTransformMbr ‘rtrn’	
(7274726eh)	

Rendering	
intent	
transform	ID	
(see	12.2.6.2.8)	

uInt32Number May	be	
present	

pinfTechnologyMbr	 'tech'	
(74656368h)	

Device	
technology	(see	
12.2.6.2.9)	

signatureType May	be	
present	

12.2.7.2 profileInfoStructure	sub‐tag	member	elements	

12.2.7.2.1 pinfAttributesMbr	

Tag	element	signature:	'attr'	(61747472h).	

Permitted	tag	element	types:	uInt64Number.	

Element	usage:	optional.	

The	profileInfoStructure	pinfAttributesMbr	element	contains	information	from	the	device	attributes	from	
the	header	of	the	corresponding	profile.	Assumed	to	be	zero	if	element	is	not	present.	

12.2.7.2.2 pinfProfileDescMbr	

Tag	element	signature:	'pdsc'	(70647363h).	

Permitted	tag	element	types:	multiLocalizedUnicodeType.	

Element	usage:	optional.	

The	profileInfoStructure	pinfProfileDescMbr	element	contains	the	contents	of	the	profileDescriptionTag	
from	the	corresponding	profile.	If	element	not	present	then	an	empty	description	is	assumed.	

12.2.7.2.3 pinfProfileIDMbr	

Tag	element	signature:	'pid'	(70696420h).	

Permitted	tag	element	types:	uInt8Number	array	of	16	bytes.	

Element	usage:	optional.	

The	 profileInfoStructure	 pinfProfileIDMbr	 element	 contains	 the	 Profile	 ID	 from	 the	 header	 of	 the	
corresponding	profile.	If	the	corresponding	profile	contains	a	Profile	ID	in	the	Profile	Header,	it	shall	be	
used	in	the	Profile	Identifier	structure.	If	the	profile	does	not	contain	a	Profile	ID	in	the	Profile	Header,	
then	either	this	element	can	be	excluded,	or	an	all‐zero	Profile	ID	or	a	computed	Profile	ID	shall	be	used.	
The	ProfileID	is	assumed	to	be	zero	filled	if	the	element	is	not	present.	

12.2.7.2.4 pinfManufacturerDescMbr	

Tag	element	signature:	'dmnd'	(646d6e64h).	

Permitted	tag	element	types:	multiLocalizedUnicodeType.	

Element	usage:	optional.	

The	profileInfoStructure	pinfManufacturerDescMbr	element	contains	contents	of	the	deviceMfgDescTag	
from	the	corresponding	profile.	If	the	element	not	present	then	an	empty	description	is	assumed.	

ICC.2:2023	

©	ICC	2023	–	All	rights	reserved	 169	

12.2.7.2.5 pinfManufacturerSigMbr	

Tag	element	signature:	'dmns'	(646d6e73h).	

Permitted	tag	element	types:	signatureType.	

Element	usage:	optional.	

The	profileInfoStructure	pinfManufacturerSigMbr	element	contains	information	from	the	device	model	
from	the	header	of	the	corresponding	profile.	Assumed	to	be	zero	if	the	element	is	not	present.	

12.2.7.2.6 pinfModelDescMbr	

Tag	element	signature:	'dmdd'	(646d6464h).	

Permitted	tag	element	types:	multiLocalizedUnicodeType.	

Element	usage:	optional.	

The	profileInfoStructure	pinfoModelDescMbr	element	contains	the	contents	of	the	deviceModelDescTag	
from	the	corresponding	profile.	If	the	element	not	present	then	an	empty	description	shall	be	assumed.	

12.2.7.2.7 pinfModelSigMbr	

Tag	element	signature:	'mod'	(6d6f6420h).	

Permitted	tag	element	types:	signatureType.	

Element	usage:	optional.	

The	profileInfoStructure	pinfModelSigMbr	element	contains	information	from	the	device	model	from	the	
header	of	the	corresponding	profile.	Assumed	to	be	zero	if	the	element	is	not	present.	

12.2.7.2.8 pinfRenderingTransformMbr	

Tag	element	signature:	‘rtrn’	(7274726eh).	

Permitted	tag	element	types:	uInt32Number.	

Element	usage:	optional.	

The	 profileInfoStructure	pinfRenderingTransformMbr	 element	 defines	 the	 rendering	 intent	 transform	
from	 the	 corresponding	 profile	 that	was	 used	 to	 establish	 the	 combined	 transform.	 The	 value	 of	 the	
uInt32Number	shall	be	one	of	the	values	in	Table	20.	

If	this	sub‐tag	is	not	present	then	the	rendering	intent	transform	shall	be	defined	by	the	rendering	intent	
field	in	the	profile	header	(see	7.2.17).	

12.2.7.2.9 pinfTechnologyMbr	

Tag	element	signature:	'tech'	(74656368h).	

Permitted	tag	element	types:	signatureType.	

Element	usage:	optional.	

The	profileInfoStructure	pinfTechnologyMbr	element	contains	contents	of	 the	technologyTag	 from	the	
corresponding	profile.	If	not	present,	then	a	zero	technology	signature	shall	be	assumed.	

	

	

ICC.2:2023	

170	 ©	ICC	2023	–	All	rights	reserved	

12.2.8 tintZeroStructure	

12.2.8.1 General	

Structure	Type	Identifier:	'tnt0'	(746e7430h).	

The	tintZeroStructure	 is	used	by	the	namedColorTag	(see	9.2.57),	which	contains	a	namedColorArray	
(see	 13.2.1)	 defined	 as	 a	 tagArrayType	 with	 a	 single	 tintZeroStucture	 followed	 by	 additional	
namedColorStructure	elements.	Publically	defined	element	sub‐tag	members	of	a	tintZeroStructure	are	
shown	in	Table	140.	Descriptions	for	each	sub‐tag	member	can	be	found	in	12.2.7.2.	

Table	140	—	tintZeroStructure	element	sub‐tags	

Id	 Signature	 Description	 Sub‐tag	type	 Use	

tnt0DeviceDataMbr	 'dev	'	
(64657620h)	

Device	values	
used	to	reproduce	
zero	tint	(see	
12.2.7.2.1)	

uInt8Number	

uInt16Number	

float16Number	

float32Number	

May	be	present	

tnt0PcsDataMbr	 'pcs	'	
(70637320h)	

PCS	values	
associated	with	
zero	tint	(see	
12.2.7.2.2)	

uInt8Number	

uInt16Number	

float16Number	

float32Number	

Shall	be	present	if	
PCS	field	is	non‐
zero	in	profile	
header	

tnt0SpectralDataMbr	 'spec'	
(73706563h)	

Spectral	values	
associated	with	
zero	tint	(see	
12.2.7.2.3)	

uInt8Number	

uInt16Number	

float16Number	

float32Number	

sparseMatrixArrayType	

Shall	be	present	if	
spectralPCS	field	is	
non‐zero	in	profile	
header	

tnt0SpectralOverBlack
DataMbr	

'spcb'	
(73706362h)	

Spectral	values	
associated	with	
colour	
overprinted	on	
black	medium	
(see	12.2.7.2.4)	

uInt8Number	

uInt16Number	

float16Number	

float32Number	

sparseMatrixArrayType	

May	be	present	–	if	
present,	
spectralPCS	field	
shall	be	non‐zero	
in	profile	header	

tnt0SpectralOverGray
DataMbr	

'spcg'	
(73706367h)	

Spectral	values	
associated	with	
colour	
overprinted	on	
gray	medium	(see	
12.2.7.2.5)	

uInt8Number	

uInt16Number	

float16Number	

float32Number	

sparseMatrixArrayType	

May	be	present	–	if	
present,	
spectralPCS	field	
shall	be	non‐zero	
in	profile	header	

12.2.8.2 tintZeroStructure	sub‐tag	member	elements	

12.2.8.2.1 tnt0DeviceDataMbr	

Tag	element	signature:	'dev'	(64657620h).	

Permitted	tag	element	types:	uInt8Number	or	uInt16Number,	float16Number	or	float32Number.	

Element	usage:	optional.	

The	tintZeroStructure	tnt0DeviceDataMbr	element	shall	contain	an	array	of	deviceData	sample	values	
used	 to	 define	 the	 zero	 tint	 used	 to	 estimate	 named	 colour	 tints.	 The	 number	 of	 entries	 in	 the	
tnt0DeviceDataMbr	element	tag	shall	agree	with	the	number	of	entries	implied	by	the	dataColorSpace	
entry	in	the	profile	header.	Near	zero	tint	deviceData	values	are	determined	using	the	tnt0DeviceDataMbr	

ICC.2:2023	

©	ICC	2023	–	All	rights	reserved	 171	

sub‐tag	element	in	the	tintZeroStructure	in	combination	with	the	nmclDeviceDataMbr	sub‐tag	element	in	
namedColorStructure	(see	12.2.5.2.7).	

12.2.8.2.2 tnt0PcsDataMbr	

Tag	element	signature:	'pcs	'	(70637320h).	

Permitted	tag	element	types:	uInt8Number	or	uInt16Number,	float16Number,	or	float32Number.	

Element	usage:	required	if	PCS	values	defined	in	profile	header.	

The	tintZeroStructure	tnt0PcsDataMbr	element	shall	contain	an	array	of	pcsData	sample	values	used	to	
define	the	zero	tint	used	to	estimate	named	colour	tints.	The	number	of	entries	in	the	tnt0PcsDataMbr	
element	tag	shall	agree	with	the	number	of	entries	implied	by	the	PCS	entry	in	the	profile	header.	Near	
zero	 tint	 pcsData	 values	 are	 determined	 using	 the	 tnt0PcsDataMbr	 sub‐tag	 element	 in	 the	
tintZeroStructure	in	combination	with	the	nmclPcsDataMbr	sub‐tag	element	in	a	namedColorStructure	
(See	12.2.5.2.9).	

12.2.8.2.3 tnt0SpectralDataMbr	

Tag	element	signature:	'spec'	(73706563h).	

Permitted	 tag	element	 types:	uInt8Number	or	uInt16Number	or	 float16number	or	 float32Number	or	
sparseMatrixArrayType.	

Element	usage:	required	if	spectralPCS	value	is	non‐zero	in	profile	header.	

The	tintZeroStructure	tnt0SpectralDataMbr	element	shall	contain	the	array	of	spectralData	sample	values	
used	to	define	the	zero	tint	used	to	estimate	named	colour	tints.	If	the	spectralPCS	entry	in	the	profile	
header	 is	 a	 sparseMatrixReflectanceData	 colour	 space	 then	 the	 element	 type	 shall	 be	
sparseMatrixArrayType.	Otherwise,	the	number	of	entries	in	the	tnt0SpectralDataMbr	element	tag	shall	
be	the	same	as	the	number	of	entries	implied	by	the	spectralPCS	entry	in	the	profile	header.	Near	zero	
tint	 spectralData	 values	 are	 determined	 using	 the	 tnt0SpectralDataMbr	 sub‐tag	 element	 in	 the	
tintZeroStructure	 in	 combination	 with	 the	 nmclSpectralDataMbr	 sub‐tag	 element	 in	 a	
namedColorStructure	(see	12.2.5.2.10).	

12.2.8.2.4 tnt0SpectralOverBlackDataMbr	

Tag	element	signature:	'spcb'	(73706362h).	

Permitted	 tag	element	 types:	uInt8Number	or	uInt16Number	or	 float16number	or	 float32Number	or	
sparseMatrixArrayType.	

Element	 usage:	 Optional	 –	 required	when	nmclSpectralOverBlackDataMbr	 sub‐tags	 are	 used	 in	 other	
namedColorStructures	in	the	namedColorArray.	

The	 tintZeroStructure	 tnt0SpectralOverBlackDataMbr	 element	 shall	 contain	 the	 array	 of	
spectralOverBlackData	sample	values	used	to	define	the	zero	tint	used	to	estimate	named	colour	tints	
over	a	black	medium.	When	this	tag	is	used	the	spectralPCS	value	shall	be	defined	in	the	profile	header.	
If	 the	 spectralPCS	entry	 in	 the	profile	header	 is	 a	 sparseMatrixReflectanceData	colour	 space	 then	 the	
element	 type	 shall	 be	 sparseMatrixArrayType.	 Otherwise,	 the	 number	 of	 entries	 in	 the	
tnt0SpectralOverBlackDataMbr	 element	 tag	 shall	 agree	 with	 the	 number	 of	 entries	 implied	 by	 the	
spectralPCS	 entry	 in	 the	 profile	 header.	Near	 zero	 tint	 spectralOverBlackData	 values	 are	 determined	
using	the	tnt0SpectralOverBlackDataMbr	sub‐tag	element	in	the	tintZeroStructure	in	combination	with	
the	nmclSpectralOverBlackDataMbr	sub‐tag	element	in	a	namedColorStructure	(See	12.2.5.2.11).	

	

12.2.8.2.5 tnt0SpectralOverGrayDataMbr	

Tag	element	signature:	'spcg'	(73706367h).	

ICC.2:2023	

172	 ©	ICC	2023	–	All	rights	reserved	

Permitted	 tag	element	 types:	uInt8Number	or	uInt16Number	or	 float16number	or	 float32Number	or	
sparseMatrixArrayType.	

Element	 usage:	 Optional	 –	 required	 when	 nmSpectralOverGrayDataMbr	 sub‐tags	 are	 used	 in	 other	
namedColorStructures	in	the	namedColorArray.	

The	 tintZeroStructure	 tnt0SpectralOverGrayDataMbr	 element	 shall	 contain	 the	 array	 of	
spectralOverGrayData	sample	values	used	to	define	the	zero	tint	used	to	estimate	named	colour	tints	over	
a	gray	medium.	When	this	tag	is	used	the	spectralPCS	value	shall	be	defined	in	the	profile	header.	If	the	
spectralPCS	entry	in	the	profile	header	is	a	sparseMatrixReflectanceData	colour	space	then	the	element	
type	shall	be	sparseMatrix	array.	Otherwise,	the	number	of	entries	in	the	tnt0SpectralOverGrayDataMbr	
element	tag	shall	agree	with	the	number	of	entries	implied	by	the	spectralPCS	entry	in	the	profile	header.	
Near	zero	tint	spectralOverGrayData	values	are	determined	using	the	tnt0SpectralOverGrayDataMbr	sub‐
tag	 element	 in	 the	 tintZeroStructure	 in	 combination	 with	 the	 nmclSpectralOverGrayDataMbr	 sub‐tag	
element	in	a	namedColorStructure	(see	12.2.5.2.12).	

13 Tag	Array	Type	definitions	

13.1 General	

The	tagArrayType	provides	the	means	of	encoding	multiple	tag	elements	into	a	single	indexed	array	of	
contained	sub‐tag	elements.	Each	tagArrayType	has	an	Array	Type	Identifier	that	shall	be	used	to	identify	
the	possible	sub‐tag	elements	and	the	purposes	for	each	sub‐tag	element	in	the	array.	

The	public	tagArrayType	array	identifier	types	defined	by	the	ICC	are	listed	in	12.2	in	alphabetical	order.	

13.2 Tag	array	identifier	type	listing	

13.2.1 namedColorArray	

Array	Type	Identifier:	'ncol'	(6e636f6ch).	

A	 namedColorArray	 shall	 contain	 an	 array	 of	 tintZeroStructure	 and	 namedColorStructure	 elements.	
Information	related	to	a	named	colour	can	include	PCS	and	as	optional	device	representation	for	a	list	of	
named	colours.	The	first	element	in	the	array	shall	be	a	tintZeroStructure	which	corresponds	to	colour	
values	when	a	zero	tint	of	any	named	colour	is	used.	See	12.2.7	for	a	complete	description	of	contents	and	
usage	of	a	tintZeroStructure.	Succeeding	elements	shall	be	defined	as	a	namedColorStructure.	See	12.2.5	
for	a	 complete	description	of	 contents	and	usage	of	 a	namedColorStructure.	The	namedColorArray	 is	
utilized	by	the	namedColorTag	(see	9.2.99).	

13.2.2 profileInfoArray	

Array	Type	Identifier:	'pinf'	(70696e66h).	

A	profileInfoArray	shall	contain	an	array	of	profileInfoStructure	structures	that	each	contain	information	
about	a	single	profile.	The	successive	elements	of	the	array	provide	a	description	of	the	successive	profiles	
in	 a	 sequence	 from	 source	 to	 destination.	 A	 profileInfoArray	 is	 utilized	 by	 the	
profileSequenceInformationTag	 (see	9.2.102)	which	 is	 typically	used	with	 the	DeviceLink	profile.	 See	
12.2.6	for	a	complete	description	of	contents	and	usage	of	a	profileInfoStructure.	

13.2.3 tagStructArray	

Array	Type	Identifier:	'tags	'	(74606773h).	

A	tagStructArray	shall	contain	an	array	of	structures	of	type	tagStructType	that	each	contain	multiple	tag	
elements.	The	public	tagStructTypes	defined	by	ICC	are	listed	in	Clause	12.	All	tag	structures	in	the	array	
shall	be	of	the	same	tagStructType	and	have	the	same	structure	type	signature.	

	

ICC.2:2023	

©	ICC	2023	–	All	rights	reserved	 173	

Annex	A	
(informative)	

	
Elemental	calculations	and	inter‐PCS	operations	

A.1 Elemental	calculations	

A.1.1 General	overview	

The	inter‐PCS	operations	are	described	in	A.2.	These	operations	use	the	elemental	calculations	defined	
in	 A.1	 to	 convert	 between	 the	 various	 supported	 PCS	 encodings.	Nearly	 all	 of	 the	 operations	 can	 be	
represented	as	a	linear	matrix	operation	resulting	in	the	ability	to	concatenate	the	calculations	used	in	
performing	inter‐PCS	operations.	

The	process	of	converting	spectral	reflectance/transmission	to	tristimulus	(colorimetric)	values	can	be	
subdivided	 into	 transform	steps	 from	 incident	 light	 to	 reflected/transmitted	 light	 to	observer/sensor	
capture	of	reflected/transmitted	light.	This	subdivision	allows	for	both	resampling	of	spectral	data	 to	
match	 illuminant	 and	 observer	 spectralRange	 requirements	 and	 providing	 building	 blocks	 for	
constructing	conversions	between	the	various	types	of	spectral	PCS	data.	

A.1.2 Spectral	resampling	

A	spectralRange	defines	the	start	wavelength,	end	wavelength,	and	total	number	of	equally‐spaced	steps.	
Spectral	reflectance,	transmission,	emission,	radiance,	as	well	as	illuminant,	and	observer	are	specified	
using	a	spectral	Range.	The	spectral	Range	for	a	fluorescent	PCS	defines	both	a	spectralInputRange	as	
well	as	a	spectralOutputRange.	

Spectral	operations	on	spectral	vector	data	require	that	the	spectralRanges	of	the	data	being	operated	on	
are	the	same.	When	they	are	not	the	same,	resampling	is	performed.	Spectral	resampling	is	performed	
using	 linear	 interpolation	of	 input	wavelengths	 for	 each	 resulting	wavelength.	When	a	wavelength	 is	
extended	on	either	end	of	the	range,	the	value	for	the	extension	is	defined	by	the	value	for	the	wavelength	
closest	to	the	extended	wavelength.	

This	approach	of	spectral	resampling	results	allows	resampling	to	be	performed	as	a	matrix	operation.	

The	example	in	Formula	(A.1)	(greatly	reduced	for	example	purposes	only)	shows	resampling	of	400	nm	
to	700	nm	with	4	intervals	to	350	nm	to	750	nm	with	9	intervals:	

350

400

450
400

500
500

550
600

600
700

650

700

750

1 0 0 0

1 0 0 0

0,5 0,5 0 0

0 1 0 0

0 0,5 0,5 0

0 0 1 0

0 0 0,5 0,5

0 0 0 1

0 0 0 1

R

R

R
R

R
R

R
R

R
R

R

R

R

	 (A.1)	

where	Rλ	is	the	spectral	value	(reflectance)	at	wavelength	λ.	

This	method	of	spectral	resampling	can	be	applied	to	reflectance,	transmission,	emission,	radiance,	or	
irradiance	vectors.	

ICC.2:2023	

174	 ©	ICC	2023	–	All	rights	reserved	

A.1.3 Reflectance/transmission	to	radiance/emission	

The	 conversion	 of	 reflectance/transmission	 to	 radiance/emission	 represents	 incident	 light	 from	 an	
illuminant	being	reflected	or	transmitted	by	the	object	represented	by	the	reflectance/transmission	data.	
The	conversion	of	a	reflectance/transmission	vector	to	a	radiance/emission	vector	can	be	represented	
as	the	scalar	product	of	a	reflectance/transmission	vector	and	a	vector	for	the	illuminant.	

This	 requires	 that	 the	 vectors	 for	 the	 illuminant	 and	 reflectance/transmission	 share	 the	 same	
scalarRange.	

This	conversion	is	represented	in	Formula	(A.2):	

 E S R 	 (A.2)	

where	

		 Eλ	 is	radiance/emission	at	wavelength	λ;	

		 Sλ	 is	illuminant	emission	at	wavelength	λ;	

		 Rλ	 is	reflectance/transmission	at	wavelength	λ.	
Alternatively,	this	can	be	represented	with	the	matrix/vector	Formula	(A.3):	

e Sr 	 (A.3)	

where	

		 e	 is	the	resulting	radiance/emission	vector;	

		 S	 is	a	diagonal	matrix	containing	illuminant	emissions;	

		 r	 is	the	starting	reflectance/transmission	vector.	

A.1.4 Fluorescence	to	radiance/emission	

The	conversion	of	fluorescence	to	emitted	radiance	represents	incident	light	from	an	illuminant	being	
reflected	 (or	 transmitted)	 with	 fluorescence	 by	 the	 object	 represented	 by	 the	 fluorescence	 data.	
Fluorescence	data	are	represented	by	a	Donaldson	matrix,	and	the	application	of	a	Donaldson	matrix	to	
a	vector	representing	the	illuminant	emission	results	in	a	vector	of	light	radiated	from	the	object.	

The	number	of	columns	corresponds	to	the	spectralRange	of	the	source	illuminant,	and	the	number	of	
rows	corresponds	to	the	spectralRange	of	the	resulting	radiance/emission.	

	

	

	

	

	

	

	

	

	

	

This	is	represented	by	the	matrix	Formula	(A.4):	

ICC.2:2023	

©	ICC	2023	–	All	rights	reserved	 175	

1 1

1,1 1,2 2

,1 ,

...

.

: ... :. .

...: :

...

m

n n m

n m

E S

D DE S

D D

E S

	 (A.4)	

where	

		 Sj	 is	the	starting	illuminant	emission	value	for	the	jth	wavelength;	

		 Di,j	 is	the	i,jth	element	of	the	Donaldson	matrix	with	dimension	n	×	m;	

		 Ej	 is	the	resulting	radiance/emission	vector	for	the	ith	wavelength.	

A.1.5 Radiance/emission	to	reflection/transmission	

The	 conversion	 of	 radiance/emission	 to	 reflectance/transmission	 represents	 the	 factoring	 out	 of	 the	
incident	 light	 from	 the	 light	 being	 reflected	 or	 transmitted	 by	 the	 object.	 The	 conversion	 of	 a	
radiance/emission	vector	to	a	reflectance/transmission	vector	can	be	represented	as	scalar	product	of	a	
reflectance/transmission	vector	and	a	vector	containing	reciprocals	of	the	illuminant	emission	values	for	
each	wavelength.	Because	a	reciprocal	of	the	source	illuminant	values	for	each	wavelength	is	used	this	
requires	that	the	source	illuminant	values	are	non‐zero.	If	any	of	the	source	illuminant	values	are	zero	
then	Reflectance/Transmission	cannot	be	determined.	

This	 requires	 that	 the	 vectors	 for	 the	 illuminant	 and	 reflectance/transmission	 share	 the	 same	
scalarRange.	

The	conversion	is	represented	in	Formula	(A.5):	

1
R E

S
	 (A.5)	

where	

		 Rλ	 is	reflectance	(or	transmittance)	at	wavelength	λ;	

		 Sλ	 is	illuminant	power	at	wavelength	λ;	

		 Eλ	 is	emitted	radiance	at	wavelength	λ.	

Alternatively	this	can	be	represented	with	Formula	(A.6):	
 1r S e 	 (A.6)	

where	

		 e	 is	the	emitted	radiance	vector;	

		 S−1	 is	a	diagonal	matrix	containing	reciprocals	of	illuminant	power;	

		 r	 is	the	starting	reflectance	(or	transmittance)	vector.	
	
	

A.1.6 Intensity	radiance/emission	to	XYZ	colorimetry	

ICC.2:2023	

176	 ©	ICC	2023	–	All	rights	reserved	

The	conversion	of	radiance/emission	intensities	to	XYZ	colorimetry	represents	the	application	of	CMFs	
to	 the	radiance/emission	data.	This	can	be	represented	by	applying	a	matrix	containing	the	CMF	to	a	
vector	containing	the	radiance/emission	data.	The	resulting	tristimulus	values	are	expressed	as	absolute	
intensities	since	no	relative	white	point	is	taken	into	consideration.	

This	requires	 that	 the	spectralRange	of	 the	radiance/emission	data	matches	the	spectral	range	of	 the	
CMF.	

This	conversion	is	represented	by	Formula	(A.7):	

1

1 2 2

1 2

1 2

...

683

... :

n

n

n

n

E

X x x x E

Y y y y

Z z z z

E

	 (A.7)	

where	

		 ix 	 iy 	 iz 	 are	the	CMF	values	for	wavelength	i;	

		 Ei	 is	the	radiance	at	wavelength	i,	in	cd/m2.	

A.1.7 Relative	radiance/emission	to	XYZ	colorimetry	

The	conversion	of	radiance/emission	to	XYZ	colorimetry	relative	to	a	given	illuminant	represents	the	
application	of	an	observer’s	CMFs	to	the	radiance/emission	data	and	factoring	this	by	the	Y	tristimulus	
value	of	the	illuminant.	This	can	be	represented	by	applying	a	normalization	factor	to	the	application	of	
a	matrix	containing	the	CMF	to	a	vector	containing	the	radiance/emission	data.	The	resulting	tristimulus	
values	are	expressed	as	absolute	intensities	since	no	relative	white	point	is	taken	into	consideration.	

This	 requires	 that	 the	 spectralRange	 of	 both	 the	 radiance/emission	 data	 and	 the	 relative	 illuminant	
match	the	spectral	range	of	the	CMF.	

This	conversion	is	represented	by	Formula	(A.8):	

1

1 2 2

1 2

1 2

...

... .

... :

n

n

n

n

E

X x x x E

Y k y y y

Z z z z

E

	 (A.8)	

with	

		 Ei	 is	the	emission	spectrum	at	wavelength	i;	

	 ix ,	 iy ,	

iz 	
are	the	CMF	values	for	wavelength	i;	

		 X,	Y,	Z	 are	the	resulting	tristimulus	values;	

		 k	 is	a	normalizing	constant	for	the	relative	illuminant	(with	values	Ii	for	each		

wavelength	i)	and	CMF,	where	

1

1
n

i i
i

k

y I

.	

A.1.8 Absolute/relative	intent	adjustments	

ICC.2:2023	

©	ICC	2023	–	All	rights	reserved	 177	

ICC	colour	management	supports	two	modes	of	operation	defined	by	rendering	intents.	With	the	absolute	
intent	 PCS	 values	 directly	 correspond	 to	 measurement	 data.	 With	 the	 relative	 intent	 PCS	 values	
correspond	to	measurement	values	that	have	been	adjusted	relative	to	the	media	white	point.	ICC	profiles	
can	have	tags	that	provide	transforms	for	either	relative	or	absolute	or	both.	

Relative	to	absolute	adjustment	 is	performed	by	applying	a	diagonal	matrix	containing	relative	white	
divided	by	absolute	white	values.	Absolute	to	relative	adjustment	is	performed	by	applying	a	diagonal	
matrix	containing	absolute	white	divided	by	relative	white	values.	

For	 a	 colorimetric	 PCS,	 the	 relative	 white	 values	 are	 defined	 as	 the	 CIEXYZ	 values	 found	 in	 the	
mediaWhitePoint	tag,	and	the	absolute	white	values	are	defined	by	the	CIEXYZ	values	for	the	illuminant	
relative	to	the	observer	used	for	the	colorimetric	PCS.	The	illuminant	and	observer	are	defined	by	the	
PCC	that	describe	the	PCS	if	a	custom	colorimetric	PCS	is	used.	If	a	standard	PCS	is	used,	then	the	absolute	
white	point	is	the	colorimetry	of	the	D50	illuminant	for	the	CIE	1931	Standard	2‐degree	observer.	

For	a	spectral	PCS,	the	relative	white	values	are	defined	as	vector	of	PCS	encoded	values	found	in	the	
contents	of	the	spectralWhitePoint	tag.	Absolute	white	values	for	a	spectral	PCS	are	dependent	on	the	
PCS	type:	

—	 For	 either	 a	 reflective	 or	 transmissive	 PCS	 are	 defined	 as	 vectors	 containing	 100	%	
reflectance/transmission	for	all	wavelengths.	

—	 Absolute	white	values	are	defined	by	the	PCC	illuminant	in	the	case	of	emissive	PCS.	

—	 Absolute	white	 values	 are	 not	 defined	 for	 spectrofluorescent	 based	PCS.	 (Thus	 relative/absolute	
conversions	are	not	possible	in	the	case	of	a	spectrofluorescent	PCS.)	

Conversions	between	absolute	and	relative	data	are	performed	using	Formula	(A.9):	

Rel,1
Abs,1

1 1
Rel,2

2 2
Abs,2

Rel,N
Abs,N

0 0

0 0

0 0
N N

W
W

R A
W

R AW

R A
W

W

	 (A.9)	

where	

		 Ai	 is	the	ith	entry	of	an	absolute	PCS	coordinate	vector	(CIEX,	CIEY,	or	CIEZ	for	colorimetric	
PCS;	or	value	for	the	ith	wavelength	for	a	spectrally‐based	PCS);	

		 WRel,i	 is	the	ith	entry	of	the	relative	white	vector	(CIEX,	CIEY,	or	CIEZ	for	colorimetric	PCS;	or	
value	for	the	ith	wavelength	for	a	spectrally‐based	PCS);	

		 WAbs,i	 is	the	ith	entry	of	the	absolute	white	vector	(CIEX,	CIEY,	or	CIEZ	for	colorimetric	PCS;	or	
value	for	the	ith	wavelength	for	a	spectrally‐based	PCS);	

		 Ri	 is	the	ith	entry	of	a	relative	PCS	coordinate	vector	(CIEX,	CIEY,	or	CIEZ	for	colorimetric	PCS;	
or	value	for	the	ith	wavelength	for	a	spectrally‐based	PCS).	

	

	

	
Conversion	between	relative	and	absolute	date	is	performed	using	Formula	(A.10):	

ICC.2:2023	

178	 ©	ICC	2023	–	All	rights	reserved	

Abs,1
Rel,1

1 1
Abs,2

2 2
Rel,2

Abs,N
Rel,N

0 0

0 0

0 0
N N

W
W

A R
W

A RW

A R
W

W

	 (A.10)	

where	

		 Ri	 is	the	ith	entry	of	a	relative	PCS	coordinate	vector	(CIEX,	CIEY,	or	CIEZ	for	colorimetric	PCS;	
or	value	for	the	ith	wavelength	for	a	spectrally‐based	PCS);	

		 WAbs,i	 is	the	ith	entry	of	the	absolute	white	vector	(CIEX,	CIEY,	or	CIEZ	for	colorimetric	PCS;	or	
value	for	the	ith	wavelength	for	a	spectrally‐based	PCS);	

		 WRel,i	 is	the	ith	entry	of	the	relative	white	vector	(CIEX,	CIEY,	or	CIEZ	for	colorimetric	PCS;	or	
value	for	the	ith	wavelength	for	a	spectrally‐based	PCS);	

		 Ai	 is	the	ith	entry	of	an	absolute	PCS	coordinate	vector	(CIEX,	CIEY,	or	CIEZ	for	colorimetric	
PCS;	or	value	for	the	ith	wavelength	for	a	spectrally‐based	PCS).	

Absolute/Relative	PCS	conversions	are	not	possible	for	spectrally‐based	PCS	operations	when	the	either	
the	absolute	or	relative	white	vector	contains	values	of	zero	(which	can	happen	in	the	case	of	using	an	
emission	based	PCS).	In	this	case	it	would	be	expected	that	a	failure	would	occur	when	the	adjustment	
transform	operations	are	initialized.	

A.1.9 Black	point	compensation	

Black	point	compensation	is	defined	as	a	colorimetric	PCS	operation.	It	is	defined	in	ISO	18619.	

A.1.10 	Luminance	Matching	

The	 ISO	15076‐1	 standard	 colorimetric	PCS,	 as	well	 as	 colorimetric	PCS	values	 in	 this	document,	 are	
encoded	in	terms	of	normalized	tristimulus	values.	This	means	that	tristimulus	values	are	normalized	to	
a	reference	white,	which	is	assumed	to	be	the	adapted	white	point.	For	a	surface	colour	this	is	a	perfect	
white	diffuser	viewed	under	a	D50	illuminant,	for	a	display	it	is	the	assumed	white	point	(often	the	display	
white	point),	and	in	both	cases	the	values	are	scaled	so	that	the	tristimulus	Y	of	the	reference	white	is	1,0.	
(These	are	relative	tristimulus	values,	as	described	in	CIE.15.)	One	consequence	of	this	normalization	is	
that	differences	in	luminance	between	source	and	destination	are	not	accounted	for	when	connecting	a	
pair	of	profiles	using	a	colorimetric	PCS.	

In	some	cases	it	may	be	desirable	for	the	colour	management	goal	to	take	the	actual	luminances	of	source	
and	destination	 into	account,	and	 this	can	be	accomplished	by	using	 luminance	 information	 from	the	
profiles	 to	 provide	 a	 scaling	 of	 tristimulus	 values	 during	 PCS	 processing	 by	 the	 CMM.	 The	 absolute	
photometric	 luminance	 in	 cd/m2	 can	 be	 provided	 in	 the	 CIE	 Y	 value	 of	 the	 illuminant	 field	 of	 the	
spectralViewingConditions	 tag	 (of	 a	 profile	 based	 on	 this	 document)	 or	 the	 CIE	 Y	 value	 of	 the	
luminanceTag	 (of	a	profile	based	on	 ISO	15076‐1).	When	such	 tags	are	not	available	 then	 the	default	
luminance	of	160	cd/m2	(associated	with	the	perceptual	PCS	defined	by	ISO	15076‐1,	or	the	standard	
viewing	condition	P2	specified	for	graphic	arts	and	photography	in	ISO	3664)	can	be	used.	Additionally,	
an	override	of	a	profile’s	 luminance	 can	be	provided	by	 the	CIE	Y	value	of	 the	 illuminant	 field	of	 the	
spectralViewingConditions	defined	by	alternate	PCC	when	they	are	provided	to	the	CMM	for	a	profile.	

When	luminance	matching	is	desired,	the	instructed	CMM	performs	a	Colorimetric	PCS	operation	that	
scales	the	tristimulus	values	by	the	ratio	of	the	luminance	associated	with	the	source	profile	divided	by	
the	luminance	associated	with	the	destination	profile.	

ICC.2:2023	

©	ICC	2023	–	All	rights	reserved	 179	

An	 important	 caution	 related	 to	 the	 use	 of	 luminance	 matching	 is	 that	 clipping	 may	 occur	 when	
tristimulus	 values	 are	 scaled	 outside	 the	 range	 that	 the	 destination	 profile	 is	 capable	 of	 adequately	
handling.	

A.2 Various	PCS	operations	

Figure	A.1	provides	a	high‐level	overview	of	various	PCS	operations	and	conversions.	When	two	profiles	
are	connected	only	one	ICC	in	and	one	ICC	out	connection	point	is	used	for	the	profiles.	The	location	of	
these	 connection	 points	 are	 determined	 by	 the	 type	 of	 PCS	 that	 is	 used	 for	 each	 profile.	 The	 closest	
connection	distance	is	used,	and	profiles	that	have	equivalent	PCC	will	connect	to	the	same	PCS.	

	

Figure	A.1	—	Spectral	and	colorimetric	PCS	operations	

A.3 Pseudo‐code	description	of	PCS	to	PCS	transformations	

A.3.1 Overview	

The	various	PCS	mapping	possibilities	are	outlined	in	Table	A.1.	

	

	

	

	

	

	

	

	

	

ICC.2:2023	

180	 ©	ICC	2023	–	All	rights	reserved	

Table	A.1	—	Various	PCS	mapping	possibilities	

	 From	Lab From	XYZ	
From	

Reflectance

From	
Transmittance/	
Transmissive	

From	
Radiant/	
Emission	

From	Fluorescence	

To	Lab	
Yes	

(A.3.2)	

Yes	

(A.3.4)	

Using	PCC	

(A.3.6)	

Using	PCC	

(A.3.11)	

Using	PCC	

(A.3.16)	

Using	PCC	

(A.3.21)	

To	XYZ	
Yes	

(A.3.3)	

Yes	

(A.3.5)	

Using	PCC	

(A.3.7)	

Using	PCC	

(A.3.12)	

Using	PCC	

(A.3.17)	

Using	PCC	

(A.3.22)	

To	Reflectance	 No	 No	
Yes	

(A.3.8)	

Yes	

(A.3.13)	

Extract	PCC	
illuminant	

(A.3.18)	

Apply	then	extract	PCC	
illuminant	

(A.3.23)	

To	
Transmittance/	
Transmissive	

No	 No	
Yes	

(A.3.9)	

Yes	

(A.3.14)	

Use	PCC	
illuminant	

(A.3.19)	

Apply	then	extract	PCC	
illuminant	

(A.3.24)	

To	Radiant	/	
Emission	 No	 No	

Apply	PCC	
Illuminant	

(A.3.10)	

Apply	PCC	
illuminant	

(A.3.15)	

Yes	

(A.3.20)	

Apply	PCC	illuminant	

(A.3.25)	

To	Fluorescence	 No	 No	 No	 No	 No	
Exact	match	required	

(A.3.26)	

PCS	processing	uses	PCC	to	determine	the	transforms	that	are	needed	to	convert	between	the	various	
connections	outlined	in	Table	A.1.	Each	profile	has	PCC	that	are	made	up	of	colorimetric	and	spectral	PCS	
information	 from	 the	 profile	 header	 (see	 7.2),	 information	 from	 spectralViewingConditionsTag	 (see	
9.2.105),	 and	 transformations	 in	 the	 customToStandardPCCTag	 (see	 9.2.56)	 and	
standardToCustomPCCTag	(see	9.2.107).	PCC	information	is	obtained	either	from	the	profiles	involved	
in	the	connection	or	from	outside	sources	provided	to	the	CMM.	

PCS	connection	 transforms	 involving	a	 colorimetric	PCS	 (either	Lab	or	XYZ)	are	generally	performed	
relative	 to	 the	 ISO	15076‐1	 standard	 colorimetric	 PCS,	 which	 uses	 the	 CIE	1931	 Standard	 2‐degree	
observer	with	a	D50	illuminant.	The	conversion	is	done	in	two	general	steps,	which	are	each	made	up	of	
sub‐steps.	The	first	general	step	converts	to	XYZ	values	for	the	standard	colorimetric	PCS.	The	second	
step	converts	from	XYZ	values	for	the	standard	colorimetric	PCS.	However,	the	standard	colorimetric	PCS	
is	not	needed	or	used	when	identical	colorimetric	PCS	usage	is	indicated	by	the	PCC	information	for	both	
sides	of	the	connection.	In	this	case	only	the	custom	colorimetric	PCS	is	used.	

For	 each	 of	 these	 general	 steps	 the	 sub‐steps	 used	 to	 define	 them	will	 involve	 zero	 or	more	 of	 the	
following	 steps:	 conversion	 to/from	 XYZ,	 potential	 application	 of	 absolute/relative	 white	 point	
adjustment,	 potential	 application	 of	 black	 point	 adjustment,	 conversion	 using	 the	 PCC	
customToStandardPCCTag,	or	conversion	using	the	standardToCustomPCCTag.	

PCS	 connection	 transforms	 involving	 spectrally‐based	PCS	 can	 involve	 resampling	with	 expansion	or	
compression	of	spectral	information	by	wavelength	to	match	observer,	illuminant	definitions	defined	by	
the	relevant	PCC	or	connection	spectral	sampling	requirements	between	the	two	profiles.	Additionally,	
illuminant	information	is	applied	or	factored	out.	

When	connecting	a	spectrally‐based	PCS	to	a	colorimetric	PCS	a	conversion	to	colorimetry	is	needed.	First	
the	conversion	to	colorimetry	is	performed	by	applying	the	source	PCC	observer	and	illuminant.	Then	
colorimetric	PCS	connection	is	performed	(as	if	the	source	PCS	was	colorimetric).	

Fluorescent	 PCS	 connection	 is	 different	 from	 other	 spectral	 PCS	 connection	 in	 that	 spectralRange	
conversion	 is	 performed	 on	 the	 illuminant	 (if	 it	 doesn’t	match	 the	 input	 spectral	 input	 range	 of	 the	
Fluorescent	PCS).	This	is	due	to	the	difficulty	of	resampling	Donaldson	matrices	that	correspond	to	the	
spectral	PCS.	Linear	resampling	of	the	illuminant	is	performed.	However,	this	is	generally	not	advisable	

ICC.2:2023	

©	ICC	2023	–	All	rights	reserved	 181	

so	it	is	recommended	that	workflows	be	set	up	to	use	an	illuminant	that	matches	the	spectral	input	range	
of	the	fluorescent	PCS.	

NOTE	 Most	of	the	PCS	operations	described	in	this	annex	can	be	implemented	as	matrix	operations	that	can	be	
concatenated	for	performance	purposes.	

A.3.2 From	Lab	to	Lab	

The	following	pseudo‐code	describes	this	PCS	conversion:	

															XYZ	=	Convert_from_PCSLAB();	

															If	source	relative/absolute	intent	and/or	black	point	compensation	adjustment	is	needed	

																														XYZ	=	Scale_and_shift(XYZ,	…);	

															Endif	

															If	sourcePCS	!=	destinationPCS	

																														If	sourcePCS	!=	standardPCS	

																																													XYZ	=	Apply_Tag(XYZ,	source_PCC_customToStandardPCSTag);	

																														Endif	

																														If	destinationPCS	!=	standardPCS	

																																													XYZ	=	Apply_Tag(XYZ,	destination_PCC_standardToCustomPCSTag);	

																														Endif	

															Endif	

															If	luminance	matching	is	needed	

																														XYZ	=	Scale(XYZ,	source_luminance	/	destination_luminance)	

															Endif	

															If	destination	relative/absolute	intent	and/or	black	point	compensation	adjustment	is	needed	

																														XYZ	=	Scale_and_shift(XYZ,	…);	

															Endif	

															Convert_to_PCSLAB(XYZ);	

A.3.3 From	Lab	to	XYZ	

The	following	pseudo‐code	describes	this	PCS	conversion:	

															XYZ	=	Convert_from_PCSLAB();	

															If	source	relative/absolute	intent	and/or	black	point	compensation	adjustment	is	needed	

																														XYZ	=	Scale_and_shift(XYZ,	…);	

															Endif	

															If	sourcePCS	!=	destinationPCS	

																														If	sourcePCS	!=	standardPCS	

																																													XYZ	=	Apply_Tag(XYZ,	source_PCC_customToStandardPCSTag);	

	

	

	

ICC.2:2023	

182	 ©	ICC	2023	–	All	rights	reserved	

																														Endif	

																														If	destinationPCS	!=	standardPCS	

																																													XYZ	=	Apply_Tag(XYZ,	destination_PCC_standardToCustomPCSTag);	

																														Endif	

															Endif	

															If	luminance	matching	is	needed	

																														XYZ	=	Scale(XYZ,	source_luminance	/	destination_luminance)	

															Endif	

															If	destination	relative/absolute	intent	and/or	black	point	compensation	adjustment	is	needed	

																														XYZ	=	Scale_and_shift(XYZ,	…);	

															Endif	

															Convert_to_PCSXYZ(XYZ);	

A.3.4 From	XYZ	to	Lab	

The	following	pseudo‐code	describes	this	PCS	conversion:	

															XYZ	=	Convert_from_PCSXYZ();	

															If	source	relative/absolute	intent	and/or	black	point	compensation	adjustment	is	needed	

																														XYZ	=	Scale_and_shift(XYZ,	…);	

															Endif	

															If	sourcePCS	!=	destinationPCS	

																														If	sourcePCS	!=	standardPCS	

																																													XYZ	=	Apply_Tag(XYZ,	source_PCC_customToStandardPCSTag);	

																														Endif	

																														If	destinationPCS	!=	standardPCS	

																																													XYZ	=	Apply_Tag(XYZ,	destination_PCC_standardToCustomPCSTag);	

																														Endif	

															Endif	

															If	luminance	matching	is	needed	

																														XYZ	=	Scale(XYZ,	source_luminance	/	destination_luminance)	

															Endif	

															If	destination	relative/absolute	intent	and/or	black	point	compensation	adjustment	is	needed	

																														XYZ	=	Scale_and_shift(XYZ,	…);	

															Endif	

															Convert_to_PCSLAB(XYZ);	

	

	

	

	

ICC.2:2023	

©	ICC	2023	–	All	rights	reserved	 183	

A.3.5 From	XYZ	to	XYZ	

The	following	pseudo‐code	describes	this	PCS	conversion:	

															XYZ	=	Convert_from_PCSXYZ();	

															If	source	relative/absolute	intent	and/or	black	point	compensation	adjustment	is	needed	

																														XYZ	=	Scale_and_shift(XYZ,	…);	

															Endif	

															If	sourcePCS	!=	destinationPCS	

																														If	sourcePCS	!=	standardPCS	

																																													XYZ	=	Apply_Tag(XYZ,	source_PCC_customToStandardPCSTag);	

																														Endif	

																														If	destinationPCS	!=	standardPCS	

																																													XYZ	=	Apply_Tag(XYZ,	destination_PCC_standardToCustomPCSTag);	

																														Endif	

															Endif	

															If	luminance	matching	is	needed	

																														XYZ	=	Scale(XYZ,	source_luminance	/	destination_luminance)	

															Endif	

															If	destination	relative/absolute	intent	and/or	black	point	compensation	adjustment	is	needed	

																														XYZ	=	Scale_and_shift(XYZ,	…);	

															Endif	

															Convert_to_PCSXYZ(XYZ);	

A.3.6 From	Reflectance	to	Lab	

The	following	pseudo‐code	describes	this	PCS	conversion:	

															reflectance	=	Convert_from_PCS_Reflectance();	

															If	source	relative/absolute	adjustment	is	needed	

																														reflectance	=	Scale(reflectance,	…);	

															Endif	

															If	spectralRange(reflectance)	!=	spectralRange(source_PCC_illuminant)	

																														reflectance	=	Adjust_range(reflectance,	spectralRange(source_PCC_illuminant));	

															Endif	

															radiance	=	Apply_illuminant(reflectance,	source_PCC_illuminant);	

															If	spectralRange(radiance)	!=	spectralRange(source_PCC_observer)	

																														radiance	=	Adjust_range(radiance,	spectralRange(source_PCC_observer));	

	

	

	

	

ICC.2:2023	

184	 ©	ICC	2023	–	All	rights	reserved	

															Endif	

															XYZ	=	Apply_relative_observer(radiance,	source_PCC_Observer,	src_PCC_illuminant);	

															If	black	point	compensation	adjustment	is	needed	

																														XYZ=Scale_and_shift(XYZ,	...);	

															Endif	

																														If	sourcePCC_PCS	!=	destinationPCS	

																														If	sourcePCS	!=	standardPCS	

																																													XYZ	=	Apply_Tag(XYZ,	source_PCC_customToStandardPCSTag);	

																														Endif	

																														If	destinationPCS	!=	standardPCS	

																																													XYZ	=	Apply_Tag(XYZ,	destination_PCC_standardToCustomPCSTag);	

																														Endif	

															Endif	

															If	luminance	matching	is	needed	

																														XYZ	=	Scale(XYZ,	source_luminance	/	destination_luminance)	

															If	destination	relative/absolute	intent	and/or	black	point	compensation	adjustment	is	needed	

																														XYZ	=	Scale_and_shift(XYZ,	…);	

															Endif	

															Convert_to_PCSLAB(XYZ);	

A.3.7 From	Reflectance	to	XYZ	

The	following	pseudo‐code	describes	this	PCS	conversion:	

															reflectance	=	Convert_from_PCS_Reflectance();	

															If	source	relative/absolute	adjustment	is	needed	

																														reflectance	=	Scale(reflectance,	…);	

															Endif	

															If	spectralRange(reflectance)	!=	spectralRange(source_PCC_illuminant)	

																														reflectance	=	Adjust_range(reflectance,	spectralRange(source_PCC_illuminant));	

															Endif	

															radiance	=	Apply_illuminant(reflectance,	source_PCC_illuminant);	

															If	spectralRange(radiance)	!=	spectralRange(source_PCC_observer)	

																														radiance	=	Adjust_range(radiance,	spectralRange(source_PCC_observer));	

															Endif	

															XYZ	=	Apply_relative_observer(radiance,	source_PCC_Observer,	src_PCC_illuminant);	

	

	

	

	

ICC.2:2023	

©	ICC	2023	–	All	rights	reserved	 185	

															If	black	point	compensation	adjustment	is	needed	

																														XYZ=Scale_and_shift(XYZ,	...);	

															Endif	

															If	sourcePCC_PCS	!=	destinationPCS	

																														If	sourcePCS	!=	standardPCS	

																																													XYZ	=	Apply_Tag(XYZ,	source_PCC_customToStandardPCSTag);	

																														Endif	

																														If	destinationPCS	!=	standardPCS	

																																													XYZ	=	Apply_Tag(XYZ,	destination_PCC_standardToCustomPCSTag);	

																														Endif	

															Endif	

															If	luminance	matching	is	needed	

																														XYZ	=	Scale(XYZ,	source_luminance	/	destination_luminance)	

															If	destination	relative/absolute	intent	and/or	black	point	compensation	adjustment	is	needed	

																														XYZ	=	Scale_and_shift(XYZ,	…);	

															Endif	

															Convert_to_PCSXYZ(XYZ);	

A.3.8 From	Reflectance	to	Reflectance	

The	following	pseudo‐code	describes	this	PCS	conversion:	

															reflectance	=	Convert_from_PCS_Reflectance();	

															If	source	relative/absolute	adjustment	is	needed	

																														reflectance	=	Scale(reflectance,	…);	

															Endif	

															If	spectralRange(reflectance)	!=	spectralRange(destination_PCS)	

																														reflectance	=	Adjust_range(reflectance,	spectralRange(destination_PCS));	

															Endif	

															If	destination	relative/absolute	adjustment	is	needed	

																														reflectance	=	Scale(reflectance,	…);	

															Endif	

															Convert_to_PCS_Reflectance(reflectance);	

A.3.9 From	Reflectance	to	Transmittance	

The	following	pseudo‐code	describes	this	PCS	conversion:	

															reflectance	=	Convert_from_PCS_Reflectance();	

	

	

	

ICC.2:2023	

186	 ©	ICC	2023	–	All	rights	reserved	

															If	source	relative/absolute	adjustment	is	needed	

																														reflectance	=	Scale(reflectance,	…);	

															Endif	

															If	spectralRange(reflectance)	!=	spectralRange(destination_PCS)	

																														reflectance	=	Adjust_range(reflectance,	spectralRange(destination_PCS));	

															Endif	

															If	destination	relative/absolute	adjustment	is	needed	

																														reflectance	=	Scale(reflectance,	…);	

															Endif	

															Convert_to_PCS_Transmittance(reflectance);	

A.3.10 From	Reflectance	to	Radiance	

The	following	pseudo‐code	describes	this	PCS	conversion:	

															reflectance	=	Convert_from_PCS_Reflectance();	

															If	source	relative/absolute	adjustment	is	needed	

																														reflectance	=	Scale(reflectance,	…);	

															Endif	

															If	spectralRange(reflectance)	!=	spectralRange(source_PCC_illuminant)	

																														reflectance	=	Adjust_range(reflectance,	spectralRange(source_PCC_illuminant));	

															Endif	

															radiance	=	ApplyIlluminant(reflectance,	source_PCC_illuminant);	

															If	spectralRange(radiance)	!=	spectralRange(destination_PCS)	

																														radiance	=	Adjust_range(radiance,	spectralRange(destination_PCS));	

															Endif	

															If	destination	relative/absolute	adjustment	is	needed	

																														radiance	=	Scale(radiance,	…);	

															Endif	

															Convert_to_PCS_Radiance(radiance);	

A.3.11 From	Transmittance	to	Lab	

The	following	pseudo‐code	describes	this	PCS	conversion:	

															transmittance	=	Convert_from_PCS_Transmittance();	

															If	source	relative/absolute	adjustment	is	needed	

																														transmittance	=	Scale(transmittance,	…);	

															Endif	

	

	

	

ICC.2:2023	

©	ICC	2023	–	All	rights	reserved	 187	

															If	spectralRange(transmittance)	!=	spectralRange(source_PCC_illuminant)	

																														transmittance	=	Adjust_range(transmittance,	spectralRange(source_PCC_illuminant));	

															Endif	

															radiance	=	Apply_illuminant(transmittance,	source_PCC_illuminant);	

															If	spectralRange(radiance)	!=	spectralRange(source_PCC_observer)	

																														radiance	=	Adjust_range(radiance,	spectralRange(source_PCC_observer));	

															Endif	

															XYZ	=	Apply_relative_observer(radiance,	source_PCC_Observer,	src_PCC_illuminant);	

															If	luminance	matching	is	needed	

																														XYZ	=	Scale(XYZ,	source_luminance	/	destination_luminance)	

															Endif	

															If	black	point	compensation	adjustment	is	needed	

																														XYZ=Scale_and_shift(XYZ,	...);	

															Endif	

															If	sourcePCC_PCS	!=	destinationPCS	

																														If	sourcePCS	!=	standardPCS	

																																													XYZ	=	Apply_Tag(XYZ,	source_PCC_customToStandardPCSTag);	

																														Endif	

																														If	destinationPCS	!=	standardPCS	

																																													XYZ	=	Apply_Tag(XYZ,	destination_PCC_standardToCustomPCSTag);	

																														Endif	

															Endif	

															If	destination	relative/absolute	intent	and/or	black	point	compensation	adjustment	is	needed	

																														XYZ	=	Scale_and_shift(XYZ,	…);	

															Endif	

															Convert_to_PCSLab(XYZ);	

A.3.12 From	Transmittance	to	XYZ	

The	following	pseudo‐code	describes	this	PCS	conversion:	

															transmittance	=	Convert_from_PCS_Transmittance();	

															If	source	relative/absolute	adjustment	is	needed	

																														transmittance	=	Scale(transmittance,	…);	

															Endif	

															If	spectralRange(transmittance)	!=	spectralRange(source_PCC_illuminant)	

	

	

	

	

ICC.2:2023	

188	 ©	ICC	2023	–	All	rights	reserved	

																														transmittance	=	Adjust_range(transmittance,	spectralRange(source_PCC_illuminant));	

															Endif	

															radiance	=	Apply_illuminant(transmittance,	source_PCC_illuminant);	

															If	spectralRange(radiance)	!=	spectralRange(source_PCC_observer)	

																														radiance	=	Adjust_range(radiance,	spectralRange(source_PCC_observer));	

															Endif	

															XYZ	=	Apply_relative_observer(radiance,	source_PCC_Observer,	src_PCC_illuminant);	

															If	black	point	compensation	adjustment	is	needed	

																														XYZ=Scale_and_shift(XYZ,	...);	

															Endif	

															If	sourcePCC_PCS	!=	destinationPCS	

																														If	sourcePCS	!=	standardPCS	

																																													XYZ	=	Apply_Tag(XYZ,	source_PCC_customToStandardPCSTag);	

																														Endif	

																														If	destinationPCS	!=	standardPCS	

																																													XYZ	=	Apply_Tag(XYZ,	destination_PCC_standardToCustomPCSTag);	

																														Endif	

															Endif	

															If	luminance	matching	is	needed	

																														XYZ	=	Scale(XYZ,	source_luminance	/	destination_luminance)	

															Endif	

															If	destination	relative/absolute	intent	and/or	black	point	compensation	adjustment	is	needed	

																														XYZ	=	Scale_and_shift(XYZ,	…);	

															Endif	

															Convert_to_PCSLab(XYZ);	

A.3.13 From	Transmittance	to	Reflectance	

The	following	pseudo‐code	describes	this	PCS	conversion:	

															transmittance	=	Convert_from_PCS_Transmittance();	

															If	source	relative/absolute	adjustment	is	needed	

																														transmittance	=	Scale(transmittance,	…);	

															Endif	

															If	spectralRange(transmittance)	!=	spectralRange(destination_PCS)	

																														transmittance	=	Adjust_range(transmittance,	spectralRange(destination_PCS));	

	

	

	

	

ICC.2:2023	

©	ICC	2023	–	All	rights	reserved	 189	

															Endif	

															If	destination	relative/absolute	adjustment	is	needed	

																														transmittance	=	Scale(transmittance,	…);	

															Endif	

Convert_to_PCS_Reflectance(transmittance);	

A.3.14 From	Transmittance	to	Transmittance	

The	following	pseudo‐code	describes	this	PCS	conversion:	

															transmittance	=	Convert_from_PCS_Transmittance();	

															If	source	relative/absolute	adjustment	is	needed	

																														transmittance	=	Scale(transmittance,	…);	

															Endif	

															If	spectralRange(transmittance)	!=	spectralRange(destination_PCS)	

																														transmittance	=	Adjust_range(transmittance,	spectralRange(destination_PCS));	

															Endif	

															If	destination	relative/absolute	adjustment	is	needed	

																														transmittance	=	Scale(transmittance,	…);	

															Endif	

															Convert_to_PCS_Transmittance(transmittance);	

A.3.15 From	Transmittance	to	Radiance	

The	following	pseudo‐code	describes	this	PCS	conversion:	

															transmittance	=	Convert_from_PCS_Reflectance();	

															If	source	relative/absolute	adjustment	is	needed	

																														transmittance	=	Scale(transmittance,	…);	

															Endif	

															If	spectralRange(transmittance)	!=	spectralRange(source_PCC_illuminant)	

																														transmittance	=	Adjust_range(transmittance,	spectralRange(source_PCC_illuminant));	

															Endif	

															radiance	=	ApplyIlluminant(transmittance,	source_PCC_illuminant);	

															If	spectralRange(radiance)	!=	spectralRange(destination_PCS)	

																														radiance	=	Adjust_range(radiance,	spectralRange(destination_PCS));	

															Endif	

															If	destination	relative/absolute	adjustment	is	needed	

																														radiance	=	Scale(radiance,	…);	

	

	

	

ICC.2:2023	

190	 ©	ICC	2023	–	All	rights	reserved	

															Endif	

															Convert_to_PCS_Radiance(radiance);	

A.3.16 From	Radiance	to	Lab	

The	following	pseudo‐code	describes	this	PCS	conversion:	

															radiance	=	Convert_from_PCS_Radiance();	

															If	source	relative/absolute	adjustment	is	needed	

																														radiance	=	Scale(radiance,	…);	

															Endif	

															If	spectralRange(radiance)	!=	spectralRange(source_PCC_observer)	

																														radiance	=	Adjust_range(radiance,	spectralRange(source_PCC_observer));	

															Endif	

															XYZ	=	Apply_intensity_observer(radiance,	source_PCC_Observer);	

															If	black	point	compensation	adjustment	is	needed	

																														XYZ=Scale_and_shift(XYZ,	...);	

															Endif	

															If	sourcePCC_PCS	!=	destinationPCS	

																														If	sourcePCS	!=	standardPCS	

																																													XYZ	=	Apply_Tag(XYZ,	source_PCC_customToStandardPCSTag);	

																														Endif	

																														If	destinationPCS	!=	standardPCS	

																																													XYZ	=	Apply_Tag(XYZ,	destination_PCC_standardToCustomPCSTag);	

																														Endif	

															Endif	

															If	luminance	matching	is	needed	

																														XYZ	=	Scale(XYZ,	source_luminance	/	destination_luminance)	

															Endif	

															If	destination	relative/absolute	intent	and/or	black	point	compensation	adjustment	is	needed	

																														XYZ	=	Scale_and_shift(XYZ,	…);	

															Endif	

															Convert_to_PCSLAB(XYZ);	

A.3.17 From	Radiance	to	XYZ	

The	following	pseudo‐code	describes	this	PCS	conversion:	

															radiance	=	Convert_from_PCS_Radiance();	

	

	

	

ICC.2:2023	

©	ICC	2023	–	All	rights	reserved	 191	

															If	source	relative/absolute	adjustment	is	needed	

																														radiance	=	Scale(radiance,	…);	

															Endif	

															If	spectralRange(radiance)	!=	spectralRange(source_PCC_observer)	

																														radiance	=	Adjust_range(radiance,	spectralRange(source_PCC_observer));	

															Endif	

															XYZ	=	Apply_intensity_observer(radiance,	source_PCC_Observer);	

															If	black	point	compensation	adjustment	is	needed	

																														XYZ=Scale_and_shift(XYZ,	...);	

															Endif	

															If	sourcePCC_PCS	!=	destinationPCS	

																														If	sourcePCS	!=	standardPCS	

																														XYZ	=	Apply_Tag(XYZ,	source_PCC_customToStandardPCSTag);	

																														Endif	

																														If	destinationPCS	!=	standardPCS	

																														XYZ	=	Apply_Tag(XYZ,	destination_PCC_standardToCustomPCSTag);	

																														Endif	

															Endif	

															If	luminance	matching	is	needed	

																														XYZ	=	Scale(XYZ,	source_luminance	/	destination_luminance)	

															Endif	

															If	destination	relative/absolute	intent	and/or	black	point	compensation	adjustment	is	needed	

																														XYZ	=	Scale_and_shift(XYZ,	…);	

															Endif	

															Convert_to_PCSXYZ(XYZ);	

A.3.18 From	Radiance	to	Reflectance	

The	following	pseudo‐code	describes	this	PCS	conversion:	

															radiance	=	Convert_from_PCS_Radiance();	

															If	source	relative/absolute	adjustment	is	needed	

																														radiance	=	Scale(radiance,	…);	

															Endif	

															If	spectralRange(radiance)	!=	spectralRange(source_PCC_illuminant)	

																														radiance	=	Adjust_range(radiance,	spectralRange(source_PCC_illuminant));	

	

	

	

	

ICC.2:2023	

192	 ©	ICC	2023	–	All	rights	reserved	

															Endif	

															reflectance	=	FactorOutIlluminant(radiance,	source_PCC_illuminant);	

															If	spectralRange(reflectance)	!=	spectralRange(destination_PCS)	

																														reflectance	=	Adjust_range(reflectance,	spectralRange(destination_PCS));	

															Endif	

															If	destination	relative/absolute	adjustment	is	needed	

																														reflectance	=	Scale(reflectance,	…);	

															Endif	

															Convert_to_PCS_Reflectance(reflectance);	

A.3.19 From	Radiance	to	Transmittance	

The	following	pseudo‐code	describes	this	PCS	conversion:	

															radiance	=	Convert_from_PCS_Radiance();	

															If	source	relative/absolute	adjustment	is	needed	

																														radiance	=	Scale(radiance,	…);	

															Endif	

															If	spectralRange(radiance)	!=	spectralRange(source_PCC_illuminant)	

																														radiance	=	Adjust_range(radiance,	spectralRange(source_PCC_illuminant));	

															Endif	

															transmittance	=	FactorOutIlluminant(radiance,	source_PCC_illuminant);	

															If	spectralRange(transmittance)	!=	spectralRange(destination_PCS)	

																														transmittance	=	Adjust_range(transmittance,	spectralRange(destination_PCS));	

															Endif	

															If	destination	relative/absolute	adjustment	is	needed	

																														transmittance	=	Scale(transmittance,	…);	

															Endif	

															Convert_to_PCS_Transmittance(transmittance);	

A.3.20 From	Radiance	to	Radiance	

The	following	pseudo‐code	describes	this	PCS	conversion:	

															radiance	=	Convert_from_PCS_Radiance();	

															If	source	relative/absolute	adjustment	is	needed	

																														radiance	=	Scale(radiance,	…);	

															Endif	

															If	spectralRange(radiance)	!=	spectralRange(destination_PCS)	

	

	

	

ICC.2:2023	

©	ICC	2023	–	All	rights	reserved	 193	

																														radiance	=	Adjust_range(radiance,	spectralRange(destination_PCS));	

															Endif	

															If	destination	relative/absolute	adjustment	is	needed	

																														radiance	=	Scale(radiance,	…);	

															Endif	

															Convert_to_PCS_Radiance(radiance);	

A.3.21 From	Fluorescence	to	Lab	

The	following	pseudo‐code	describes	this	PCS	conversion:	

															fluorescence	=	Convert_from_PCS_Fluorescence();	

															illuminant	=	source_PCC_illuminant	

															If	spectralInputRange(fluorescence)	!=	spectralRange(source_PCC_illuminant)	

																														illuminant	=	Adjust_range(source_PCC_illuminant,	spectralInputRange(fluorescence));	

															Endif	

															radiance	=	Apply_Donaldson_matrix(fluorescence,	illuminant);	

															If	spectralRange(radiance)	!=	spectralRange(source_PCC_observer)	

																														radiance	=	Adjust_range(radiance,	spectralRange(source_PCC_observer));	

															Endif	

															illuminant2	=	Adjust_range(illuminant,	spectralOutputRange(fluorescence));	

															If	(spectralRange(illuminant2)	!=	spectralRange(source_PCC_observer)	

																														illuminant2	=	Adjust_range(illuminant2,	spectralRange(source_PCC_observer);	

															Endif	

															XYZ	=	Apply_relative_observer(radiance,	source_PCC_Observer,	illuminant2);	

															If	source	relative/absolute	intent	and/or	black	point	compensation	adjustment	is	needed	

																														XYZ=Scale_and_shift(XYZ,	...);	

															Endif	

															If	sourcePCC_PCS	!=	destinationPCS	

																														If	sourcePCS	!=	standardPCS	

																																													XYZ	=	Apply_Tag(XYZ,	source_PCC_customToStandardPCSTag);	

																														Endif	

																														If	destinationPCS	!=	standardPCS	

																																													XYZ	=	Apply_Tag(XYZ,	destination_PCC_standardToCustomPCSTag);	

																														Endif	

															Endif	

	

	

	

	

ICC.2:2023	

194	 ©	ICC	2023	–	All	rights	reserved	

															If	luminance	matching	is	needed	

																														XYZ	=	Scale(XYZ,	source_luminance	/	destination_luminance)	

															Endif	

															If	destination	relative/absolute	intent	and/or	black	point	compensation	adjustment	is	needed	

																														XYZ	=	Scale_and_shift(XYZ,	…);	

															Endif	

															Convert_to_PCSLab(XYZ);	

A.3.22 From	Fluorescence	to	XYZ	

The	following	pseudo‐code	describes	this	PCS	conversion:	

															fluorescence	=	Convert_from_PCS_Fluorescence();	

															illuminant	=	source_PCC_illuminant	

															If	spectralInputRange(fluorescence)	!=	spectralRange(source_PCC_illuminant)	

																														illuminant	=	Adjust_range(source_PCC_illuminant,	spectralInputRange(fluorescence));	

															Endif	

															radiance	=	Apply_Donaldson_matrix(fluorescence,	illuminant);	

															If	spectralRange(radiance)	!=	spectralRange(source_PCC_observer)	

																														radiance	=	Adjust_range(radiance,	spectralRange(source_PCC_observer));	

															Endif	

															illuminant2	=	Adjust_range(illuminant,	spectralOutputRange(fluorescence));	

															If	(spectralRange(illuminant2)	!=	spectralRange(source_PCC_observer)	

																														illuminant2	=	Adjust_range(illuminant2,	spectralRange(source_PCC_observer);	

															Endif	

															XYZ	=	Apply_relative_observer(radiance,	source_PCC_Observer,	illuminant2);	

															If	source	relative/absolute	intent	and/or	black	point	compensation	adjustment	is	needed	

																														XYZ=Scale_and_shift(XYZ,	...);	

															Endif	

															If	sourcePCC_PCS	!=	destinationPCS	

																														If	sourcePCS	!=	standardPCS	

																																													XYZ	=	Apply_Tag(XYZ,	source_PCC_customToStandardPCSTag);	

																														Endif	

																														If	destinationPCS	!=	standardPCS	

																																													XYZ	=	Apply_Tag(XYZ,	destination_PCC_standardToCustomPCSTag);	

																														Endif	

	

	

	

	

ICC.2:2023	

©	ICC	2023	–	All	rights	reserved	 195	

															Endif	

															If	luminance	matching	is	needed	

																														XYZ	=	Scale(XYZ,	source_luminance	/	destination_luminance)	

															Endif	

															If	destination	relative/absolute	intent	and/or	black	point	compensation	adjustment	is	needed	

																														XYZ	=	Scale_and_shift(XYZ,	…);	

															Endif	

															Convert_to_PCSXYZ(XYZ);	

A.3.23 From	Fluorescence	to	Reflectance	

The	following	pseudo‐code	describes	this	PCS	conversion:	

															fluorescence	=	Convert_from_PCS_Fluorescence();	

															illuminant	=	source_PCC_illuminant	

															If	spectralInputRange(fluorescence)	!=	spectralRange(source_PCC_illuminant)	

																														illuminant	=	Adjust_range(source_PCC_illuminant,	spectralInputRange(fluorescence));	

															Endif	

															radiance	=	Apply_Donaldson_matrix(fluorescence,	illuminant);	

															If	spectralRange(radiance)	!=	spectralRange(source_PCC_illuminant)	

																														radiance	=	Adjust_range(radiance,	spectralRange(source_PCC_illuminant));	

															Endif	

															reflectance	=	FactorOutIlluminant(radiance,	source_PCC_illuminant);	

															If	spectralRange(reflectance)	!=	spectralRange(destination_PCS)	

																														reflectance	=	Adjust_range(reflectance,	spectralRange(destination_PCS));	

															Endif	

															If	luminance	matching	is	needed	

																														XYZ	=	Scale(XYZ,	source_luminance	/	destination_luminance)	

															Endif	

															If	destination	relative/absolute	adjustment	is	needed	

																														reflectance	=	Scale(reflectance,	…);	

															Endif	

															Convert_to_PCS_Reflectance(reflectance);	

A.3.24 From	Fluorescence	tor	Transmitance	

The	following	pseudo‐code	describes	this	PCS	conversion:	

															fluorescence	=	Convert_from_PCS_Fluorescence();	

	

	

	

ICC.2:2023	

196	 ©	ICC	2023	–	All	rights	reserved	

															illuminant	=	source_PCC_illuminant	

															If	spectralInputRange(fluorescence)	!=	spectralRange(source_PCC_illuminant)	

																														illuminant	=	Adjust_range(source_PCC_illuminant,	spectralInputRange(fluorescence));	

															Endif	

															radiance	=	Apply_Donaldson_matrix(fluorescence,	illuminant);	

															If	spectralRange(radiance)	!=	spectralRange(source_PCC_illuminant)	

																														radiance	=	Adjust_range(radiance,	spectralRange(source_PCC_illuminant));	

															Endif	

															transmittance	=	FactorOutIlluminant(radiance,	source_PCC_illuminant);	

															If	spectralRange(transmittance)	!=	spectralRange(destination_PCS)	

																														transmittance	=	Adjust_range(transmittance,	spectralRange(destination_PCS));	

															Endif	

															If	luminance	matching	is	needed	

																														XYZ	=	Scale(XYZ,	source_luminance	/	destination_luminance)	

															Endif	

															If	destination	relative/absolute	adjustment	is	needed	

																														transmittance	=	Scale(transmittance,	…);	

															Endif	

															Convert_to_PCS_Transmittance(transmittance);	

A.3.25 From	Fluorescence	to	Radiance	

The	following	pseudo‐code	describes	this	PCS	conversion:	

															fluorescence	=	Convert_from_PCS_Fluorescence();	

															illuminant	=	source_PCC_illuminant	

															If	spectralInputRange(fluorescence)	!=	spectralRange(source_PCC_illuminant)	

																														illuminant	=	Adjust_range(source_PCC_illuminant,	spectralInputRange(fluorescence));	

															Endif	

															radiance	=	Apply_Donaldson_matrix(fluorescence,	illuminant);	

															If	spectralRange(radiance)	!=	spectralRange(destination_PCS)	

																														radiance	=	Adjust_range(radiance,	spectralRange(destination_PCS));	

															Endif	

															If	luminance	matching	is	needed	

																														XYZ	=	Scale(XYZ,	source_luminance	/	destination_luminance)	

															Endif	

	

	

	

	

ICC.2:2023	

©	ICC	2023	–	All	rights	reserved	 197	

															If	destination	relative/absolute	adjustment	is	needed	

																														radiance	=	Scale(radiance,	…);	

															Endif	

															Convert_to_PCS_Radiance(radiance);	

A.3.26 From	Fluorescence	to	Fluorescence	

No	conversion	is	made.	The	connection	is	only	valid	if	spectralFluorescentRange(source_PCS)	is	the	same	
as	the	spectralFluorescentRange(destination_PCS).	

ICC.2:2023	

198	 ©	ICC	2023	–	All	rights	reserved	

Annex	B	
(informative)	

	
Gamut	Boundary	Description	

B.1 Introduction	

The	Gamut	Boundary	Description	tag	introduces	a	precise	method	of	describing	a	gamut	boundary.	The	
Gamut	Boundary	description	describes	the	gamut	boundary	as	a	collection	of	3D	vertices	and	faces.	

The	Gamut	Boundary	Description	tag	can	be	used	to	individually	describe	the	gamut	boundaries	for	the	
different	rendering	intents.	For	the	perceptual	intent,	the	actual	reference	medium	gamut	that	is	used	can	
be	 encoded.	 Separate	 gamut	 boundaries	 for	 relative	 and	 absolute	 intents	 are	 permitted	 because	 the	
floating‐point	tags	permit	separate	transforms.	

The	gamut	boundary	description	 is	 composed	of	 a	 set	of	vertices	and	 faces.	The	vertices	contain	PCS	
values	and	optional	device	values.	The	faces	are	described	by	a	set	of	vertex	IDs.	Useful	gamut	boundary	
attributes	such	as	edges	and	surface	normals	can	be	computed	from	the	vertices	and	faces.	

If	the	gamut	boundary	description	includes	device	values,	then	the	gamut	boundary	description	can	be	
used	to	transform	values	from	PCS	to	device	values.	

B.2 Computing	the	entries	in	a	gamutBoundaryDescriptionType	tag:	

	

Figure	B.1	—	Gamut	boundary	face	selection	from	device	coordinates	image	

To	compute	the	faces	and	vertices	for	the	gbd	tag	for	a	given	rendering	intent	the	following	procedure	
can	be	used:	

1) Generate	a	set	of	device	coordinates	on	the	gamut	boundary	of	the	encoding.	These	coordinates	
are	arranged	so	that	the	ratio	of	the	relative	colorant	amounts	varies	in	the	horizontal	direction,	
and	 the	 total	 colorant	amount	varies	 in	 the	vertical	direction.	 (An	example	 image	 is	 given	by	
Green	in	[10]).	The	white	point	and	black	point	shall	be	repeated	across	the	first	and	last	rows	in	
the	coordinate	array.	

	

ICC.2:2023	

©	ICC	2023	–	All	rights	reserved	 199	

2)	 Using	the	AToBx	LUT	for	the	rendering	intent,	convert	the	device	coordinates	in	step	1	to	the	PCS.	

3)	 If	 the	AToBx	LUT	 contains	more	 than	 three	 input	 channels,	 convert	 the	PCS	 coordinates	back	 to	
device	coordinates	using	the	BToAx	LUT	and	then	back	to	PCS	coordinates,	in	both	cases	using	the	
selected	rendering	intent.	

4)	 The	data	from	step	2	(or	step	3)	is	read	row‐wise	and	arranged	as	a	n*m	x3	array	to	form	the	vertex	
array.	

5)	 To	 construct	 the	 face	 array	 for	 this	 data,	 start	 with	 the	 upper	 left	 device	 coordinate	 and	 move	
clockwise	to	the	two	coordinates	in	the	next	row,	as	shown	in	Figure	B.1.	The	first	row	of	the	faces	
list	 is	 therefore	 [1,	 m+2,	 m+1]	 where	m	 is	 the	 number	 of	 coordinates	 in	 the	mxn	 set	 of	 device	
coordinates.	 The	 next	 row	 in	 the	 faces	 list	 is	 [1,	 2,	 m+1].	 Continue	 to	move	 through	 the	 device	
coordinates	until	the	face	list	is	fully	populated	with	one	row	per	face.	

The	following	Matlab	code	can	be	used	to	generate	a	face	array	for	an	nxm	array	of	device	coordinates:	

%	facemat	array	offsets	

q=zeros(m,3);	

t=(0:n‐1)*m;	

H=zeros(m*(n‐1),3);	

for	i=1:n‐1	

H((i‐1)*m+1	:m*i,:)=q+t(i);	

end	

%	left	triangles	facemat	array	

L=(1:m)';M=[(m+2):(m+m),m+1]';N=((m+1):m+m)';	

LMN=[L,M,N];	

R=repmat(LMN,n‐1,1);	

facematL=R+H;	

%	right	triangles	facemat	array	

O=(1:m)';Q=[2:m,1]';S=[(m+2):(m+m),m+1]';	

OQS=[O,Q,S];	

T=repmat(OQS,n‐1,1);	

facematR=T+H;	

faces=[facematL;facematR];	

B.3 Gamut	mapping	

B.3.1 General	

Gamut	mapping	 can	 be	 performed	 using	 the	 data	 defined	 in	 a	 gamut	 boundary	 description	 tag.	 For	
Colorimetric	rendering	intents,	the	mapping	is	essentially	a	clipping	of	all	out‐of‐gamut	coordinates	to	
the	boundary	of	the	destination	gamut.	For	Perceptual	and	Saturation	intents,	the	mapping	can	involve	a	
compression	 from	 source	 to	 destination	 gamut	 so	 that	 clipping	 artefacts	 are	 avoided.	 A	 number	 of	
algorithms	have	been	defined	for	both	clipping	and	compression.	Below	some	operations	using	a	gamut	
boundary	descriptor	based	on	a	list	of	vertices	and	faces	is	described.	

ICC.2:2023	

200	 ©	ICC	2023	–	All	rights	reserved	

To	compress	a	coordinate	to	the	surface	of	a	gamut,	it	is	moved	towards	a	point	on	the	achromatic	axis	
by	an	amount	determined	by	the	distance	between	the	coordinate,	the	gamut	surface	and	the	achromatic	
axis,	and	the	selected	compression	function.	

In	order	to	find	the	point	on	the	gamut	surface	that	a	given	coordinate	maps	to,	it	is	necessary	to	find	the	
point	of	intersection	between	the	plane	on	which	a	face	lies	and	a	vector	representing	the	line	of	clipping	
or	compression	from	the	point	being	mapped.	It	is	then	necessary	to	determine	whether	the	intersection	
lies	inside	the	face.	This	process	is	iterated	for	all	the	faces	in	the	face	list,	and	the	face	intersection	closest	
to	the	point	being	mapped	is	selected.	Finally,	the	compression	function	is	applied.	

B.3.2 Intersection	between	vector	and	plane	

Given	the	three	vertices	of	a	face,	the	plane	formula,	Formula	(B.1),	is:		

 [, ,] [, ,]x y zx y z n n n k 	 (B.1)	

where	N	is	the	normal	to	the	plane	[Formulae	(B.2)	and	(B.3)]:	

 1 2 3 2N P P P P 	 (B.2)	

and	

k	=	NP1	 (B.3)	

The	mapping	vector	L	intersects	the	plane	P	at	point	S	in	3D	space,	as	shown	in	Formulae	(B.4)	and	(B.5).	

1 1

2 1

N P L
t

N L L
	 (B.4)	

 1 2 1S L t L L 	 (B.5)	

B.3.3 Determine	if	an	intersection	between	line	and	face	lies	inside	a	face.	

The	intersection	point	between	a	mapping	line	and	the	plane	in	which	a	given	face	lies	can	be	defined	by	
Barycentric	coefficients	with	respect	to	the	coordinates	of	the	face.	If	the	three	coefficients	lie	in	the	range	
[0,1]	and	sum	to	unity	(within	a	small	tolerance)	the	point	lies	inside	the	face.	

ICC.2:2023	

©	ICC	2023	–	All	rights	reserved	 201	

Annex	C	
(informative)	

	
ICC	colour	appearance	model	transformations	

C.1 Introduction	

The	 ICC	colour	appearance	model	 (iccCAM)	 is	based	on	 the	CIECAT02	 transform	as	published	by	 the	
CIE[4].	 It	 is	 a	 simple	 modification	 of	 CIECAM02	 to	 obtain	 a	 stable	 transform	 from	measured	 XYZ	 to	
perceived	opponent‐colour	 Jab	and	back.	All	parameters	specifying	 the	viewing	conditions	and	visual	
measures	as	specified	by	the	original	model	are	also	supported	by	the	iccCAM.	

The	top‐level	structure	of	CIECAM02	from	XYZ	to	Jab	is	as	follows:	

a)	 The	XYZ	values	are	linearly	transformed	to	a	chromatic‐adaptation	basis	and	independently	scaled	
to	the	input	white	to	produce	Von‐Kries‐adapted	values.	The	chromatic‐adaptation	basis	that	is	used	
in	CIECAM02	is	called	CIECAT02.	

b)	 The	adapted	XYZ	values	are	added	to	non‐adapted	values	in	a	pre‐selected	proportion	D	called	the	
degree	of	adaptation.	

c)	 The	resulting	RGB	values	are	converted	to	the	Hunt‐Pointer‐Estevez	(HPE)	R’G’B’	space,	and	then	
subjected	to	a	power‐function	nonlinearity	(hyperbolic	function)	to	become	R’aG’aB’a.	

d)	 The	opponent‐colour	values	a,	b	are	computed	as	linear	combinations	of	R’aG’aB’a.	

e)	 The	 lightness	 J	 is	computed	starting	 from	another	 linear	combination	A	of	R’aG’aB’a.	This	 involves	
dividing	A	by	the	value	Aw	for	white,	and	evaluating	a	non‐integer	power	of	the	quotient.	

The	basic	problem	with	CIECAM02	is	due	to	the	choice	of	“sharpened”	CIECAT02	primaries.	That	means	
the	chromaticity	triangle	of	the	CIECAT02	primaries	intersects	the	spectrum	locus	several	times.	In	turn,	
this	implies	there	are	illuminants	and	colours	that	are	physically	producible	but	lie	outside	the	triangle.	
Three	kinds	of	problem	can	thereby	arise	in	CIECAT02,	quite	apart	from	its	context	in	CIECAM02:	

1)	 An	 illuminant	 whose	 chromaticity	 lies	 on	 an	 edge	 of	 the	 triangle	 causes	 a	 zero	 Von‐Kries	
denominator,	and	hence	a	division	by	zero	in	creating	the	Von‐Kries	ratios.	

2)	 Because	 the	 CIECAT02	 triangle	 falls	 slightly	 outside	 the	 HPE	 triangle,	 adaptation	 to	 a	 bluish	
illuminant	moves	 a	 colour	 from	 inside	 the	HPE	 triangle	 to	 outside	 the	HPE	 triangle,	 resulting	 in	
negative	R’G’B’	values	and	hence	a	negative	A	value.	The	value	Aw	on	the	other	hand	is	always	positive	
as	shown	in	by	Luo[5].	This	issue,	also	referred	to	as	the	yellow‐blue	problem,	is	solved	in	the	CIE	
reportership	R8‐07[6].	

3)	 A	 colour	 that	 lies	 outside	 the	 CIECAT02	 triangle	 has	 at	 least	 one	 negative	 coordinate,	 so	 when	
chromatic	adaptation	happens,	that	colour	moves	in	the	wrong	direction	in	the	chromaticity	space.	
For	example,	 for	CIECAT02	 there	 is	 a	band	of	purple	 colours	within	 the	 spectrum	 locus	 that	 lies	
outside	the	primary	triangle	for	CIECAT02	RGB.	If	the	starting	point	a	white	light	and	adaptation	to	
a	more	purple	light	occurs,	all	the	purple	colours	within	the	CIECAT02	triangle	shift	toward	green	
(away	 from	 purple),	 but	 colours	 that	 are	 outside	 the	 CIECAT02	 triangle	 becomes	 more	 purple,	
contrary	to	actual	experience.	

Apart	from	the	above	mentioned	problems,	there	are	additional	hazards	because	CIECAM02	applies	a	
power	function	(power	<	1)	to	the	R'G'B'	values.	This	results	in	an	infinite	slope	of	the	power	function	at	
zero,	destabilizing	colour	management	algorithms	for	colours	going	to	black	[XYZ	=	(0,0,0)].	

ICC.2:2023	

202	 ©	ICC	2023	–	All	rights	reserved	

C.2 The	ICC	colour	appearance	model	

A	simple	way	to	resolve	the	previously	mentioned	problems	is	as	follows:		

First,	negative	R'G'B'	values	need	to	be	avoided.	As	a	consequence,	the	HPE	triangle	will	lie	outside	or	be	
coincident	with	any	candidate	CIECAT02	triangle.	On	the	other	hand,	to	assure	internal	consistency,	the	
candidate	Von‐Kries	primaries	make	a	triangle	that	circumscribes	the	spectrum	locus.	As	mentioned	by	
Süsstrunk	and	Brill[4,5],	"Three	chromaticity	sets	are	nested:	The	HPE	triangle	encompasses	the	modified	
CIECAT02	triangle,	which	in	turn	encompasses	the	spectrum	locus".	

A	simple	and	stable	solution	is	obtained	by	replacing	CIECAT02	with	the	HPE	triangle.	Even	though	HPE	
is	not	the	best	set	of	fundamental	primaries,	it	is	a	significant	improvement	over	a	Von‐Kries	adaptation	
in	XYZ	as	implemented	in	the	CIELAB	model,	which	is	commonly	used	in	colour	management.	

As	a	consequence,	the	range	of	colours	and	illuminants	for	which	the	model	is	invertible	is	given	by	the	
range	of	positive	RGB	values	defined	by	HPE	triangle	for	the	colours,	and	strict	positive	RGB	values	as	
defined	by	the	HPE	triangle	for	the	illuminants.	If	colours	outside	this	region	are	used,	they	have	to	be	
mapped	onto	the	boundary	of	the	RGB	space	defined	by	the	HPE	triangle.	Illuminants	are	assumed	to	be	
always	real	hence	no	mapping	strategy	is	needed.	In	the	iccCAM,	colours	are	mapped	in	the	HPE	RGB	
space	by	clipping	component	by	component	the	values	to	the	nearest	value.	

The	instability	near	the	black	point	is	due	to	the	hyperbolic	function	in	Formula	(C.1).	

0,42

0,42

400

27,13

L

L

F x
f x

F x
	 (C.1)	

where	x	ranges	from	0	to	1	(in	CIECAM02	x	represents	R’/100,	G’/100	and	B’/100).	

For	x	going	to	zero,	the	derivative	of	the	function	f(x)	goes	to	infinity,	resulting	in	unstable	behaviour.	
This	can	be	solved	by	replacing	f(x)	with	the	function	g(x)	defined	in	Formulae	(C.2)	and	(C.3):	

1
1,2307

0,2307 1
1

g x h x f
h

	 (C.2)	

4

for
255

x 		

1

2

4
255
4
255

g
g x x 	 (C.3)	

4

for
255

x 	

where	

0,3169

0,3169

400

27,13

L

L

F x
h x

F x
.	

ICC.2:2023	

©	ICC	2023	–	All	rights	reserved	 203	

Annex	D	
(informative)	

	
Named	colour	profiles	

D.1 Introduction	

In	 addition	 to	 the	 information	 specified	 in	 ISO	 15076‐1,	 the	 namedColor	 profile	 can	 also	 specify,	 for	
example,	 tint	 values,	 spectral	 PCS	 and	 spectral	 over	 black	 in	 the	 namedColorTag.	 An	 example	 of	 the	
namedColorTag	is	given	in	Figure	D.1.	

	

Figure	D.1	—	namedColorTag	example	

Where	the	deviceData	and	the	tintValues	are	optional,	the	pcsData	is	required	if	the	PCS	is	non‐zero	in	
profile	header	and	the	spectralData	is	required	if	the	spectralPCS	is	non‐zero	in	profile	header.	

D.2 Rendering	intent	of	a	named	colour	

The	tintZeroStructure	is	used	to	specify	the	information	on	a	substrate	as	well	as	over	a	black	substrate.	
The	PCS	or	spectral	PCS	of	the	substrate	enables	the	value	of	a	named	colour	represented	with	either	the	
ICC‐absolute	colorimetric	or	the	relative	colorimetric	rendering	intent.	The	rendering	intent	field	in	the	
header	is	used	to	indicate	which	one	is	to	be	used.	

D.3 Spectral	calculation	for	a	tint	value	

For	a	named	colour	with	a	tint	value	in	between	two	tint	values,	a	linear	interpolation	is	assumed.	

Example	1:	

A	colour	with	name	of	‘Color1’	and	tint	value	of	20	%.	

	

	

ICC.2:2023	

204	 ©	ICC	2023	–	All	rights	reserved	

The	tint	value	of	20%	is	in	between	the	zero	tint	value	and	the	tint	value	of	33	%.	The	estimated	CIELAB	
value	is	shown	in	Formulae	(D.1)	to	(D.3):	

L*1_0,2=20/33*(L*1_0,33‐L0)+L0	 (D.1)	

a*1_0,2=20/33*(a*1_0,33‐L0)+L0	 (D.2)	

b*1_0,2=20/33*(L*1_0,33‐L0)+L0	 (D.3)	

Example	2:	

A	colour	with	name	of	‘ColorN’	and	tint	value	of	40	%.	

The	tint	value	of	40	%	is	in	between	the	tint	value	of	25	%	and	the	tint	value	of	50	%.	

The	estimated	spectral	values	of	this	colour	are	shown	in	Formulae	(D.4)	and	(D.5):	

s400_0,5=0,6*(s400_0,50‐s400_0,25)+	s400_0,25	 (D.4)	

…	

s700_0,5=0,6*(s700_0,5‐s700_0,25)+	s700_0,25	 (D.5)	

Similarly,	the	PCS	values	and	the	spectral	values	over	black	can	also	be	obtained.	

D.4 Overprint	calculation	

One	way	to	calculate	a	spot	colour	overprint	in	between	two	tint	values	is	to	apply	an	overprint	model	on	
the	tristimulus	values	obtained	 from	the	corresponding	spectral	values	on	the	substrate	and	over	the	
substrate.	One	bibliography	reference	outlines	a	few	possible	methods[9].	

D.5 Example	of	a	namedColor	profile	in	a	colour	management	workflow	

The	PCS	or	spectral	PCS	representations	enable	CMM	to	process	a	named	colour	in	conjunction	with	a	
namedColor	 profile,	 a	 device	 destination	 profile,	 or/and	 a	 source	 profile.	 For	 example,	 a	 spot	 colour	
viewed	on	a	sRGB	display	with	the	perceptual	rendering	intent	is	simulated	on	a	glossy	paper	under	a	
custom	viewing	condition	with	the	relative	colorimetric	rendering	intent,	where	the	viewing	conditions	
are	specified	in	the	PCC.	The	iccCAM	transformation	can	be	used	to	convert	this	colour	from	the	D50	to	
the	custom	viewing	condition.	The	colour	is	then	interpolated	with	the	associated	device	output	profile	
to	obtain	its	device	value.	

ICC.2:2023	

©	ICC	2023	–	All	rights	reserved	 205	

Annex	E	
(informative)	

	
Sparse	matrix	operations	

The	following	discussion	provides	pseudo	code	to	describe	the	addition	of	two	sparse	matrices	as	well	as	
the	multiplication	of	a	vector	by	a	sparse	matrix.	In	each	case	a	sparse	matrix	is	represented	using	the	
following	general	structure:	

Structure	SparseMatrix	{	

			rows	

			columns	

			entries	

			offset[rows+1]	

			index[entries]	

			data[entries]	

}	

NOTE	1	 The	first	element	in	each	array	in	the	following	pseudo	code	is	assumed	to	be	zero	(0).	

NOTE	2	 In	the	above	structure	offset[rows]	have	the	same	value	as	entries	

NOTE	3	 The	max_entries	value	used	below	is	determined	using	the	formula	to	determine	the	max	number	of	
entries	given	the	number	of	bytes	available	to	encode	the	sparse	matrix	(S),	the	number	of	rows	in	the	sparse	matrix	
(R),	and	the	number	of	bytes	used	to	encode	each	matrix	entry	(see	Sparse	Matrix	Encoding).	

Addition	of	sparse	matrices	

The	following	pseudo	code	performs	the	addition	of	the	matrix	operation	in	Formula	(E.1).	

C	=	a	A	+	b	B	 (E.1)	

where	

		 A,	B,	C	 are	sparse	matrices;	

		 a,	b	 are	scalar	values.	

if	(not	((A.rows	equals	B.rows)	and	(A.columns	equals	B.columns)))	

		Return	Failure;	

endif	

		

C.rows	=	A.rows	

C.columns	=	A.columns	

		

	

	

	

	

ICC.2:2023	

206	 ©	ICC	2023	–	All	rights	reserved	

pos=0;	

row	=	0;	

while	(row	<	A.rows)	

		nA	=	A.offset[row+1]	–	A.offset[row]	

		nB	=	B.offset[row+1]	–	B.offset[row]	

		

		C.index[row]	=	pos;	

		if	(nA!=0	and	nB	!=	0)	

				i=0;	

				j=0;	

				while	(i<nA	or	j<nB)	

						if	(pos	>=	max_entry)	

								return	failure;	

						endif	

		

						if	(i<nA	and	j<nB)	

								if	(A.index[A.offset[row]+i]	<	B.index[B.offset[row]+j])	

										C.index[pos]	=	A.index[A.offset[row]+i];	

										C.data[pos]	=	a	*	A.data[A.offset[row]+i];	

										pos	=	pos	+1;	

										i	=	i+1;	

								elseif	(B.index[B.offset[row]+	j]	<	A.index[A.offset[row]	+	i])	

										C.index[pos]	=	B.index[B.offset[row]	+	j];	

										C.data[pos]	=	b	*	B.data[B.offset[row]	+	j];	

										pos	=	pos	+1;	

										j	=	j+1;	

								else	

										C.index[pos]	=	A.index[A.offset[row]+i];	

										C.data[pos]	=	a	*	A.data[A.offset[row]	+	i]	+		

																								b	*	B.data[B.offset[row]	+	j];	

										pos	=	pos	+	1;	

										i	=	i	+	1;	

										j	=	j	+	1;	

	

	

	

	

	

ICC.2:2023	

©	ICC	2023	–	All	rights	reserved	 207	

								endif	

						elseif	(i<nA)	

									C.index[pos]	=	A.index[A.offset[row]	+	i];	

									C.data[pos]	=	a	*	A.data[A.offset[row]	+	i];	

									pos	=	pos	+	1;	

									i	=	i	+	1;	

						else	

									C.index[pos]	=	B.index[B.offset[row]	+	j];	

									C.data[pos]	=	b	*	B.data[B.offset[row]	+	j];	

									oos	=	pos	+	1;	

									j	=	j	+	1;	

						endif	

				endwhile				

		elseif	(nB	equals	0)	

				if	(pos+nA	>=	max_entry)	

						return	failure;	

				endif	

		

				for	i=0	to	nA‐1	

						C.index[pos]	=	A.index[A.offset[row]+i];	

						C.data[pos]	=	a	*	A.index[A.offset[row]+i];	

						pos	=	pos	+	1	

				endfor	

		elseif	(nA	equals	0)	

				if	(pos+nB	>=	max_entry)	

						return	failure;	

				endif	

		

				for	i=0	to	nB‐1	

						C.index[pos]	=	B.index[B.offset[row]+i];	

						C.data[pos]	=	b	*	B.index[B.offset[row]+i];	

				endfor	

		endif	

		

	

	

	

	

ICC.2:2023	

208	 ©	ICC	2023	–	All	rights	reserved	

		row	=	row	+	1;	

endwhile			

		

C.entries	=	pos;	

C.index[C.rows]	=	pos;	

		

Return	C;	

		

Multiplication	of	vector	by	sparse	matrix	

		

The	pseudo	code	performs	a	multiplication	of	a	vector	x	by	a	sparse	matrix	M	[Formula	(E.2)].	

y	=	M	x	 (E.2)	

Where	M	is	a	sparse	matrix,	x	and	y	are	vectors	and	the	length	of	the	vectors	is	the	same	as	the	number	of	
columns	in	M.	

j=0;	

while	(j	<	M.rows)	

		pos	=	M.offset[j];	

		nC	=	M.offset[j+1]	–	pos;	

		

		y[j]	=	0	

		i	=	0;	

		while	(i<nC)	

				y[i]	=	y[i]	+	x[i]	*	M.data[M.index[pos	+	i]];	

				i	=	i	+1;	

		endwhile	

		

		j	=	j	+	1;	

endwhile	

ICC.2:2023	

©	ICC	2023	–	All	rights	reserved	 209	

Annex	F	
(informative)	

	
calculatorElement	text	representation	and	examples	

F.1 Textual	representation	of	calculator	processing	elements	

The	actual	binary	encoding	of	 contents	of	operations	 in	a	calculatorElement	 is	 specified	 in	Clause	11.	
However,	when	discussing	the	contents	of	a	calculatorElement’s	main	function,	it	is	useful	to	use	a	text	
nomenclature	for	expressing	the	sequences	of	operations	to	perform.	The	following	guidelines	can	be	
used	for	describing	calculator	element	main	function	contents:	

A	sequence	of	operations	is	delineated	by	curly	parenthesis	{	}.	

EXAMPLE	 {	…	}	

Numbers	correspond	to	putting	values	on	stack.	

EXAMPLE	 95	or	pi	

Operations	are	simply	the	text‐based	(without	padded	spaces)	names	of	the	operation.	

EXAMPLE	 pow	

Conditional	 operations	 with	 associated	 streams	 are	 represented	 using	 sequences	 of	 operations	
delineated	by	curly	parenthesis	{	}.	

EXAMPLE	 if	{	…}	else	{	…	}	

CMM	environment	 variables	 are	 identified	by	placing	 the	32‐bit	 four‐character	 environment	 variable	
signature	 (or	 8‐digit	 hexadecimal	 value)	 in	 parentheses	 after	 the	 env	 operator.	 CMM	 environment	
variable	signatures	with	less	than	four	characters	are	space	padded.	

EXAMPLE	 env(true)	is	the	same	as	env(74727565)	

EXAMPLE	 env(xx)	is	the	same	as	env(78782020)	

Stack	operations,	 if	not	 followed	by	a	size	specification	(n)	or	by	a	size	and	repeat	specification	(n,r),	
assume	only	one	stack	element	is	involved.	If	a	size	specification	is	provided,	at	least	two	operations	are	
needed.	

EXAMPLE	 copy	or	copy(5)	or	copy(3,2)	

Variable	 length	 operations	 if	 not	 followed	 by	 a	 size	 specification	 [n]	 assume	 only	 two	 operations.	 If	
specified,	at	least	two	operations	are	needed.	

EXAMPLE	 and	or	and[5]	

Requirements	of	channel	vector	operations	are	described	in	11.2.1.	

EXAMPLE	 tget[0]	or	tget[0,3]	

F.2 Examples	

The	following	are	examples	of	defining	calculator	elements	within	a	multiProcessElementTag.	

	

	

ICC.2:2023	

210	 ©	ICC	2023	–	All	rights	reserved	

F.2.1 Polynomial	device	modelling	

The	following	discussion	shows	a	basic	example	of	device	modelling,	which	can	definitely	be	improved	
upon.	 The	 exact	 details	 of	 the	model	 are	 not	 as	 important	 as	 understanding	 the	 processing	 element	
interaction	in	the	approach.	

Suppose	that	the	colorimetric	measurement	of	CMYK	device	output	can	be	modelled	using	Formula	(F.1)	
(note	that	more	complicated	functions	are	likely	to	be	needed).	

1,1 2,1 3,1 4,1 5,1 6,1 7 ,1 8 ,1 9,1 10,1 11,1

1,2 2,2 3,2 4,2 5,2 6,2 7,2 8,2 9,2 10,2 11,2

1,3 2,3 3,3 4,3 5,3 6 ,3 7 ,3 8,3

*

*

*

L a a C a M a Y a K a CM a CY a CK a MY a MK a YK

a a a C a M a Y a K a CM a CY a CK a MY a MK a YK

b a a C a M a Y a K a CM a CY a 9,3 10,3 11,3CK a MY a MK a YK

	 (F.1)	

This	can	be	expressed	as	a	matrix/vector	equation	as	shown	in	Formula	(F.2):	

1,1 1,11

2,1 2,11

3,1 3,11

1

* ...

*

*

C

M

Y

L a a K

a a a CM

b a a CY

CK

MY

MK

YK

	 (F.2)	

Expressing	this	as	a	calculator	element	can	be	done	using	matrix	and	vector	operations	by	first	placing	
the	coefficients	of	the	matrix	followed	by	calculations	of	the	vector	on	the	stack	as	follows:	

Assume	C=in[0],	M=in[1],	Y=in[2],	K=i[3],	mat(0)	=	matrix	as	defined	above	

{	

1,0	in[0,4]	

in[0,2]	mul	

in[0]	in[2]	mul	

in[0]	in[3]	mul	

in[1,2]	mul	

in[1]	in[3]	mul	

in[2,2]	mul	

mat(0)	out[0,3]	

}	

Assume	L=out[0],	a=out[1],	b=out[2]	

	

F.3 RGBW	display	projector	inverse	model	

ICC.2:2023	

©	ICC	2023	–	All	rights	reserved	 211	

The	 following	 example	 shows	 how	 a	 single	 Calculator	 Element	 can	 be	 used	 to	 encode	 the	 entire	
transformation	from	XYZ	to	RGB	input	values	of	the	inverse	model	for	an	RGBW	projector.	

NOTE	 This	is	an	implementation	of	the	algorithm	proposed	by	David	Wyble	and	Mitchel	Rosen	in	“Colorimetric	
Management	of	DLPTM	Projectors”,	IS&T/SID	Eleventh	Color	Imaging	Conference,	228‐232,	(2004).	

Assume	X=in[0],	 Y=in[1],	 Z=in[2],	mtx(0)	 =	matrix	used	 to	 estimate	 theoretical	RGB	values,	mtx(1)	=	
matrix	used	to	estimate	pre‐LUT	RGB	values,	curv(2)=white	LUT	with	max	red,	curv(3)=white	LUT	with	
max	 green,	 curv(4)=white	LUT	with	max	blue,	 curv(5)=inverse	RGB	 transfer	 curves.	 In	 the	 following	
example	values	in	italics	represent	constants	that	would	actually	be	used.	

{	

		in[0,3]	

		XDisplayWhite	YDisplayWhite	ZDisplayWhite	mul[3]	

		0.9642	1.000	0.8249	div[3]	

		

		XDisplayBlack	YDisplayBlack	ZDisplayBlack	sub[3]	

		copy(3)	tput[3,3]		%requested	normalized	XYZ	

		

		mtx(0)	copy(3)	tput[0,3]		%theoretical	RGB	values	

		

		max(3)	1.0	gt	if	{	

				tget[0,3]	min(3)	

				copy	tget[0]	eq	if	{	

						curv(2)	

				}	else	{	

						copy	tget[1]	eq	if	{	

								curv(3)	

						}	else	{	

							curv(4)	

						}	

				}	

				neg	copy(1,2)		

				(XDisplayWhite	‐	XDisplayBlack)	

				(YDisplayWhite	‐	YDisplayBlack)	

				(ZDisplayWhite	‐	ZDisplayBlack)	

				mul[3]		

	

	

	

	

				tget[3,3]	add[3]	

ICC.2:2023	

212	 ©	ICC	2023	–	All	rights	reserved	

				mtx(1)	

		}	

		curv(5)	out[0,3]	

}	

F.4 CLUT	interpolation	using	Lch	addressing	from	an	XYZ	PCS	example	

The	 following	 example	 shows	 how	 a	 single	 Calculator	 Element	 can	 be	 used	 to	 encode	 the	 entire	
transformation	from	XYZ	to	Lab,	and	then	to	Lch	and	then	through	a	sub‐CLUT.	

Assume	X=in[0],	Y=in[1],	Z=in[2],	clut[0]	=	colour	lookup	table	to	convert	to	CMYK	output	

{	in[0,3]	0.9642	1.000	0.8249	div[3]	tLab	ctop	100	182	360	div[3]	clut[0]	out[0,4]	}	

Assume	C=out[0],	M=out[1],	Y=out[2],	K=out[3]	

NOTE	 This	 is	only	a	textual	representation	of	how	the	data	are	stored	in	the	calculator	element.	The	actual	
function	operations	are	stored	as	an	array	of	8‐byte	operation	definitions.	

ICC.2:2023	

©	ICC	2023	–	All	rights	reserved	 213	

Annex	G	
(informative)	

	
BRDF	overview	and	description	

G.1 Introduction	

The	light	that	comes	from	a	surface	to	a	viewer	of	the	surface	is	defined	by	a	complex	function	that	is	
controlled	by	many	factors.	As	a	surface	is	viewed	from	different	angles,	or	the	angle	of	the	light	shining	
on	the	surface	changes,	the	appearance	of	the	object	changes.	Specular	highlights	can	appear,	and	colours	
can	change.	

A	bidirectional	reflection	distribution	function	(BRDF)	describes	the	light	that	is	reflected	from	an	opaque	
surface.	The	inputs	to	the	function	are	the	direction	of	the	incoming	light	relative	to	the	surface	normal	
and	the	direction	of	the	viewer	relative	to	the	surface	normal.	

The	output	of	the	function	is	the	ratio	of	reflected	radiance	to	the	irradiance	incident	on	the	surface.	The	
function	has	the	form	shown	in	Formula	(G.1):	

 r r

r i r
i i i i

,
cos

dL
f

L d
	 (G.1)	

where	

		 Li	 is	incoming	radiance;	

		 Lr	 is	reflected	radiance;	

		 ωi	 is	the	unit	vector	that	points	to	the	position	of	the	light;

		 ωr	 is	the	unit	vector	that	points	to	the	position	of	the	observer;

		 θi	 is	the	angle	between	ωi	and	n.	

The	function	can	be	visualized	with	the	diagram	shown	in	Figure	G.1.	

ICC.2:2023	

214	 ©	ICC	2023	–	All	rights	reserved	

	

Figure	G.1	—	BRDF	function	

Both	ωi	and	ωr	are	defined	relative	to	the	surface	normal.	Since	both	vectors	are	unit	length,	the	BRDF	
function	is	four‐dimensional.	

Functions	related	to	the	BRDF	function	can	also	describe	sub‐surface	scattering,	shadowing,	masking,	and	
inter‐reflections.	These	types	of	functions	could	be	supported	by	the	addition	of	new	function	types.	

G.2 Purpose	

The	 initial	 purpose	 for	 including	 BRDF	 support	 into	 ICC	 profiles	 is	 to	 allow	 a	 profile	 to	 provide	 the	
necessary	 information	 for	 defining	 the	 appearance	 of	 a	 surface	 for	 arbitrary	 lighting	 conditions	 and	
viewing	positions.	

For	the	most	part	ICC	colour	management	assumes	0:45	geometry,	and	conversion	between	geometries	
is	not	defined.	However,	if	a	three‐dimensional	object	within	the	context	of	a	three‐dimensional	rendering	
system	uses	a	BRDF	colour	defined	by	an	ICC	profile,	the	ICC	profile	can	provide	all	the	BRDF	information	
for	the	rendering	system	to	generate	an	appearance	simulation	of	the	object.	

A	baseline	case	allows	a	CMM	to	use	0:45	geometry	with	BRDF	information	to	derive	colour	appearance	
information	that	is	appropriate	for	connecting	to	an	output	profile.	

G.3 The	BRDFStruct	element	and	the	BRDFFunction	element	

Two	types	of	BRDF	tags	are	supported.	The	two	types	of	tags	supply	data	that	neither	alone	can	provide.	

	

ICC.2:2023	

©	ICC	2023	–	All	rights	reserved	 215	

The	 BRDFStruct	 type	 tags	 (see	 brdfColorimetricParameter0Tag,	 brdfColorimetricParameter1Tag,	
brdfColorimetricParameter2Tag,	 brdfColorimetricParameter3Tag,	 brdfSpectralParameter0Tag,	
brdfSpectralParameter1Tag,	 brdfSpectralParameter2Tag,	 brdfSpectralParameter3Tag,	 brdfMToB0,	
brdfMToB1,	 brdfMToB2,	 brdfMToB3,	 brdfMToS0,	 brdfMToS1,	 brdfMToS2,	 and	 brdfMToS3)	 supply	
parameters	for	a	BRDF	model	that	can	be	used	by	3D	rendering	software.	

The	BRDF	Function	tags	(see	brdfAToB0Tag,	brdfAToB1Tag,	brdfAToB2Tag,	brdfAToB3,	brdfDToB0Tag,	
brdfDToB1Tag,	 brdfDToB2Tag,	 and	 brdfDToB3Tag)	 provide	 PCS	 or	 spectralPCS	 values	 when	 given	
lighting	direction,	viewing	angle,	and	device	values.	They	can	be	implemented	as	a	function	or	lookup	
tables	within	 the	multiProcessElementsType.	The	BRDF	Function	 tags	can	be	more	accurate	 than	 the	
results	from	using	parameters	with	a	BRDF	model.	

The	 reverse	 BRDF	 Function	 tags	 (see	 brdfBToA0Tag,	 brdfBToA1Tag,	 brdfBToA2Tag,	 brdfBToA3,	
brdfBToD0Tag,	brdfBToD1Tag,	brdfBToD2Tag,	and	brdfBToD3Tag)	provide	device	values	when	given	
lighting	direction,	viewing	angle,	and	PCS	or	spectralPCS	values.	They	can	be	implemented	as	a	function	
or	lookup	tables	within	the	multiProcessElementsType.	

NOTE	 Obtaining	BRDF	model	parameters	for	the	purpose	of	3D	rendering	from	the	BRDF	Function	type	would	
require	fitting	the	data	from	the	transform	to	a	BRDF	model.	The	cost	of	performing	this	fitting	would	most	likely	
be	impractical	for	many	use	cases.	

G.4 BRDF	model	support	in	ICC	profiles	with	BRDFStruct	

BRDF	information	can	be	expressed	as	a	single	function	(monochrome	BRDF)	that	is	applied	uniformly	
to	all	channels	of	the	resulting	colour,	or	separate	BRDF	information	can	be	defined	for	each	individual	
channel	(chromatic	BRDF)	of	the	resulting	colour.	The	first	case	(monochrome	BRDF)	allows	for	a	simple	
and	compact	representation	of	surface	appearance	that	in	many	cases	will	be	sufficient.	With	the	second	
case	(chromatic	BRDF)	the	characteristics	of	special	effects	pigments	can	be	expressed.	

G.5 Workflows	

The	following	workflows	are	envisioned:	

G.5.1 Normal	non‐BRDF	

For	a	non‐BRDF	workflow	a	profile	with	BRDF	tags	functions	is	used	just	like	a	profile	without	BRFD	tags,	
as	illustrated	in	Figure	G.2.	

	

Figure	G.2	—	Non‐BRDF	workflow	

G.5.2 Getting	BRDF	parameters	from	a	profile	with	monochrome	BRDF	tags	

In	this	workflow,	illustrated	in	Figures	G.3	and	G.4,	rendering	parameters	are	provided	by	a	profile	with	
monochrome	BRDFStruct	tags.	The	full	set	of	parameters	is	calculated	by	combining	the	output	of	the	
AToBxTag/DToBxTag/MToBxTag	with	 the	 output	 of	 a	 brdfColorimetricParameterX	 (hereafter	 BCPx),	
brdfSpectralParameterX	(BSPx)	tag,	brdfMToBx,	or	brdfMToSx	tag	(hereafter	referred	to	collectively	as	
BRDx	tags).	The	parameters	are	combined	as	described	in	12.2.1.	

ICC.2:2023	

216	 ©	ICC	2023	–	All	rights	reserved	

	

Figure	G.3	—	BRDF	parameters	from	profile	with	monochrome	BRDF	tags	

	

Figure	G.4	—	BRDF	parameters	from	profile	with	monochrome	BRDF	tags	

The	 following	 is	an	example	of	how	to	get	colour	BRDF	parameters	 from	a	profile	with	monochrome	
Blinn‐Phong	BRDx	tags:	

Get	colour	BRDF	parameters	for	device	value	of	(1,0,	0,2,	0,7)	from	a	colorimetric	profile	with	a	Blinn‐
Phong	BRDFx	Tag.	

1)	 Pass	device	values	through	AToBx/DToBx	to	get	PCS.	

a)	 the	Tag	returns	an	XYZ	of	(0,35,0,25,0,2);	

b)	 B	=	0,35,0,25,0,2.	

2)	 Get	the	monochrome	BRDF	parameters	passing	the	device	or	multiplex	channel	values	through	the	
BRDx	tag.	

a)	 the	BRDx	tag	returns	(0,5,0,51,0,49,	0,01,0,02,0,03,	0,3,0,31,0,29,	5,0,5,0,5,0);	

b)	 these	returned	values	translate	to:	

i)	 ld	=	0,5,0,51,0,49;	

ii)	 ls	=	0,01,0,02,0,03;	

iii)	 lgs	=	0,3,0,31,0,29;	

ICC.2:2023	

©	ICC	2023	–	All	rights	reserved	 217	

iv)	 n	=	5,0,5,0,5,0.	

3)	 Combine	the	PCS	values	and	the	monochrome	BRDF	parameters	to	get	kd,	ks,	and	n.	

a)	 kd	=	ldB;	

b)	 kd	=	0,5*0,35,0,51*0,25,0,49*0,2;	

c)	 kd	=	0,175,0,1275,0,098;	

d)	 ks	=	lsB+lgs;	

e)	 ks	=	0,01*0,35+0,3,0,02*0,25+0,31,0,03*0,2+0,29;	

f)	 ks	=	0,3035,0,315,0,302;	

g)	 n	=	5,0,5,0,5,0.	

G.5.3 Getting	BRDF	parameters	from	a	profile	with	chromatic	BRDF	tags	

In	this	workflow,	illustrated	in	Figure	G.5,	rendering	parameters	are	provided	by	a	profile	with	chromatic	
BRDFStruct	 tags.	 The	 full	 set	 of	 parameters	 is	 provided	 by	 the	 brdfColorimetricParameter0Tag,	
brdfColorimetricParameter1Tag,	 brdfColorimetricParameter2Tag,	 or	 brdfColorimetricParameter3Tag,	
(hereafter	 BCPx	 tags);	 or	 brdfSpectralParameter0Tag,	 brdfSpectralParameter1Tag,	
brdfSpectralParameter2Tag,	or	brdfSpectralParameter3Tag	(hereafter	BSPx	tags).	

	

Figure	G.5	—	BRDF	parameters	from	profile	with	chromatic	BRDF	tags	

The	following	is	an	example	of	how	to	get	colour	BRDF	parameters	from	a	profile	with	chromatic	Blinn‐
Phong	BCPx/BSPx	tags:	

Get	colour	BRDF	parameters	for	device	value	of	(1,0,	0,2,	0,7)	from	a	colorimetric	profile	with	a	Blinn‐
Phong	BRDF	Tag.	

1)	 Pass	device	values	through	BCPx	to	get	colour	BDF	parameters.	

a)	 the	BCPx	tag	returns	(0,175,0,1275,0,098,	0,3035,0,315,0,302,	5,0,5,0,5,0);	

b)	 kd	=	0,175,0,1275,0,098;	

c)	 ks	=	0,3035,0,315,0,302;	

d)	 n	=	5,0,5,0,5,0.	

G.5.4 Getting	PCS	values	for	a	lighting	position,	viewing	position,	and	device	values	from	a	BRDF	
Function	element	

The	brdfAToBx/brdfDToBx	BRDF	Function	tags	allows	PCS	values	to	be	obtained	for	a	given	illumination	
angle,	viewing	angle,	and	set	of	device	values	for	the	workflow	illustrated	in	Figure	G.6.	

ICC.2:2023	

218	 ©	ICC	2023	–	All	rights	reserved	

	

Figure	G.6	—	Obtaining	PCS	values	from	a	BRDF	function	element	

G.5.5 Getting	device	values	for	a	lighting	position,	viewing	position,	and	PCS	values	from	a	BRDF	
Function	element	

The	 brdfBToAx/brdfBToDx	 BRDF	 Function	 tags	 allow	 device	 values	 to	 be	 obtained	 for	 a	 given	
illumination	angle,	viewing	angle,	and	set	of	device	values	for	the	workflow	illustrated	in	Figure	G.7.	

	

Figure	G.7	—	Obtaining	PCS	values	from	a	BRDF	function	element	

G.5.6 Getting	PCS	values	for	a	lighting	position,	viewing	position,	and	device	values	from	a	BRDF	
Structure	element	

The	 BRDF	 Structure	 element	 provides	 BRDF	 parameters	 for	 a	 specified	 BRDF	 model,	 as	 shown	 in	
Figure	G.8.	Acquiring	PCS	values	from	these	parameters	requires	the	implementation	of	the	BRDF	model	
using	the	brdfColorimetricParameterX	(BCPx)	or	brdfSpectralParameterX	(BSPx)	tags.	

	

Figure	G.8	—	Obtaining	PCS	values	from	a	BRDF	Structure	element	

An	example	of	the	implementation	of	a	BRDF	model	is	given	in	G.5.7.	

G.5.7 Obtain	45/0	PCS	from	profile	that	doesn’t	use	0:45	geometry	and	has	BRDFStructure	tags	

For	a	profile	that	doesn’t	use	0:45	geometry	but	has	BRDF	tags,	it	is	possible	to	get	0:45	PCS	values,	as	
illustrated	in	Figure	G.9.	If	the	profile	supplies	BRDF	parameters	for	a	BRDF	model	with	a	BRDFStructure	
tag,	the	PCS	values	are	calculated	by	using	the	BRDF	model	with	the	brdfColorimetricParameterX	(BCPx)	
or	brdfSpectralParameterX	(BSPx)	tags.	

ICC.2:2023	

©	ICC	2023	–	All	rights	reserved	 219	

	

Figure	G.9	—	Obtaining	0:45	PCS	values	from	a	BRDF	Structure	tag	

The	 following	example	shows	how	0:45	colorimetric	PCS	values	can	be	calculated	from	a	profile	with	
brdfColorimetricParameterX	tags:	

Get	colour	BRDF	parameters	for	device	value	of	(1,0,	0,2,	0,7)	from	a	colorimetric	profile	with	a	Blinn‐
Phong	BRDF	Tag.	

1)	 Pass	device	values	through	brdfColorimetricParameterX	to	get	colour	BDF	parameters.	

a)	 the	 brdfColorimetricParameterX	 tag	 returns	 (0,175,0,1275,0,098,	 0,3035,0,315,0,302,	
5,0,5,0,5,0);	

b)	 kd	=	0,175,0,1275,0,098;	

c)	 ks	=	0,3035,0,315,0,302;	

d)	 n	=	5,0,5,0,5,0.	

2)	 Compute	PCS	values.	

a)	 light	is	at	45°	and	viewer	is	at	0°;	

b)	 Lm	can	be	defined	as	(0,707,0,707,0);	

c)	 N	(and	the	view	direction)	is	(1,0,0);	

d)	 Hm	is	the	half	angle	between	Lm	and	the	viewing	direction.	Hm	is	(0,9239,0,3827,0);	

e)	 the	Blinn‐Phong	equation	is	

^ ^ ^ ^

, ,
lights

n

p d m m d s m m s
m

I k L N i k N H i ;	

f)	 the	dot	product	Lm·N	is	0,707;	

g)	 the	dot	product	N·Hm	is	0,9239;	

h)	 with	im,d	and	im,s	equal	to	1,0,	Ip	=	0,3280,0,3022,0,2726.	

G.5.8 Obtain	Spherical	PCS	from	profile	that	uses	0:45	geometry	and	has	BRDFStructure	tags	

An	instrument	with	spherical	geometry	uses	a	sphere	with	highly	reflective	white	coating	and	a	baffled	
light	 source	 located	 near	 the	 rear	 of	 the	 sphere.	 The	measurement	 geometry	 of	 a	 typical	 8°	 sphere	
instrument	is	illustrated	in	the	simplified	diagram	shown	in	Figure	G.10.	

ICC.2:2023	

220	 ©	ICC	2023	–	All	rights	reserved	

	
Key	

a	 viewing	port	

b	 specular	port	

c	 sample	

Figure	G.10	—	d:8	measurement	using	integrated	sphere	

The	sample	is	viewed	8°	from	perpendicular	and	the	associated	specular	is	also	at	8°.	The	specular	port	
is	located	where	the	specular	component	impinges	on	the	sphere.	Opening	the	port	allows	the	specular	
component	to	exit	without	being	detected.	

Acquiring	 spherical	 measurements	 by	 using	 the	 brdfColorimetricParameterX	 (BCPx)	 or	
brdfSpectralParameterX	(BSPx)	tags	in	a	profile	requires	that	an	illumination	map	be	applied	to	the	BRDF	
model,	as	illustrated	in	Figure	G.11.	

	

Figure	G.11	—	Obtaining	PCS	values	using	an	illumination	map	

The	illumination	map	is	a	fully	illuminated	sphere	with	a	hole	at	the	specular	if	the	specular	is	not	being	
included.	

	

	

ICC.2:2023	

©	ICC	2023	–	All	rights	reserved	 221	

G.6 Rendering	intent	usage	with	BRDF	data	

The	usage	of	rendering	intents	with	BRDF	data	mirrors	the	usage	of	rendering	intents	without	BRDF	data.	
When	the	illumination	and	viewing	angles	match	the	profile’s	default	(typically	0:45),	the	colour	from	the	
BRDF	closely	matches	the	colour	of	the	non‐BRDF	transform	for	the	corresponding	rendering	intent.	For	
differing	angles	the	colours	are	transformed	in	a	similar	manner,	as	illustrated	in	Figure	G.12.	

	

Figure	G.12	—	Matching	PCS	values	using	BRDF	and	non‐BRDF	intents	

G.7 Normal	map	and	height	map	usage	with	BRDF	data	

A	BRDF	doesn’t	provide	spatial	information	about	a	surface.	Information	about	the	texture	of	surface	can	
be	included	in	a	profile	through	the	inclusion	of	a	height	map	or	a	normal	map.	Both	types	of	maps	can	be	
used	to	specify	the	small	variations	in	surface	height	that	are	typical	with	many	types	of	substrates.	

	

Figure	G.13	—	Magnified	images	of	common	papers	with	different	surface	characteristics.	

ICC.2:2023	

222	 ©	ICC	2023	–	All	rights	reserved	

Two	examples	of	the	surface	variations	that	could	be	characterized	by	these	maps	are	illustrated	in	the	
images	shown	in	Figure	G.13,	where	the	left	image	is	matte	paper	and	the	right	image	is	a	high	quality	
semi‐glossy	paper.	

A	 normal	 map	 is	 suitable	 for	 use	 in	 the	 3D	 graphics	 technique	 of	 normal	 mapping.	 This	 technique	
enhances	the	appearance	of	detail	without	increasing	the	number	of	polygons.	This	technique	doesn’t	
alter	 the	 geometry,	 but	 provides	 a	 shader	 with	 a	 high‐res	 map	 of	 surface	 orientation.	 This	 surface	
orientation	is	then	used	when	the	BRDF	is	applied.	Normal	mapping	can	have	unrealistic	results	when	
the	variations	in	surface	height	are	large.	For	typical	substrates	the	variation	in	height	is	small	enough	
for	this	technique	to	appear	realistic.	

A	height	map	can	be	used	with	the	technique	of	displacement	mapping.	Displacement	mapping	alters	the	
geometry	in	the	scene	and	leads	to	correct	outlines	and	shadows.	

When	a	texture	is	used	for	3D	rendering	it	is	typically	not	of	high	enough	resolution	to	be	applied	across	
the	entire	surface.	The	texture	is	typically	repeated	across	the	surface	so	that	the	entire	surface	can	be	
covered	and	the	correct	resolution	can	be	maintained.	When	the	texture	is	repeated	across	the	surface	
the	boundaries	between	 the	edges	of	 the	 texture	need	 to	be	 seamless	 so	 that	 the	edges	between	 the	
borders	of	the	texture	are	not	visible.	

It	is	possible	to	compute	a	height	map	from	a	normal	map	and	a	normal	map	from	a	height	map	using	
numerical	techniques.	

ICC.2:2023	

©	ICC	2023	–	All	rights	reserved	 223	

Annex	H	
(informative)	

	
Directional	emissive	colour	

The	light	emission	experienced	by	an	observer	often	changes	as	an	observer	views	an	emissive	surface	
(display)	viewed	from	different	angles	as	well	as	focusing	upon	different	positions	in	the	field	of	view.	An	
example	is	found	in	Figure	H.1.	The	directional	tags	are	implemented	as	multiProcessElement	tags	that	
take	viewing	angle	and	relative	position	with	either	device	or	PCS	values	and	return	PCS	or	Device	values	
associated	with	the	expected	observer	experience.	

	
Key	

X	 horizontal	position	(‐0.7)	

Y	 vertical	position	(+0.6)	

Φ	 azimuth	angle	(‐70°)	

θ	 zenith	angle	(50	°)	

Figure	H.1	—	Viewing	angles	relative	to	display	

The	 forward	 directional	 tags	 (directionalAToB0Tag,	 directionalAToB1Tag,	 directionalAToB2Tag,	
directionalAToB3Tag,	 directionalBToA0Tag,	 directionaDToB0Tag,	 directionaDToB1Tag,	
directionaDToB2Tag,	 directionaDToB3Tag)	 provide	 a	 means	 of	 describing	 the	 observed	 colour	 or	
spectral	emission	based	upon	viewing	angle	and	relative	position	on	the	display.	

The	 reverse	 directional	 tags	 (directionalBToA1Tag,	 directionalBToA2Tag,	 directionalBToA3Tag,	
directionalBToD0Tag,	 directionalBToD1Tag,	 directionalBToD2Tag,	 directionalBToD3Tag)	 provide	 a	
means	of	determining	 the	device	values	needed	 to	obtained	an	observed	 colour	or	 spectral	 emission	
based	upon	viewing	angle	and	relative	position	on	the	display.	

ICC.2:2023	

224	 ©	ICC	2023	–	All	rights	reserved	

Annex	I	
(informative)	

	
Multiplex	connection	spaces	

I.1 Introduction	

A	foundational	principle	of	ICC‐based	colour	management	has	been	the	use	of	a	PCS	to	connect	profiles.	
A	 PCS	 provides	 the	 answer	 to	 the	 question	 “What	 does	 the	 colour	 look	 like?”	 when	 defined	
colorimetrically,	or	“What	relationship	does	the	colour	have	to	light?”	when	defined	spectrally.	

An	alternative	method	of	connecting	profiles	can	be	said	to	have	always	existed,	but	has	seldom	been	
concretely	identified.	When	two	profiles	have	the	same	signature	in	the	device	colour	space	field	of	their	
profile	headers	and	their	assumptions	about	device	channel	encoding	are	the	same,	then	such	profiles	
can	be	connected	together	by	passing	the	device	channel	results	from	one	profile	as	input	data	to	the	next	
profile.	This	can	potentially	be	done	by	either	the	CMM	directly	or	by	an	application	making	successive	
calls	 to	a	CMM	that	does	not	support	device	channel	connection.	When	profiles	are	connected	 in	 this	
manner	a	kind	of	“Device	Connection	Space”	is	formed	that	answers	the	questions	“What	is	the	recipe	for	
the	colour?”	or	just	simply	“What	is	it?”	with	the	implication	that	the	meaning	of	the	colour	encoding	is	
only	defined	by	the	device	channel	values	provided	and	used	by	the	profiles	involved.	

One	limitation	of	using	such	a	“Device	Connection	Space”	is	that	both	the	number	of	channels	and	order	
of	 the	channels	need	 to	be	 the	same	 for	both	profiles.	This	 is	because	 there	 is	no	 implicit	processing	
associated	 with	 “Device	 Connection	 Space”	 channel	 connection.	 For	 each	 and	 every	 channel	 in	 the	
connection	space,	data	from	the	ith	channel	of	one	profile	is	passed	directly	to	the	ith	channel	of	the	next	
profile	without	any	modification	of	the	channel	data	value.	

The	concept	of	a	“Multiplex	Connection	Space”	(MCS)	as	defined	by	this	document	essentially	extends	the	
concept	 of	 a	 “Device	 Connection	 Space”	 to	 allow	 for	 flexibility	 in	 both	 the	 number	 and	 order	 of	 the	
channels	while	maintaining	the	same	“What	is	it?”	concept	of	the	channel	data	encoding.	

MCS	channel	connection	 flexibility	enables	various	 ICC	based	workflows	 that	would	be	difficult	 if	not	
impossible	to	otherwise	implement.	

No	processing	of	the	actual	data	is	performed	when	MCS	channel	data	are	passed	from	one	profile	to	the	
next	profile	across	the	MCS	connection.	The	only	processing	that	is	performed	is	routing	and	initialization	
of	“connected”	Multiplex	channels.	MCS	channels	have	no	processing	relationship	to	PCS	channels	as	far	
as	a	CMM	is	concerned	(in	 the	same	manner	 that	 there	 is	no	processing	relationship	between	device	
channels	and	PCS	channels).	Any	processing	that	is	done	between	MCS	and	PCS	connections	is	provided	
by	transformation	tags	within	the	ICC	profiles	being	used.	

I.2 MCS	connection	basics	

MCS	usage	is	identified	by	the	MCS	field	of	the	profile	header,	which	contains	a	signature	indicating	the	
number	of	channels	participating	in	the	MCS.	

The	flags	field	in	the	profile	header	has	also	been	extended	to	indicate	that	the	MCS	channels	defined	by	
the	profile	need	to	form	a	proper	subset	of	the	MCS	channels	defined	in	the	profile	that	is	being	connected	
to.	This	logic	is	better	understood	relative	to	the	example	of	connecting	a	MultiplexIdentification	(MID)	
profile	to	a	MultiplexVisualization	(MVIS)	profile	using	MCS	connection.	Four	possible	use	cases	of	MCS	
subset	flag	combinations	exist.	

i)	 If	the	neither	the	MID	profile	nor	the	MVIS	profile	have	the	MCS	subset	flag	set	then	there	are	no	
subset	requirements.	

ICC.2:2023	

©	ICC	2023	–	All	rights	reserved	 225	

ii)	 If	only	the	MID	profile	has	the	MCS	subset	flag	set	then	all	of	the	MCS	channels	in	the	MID	profile	need	
to	be	present	in	the	MVIS	profile	(i.e.	the	MID	MCS	channels	need	to	be	a	subset	of	the	MVIS	MCS	
channels).	

iii)	 If	only	the	MVIS	profile	has	the	MCS	subset	flag	set	then	all	of	the	MCS	channels	in	the	MVIS	profile	
need	to	be	present	in	the	MID	profile	(i.e.	the	MVIS	MCS	channels	need	to	be	a	subset	of	the	MID	MCS	
channels).	

iv)	 If	both	the	MID	and	MVIS	profiles	have	the	MCS	subset	flag	then	both	profiles	need	to	contain	the	
same	set	of	MCS	channels	(though	order	of	the	MCS	channels	can	vary).	

MCS	connection	requires	that	these	flags,	along	with	the	multiplexTypeArrayTags,	be	used	to	determine	
whether	the	MCS	channels	meet	the	subset	requirements	of	both	the	profiles.	

The	multiplexTypeArrayTag	defines	names	for	each	of	the	channels	in	the	MCS.	MCS	channel	data	routing	
is	based	upon	matching	channel	names	in	the	profiles	being	connected.	

The	optional	multiplexDefaultValuesTag	provides	default	values	for	channels	that	are	not	present	in	a	
source	profile.	

Four	classes	of	profile	are	able	to	participate	in	MCS	connection.	Two	can	be	used	as	input	and	two	can	
be	used	as	output.	Input	class	profiles	and	MultiplexIdentification	class	profiles	can	provide	AToM0	tags	
that	transform	device	channel	data	to	MCS	channel	data;	MultiplexLink	class	profiles	provide	MToA0	tags	
that	transform	MCS	channel	data	to	device	channel	data;	and	MultiplexVisualization	class	profiles	provide	
either	MToS0	(spectral)	or	MToB0	(colorimetric)	tags	to	provide	transforms	that	go	from	MCS	channel	
data	to	PCS	channel	data	(spectral	or	colorimetric).	

When	MCS	connection	routing	is	determined,	channels	with	identical	names	are	“connected”.	Thus,	for	
each	MCS	channel	of	 the	source	profile	data	are	passed	directly	 to	an	MCS	channel	of	 the	destination	
profile	that	has	an	identical	name.	Source	MCS	Channel	data	are	not	used	when	the	destination	profile	
does	not	have	an	MCS	channel	with	an	identical	name.	Destination	MCS	channels	are	passed	default	values	
(either	zero	or	from	the	multiplexDefaultValuesTag)	when	the	source	MCS	does	not	have	an	MCS	channel	
with	an	identical	name.	

I.3 MCS	connection	examples	

Examples	 of	 a	 few	 possible	 MCS	 workflow	 connections	 are	 depicted	 in	 Figures	I.1	 to	 I.5	 (not	 to	 be	
considered	an	exhaustive	set).	

ICC.2:2023	

226	 ©	ICC	2023	–	All	rights	reserved	

	
NOTE	 This	connection	would	be	expected	to	fail	if	the	MCS	subset	requirement	was	enabled	for	either	the	MID	
or	MVIS	profile	due	to	the	fact	that	their	multiplex	channels	are	not	subsets	of	one	another.	

Figure	I.1	—	Workflow	with	NO	multiplex	channel	subset	requirements	

	
NOTE	 Value	of	zero	is	passed	into	MVIS	channel	index	3	because	no	multiplexDefaultValuesTag	is	defined	in	
the	MVIS	profile.	

Figure	I.2	—	Workflow	with	requirement	that	multiplex	channels	of	MID	profile	are	a	subset	of	
the	multiplex	channels	of	the	MVIS	profile	

ICC.2:2023	

©	ICC	2023	–	All	rights	reserved	 227	

	
NOTE	 Data	from	MID	profile’s	channels	indexed	1	and	4	are	ignored	in	the	connection.	

Figure	I.3	—	Workflow	with	requirement	that	multiplex	channels	of	the	MVIS	profile	are	a	subset	
of	the	multiplex	channels	of	the	MID	profile	

	

Figure	I.4	—	Workflow	where	MID	and	MVIS	profiles	have	equivalent	multiplex	channels	

ICC.2:2023	

228	 ©	ICC	2023	–	All	rights	reserved	

	

Figure	I.5	—	Workflow	with	NO	multiplex	channel	subset	requirements	using	a	MultiplexLink	
profile	

ICC.2:2023	

©	ICC	2023	–	All	rights	reserved	 229	

Annex	J	
(informative)	

	
ColorEncodingSpace	profiles	

ColorEncodingSpace	 profiles	 allow	 for	 profile	 files	 that	 have	minimum	 data	 structure	 which	 can	 be	
embedded	 in	 images	 with	 clear,	 concise,	 and	 non‐redundant	 (canonical)	 information	 relative	 to	 a	
“named”	reference	that	is	provided	to	the	CMM	for	determining	the	actual	transforms	to	apply.	Because	
the	actual	transformation	is	not	defined	by	the	profile,	the	CMM	is	responsible	for	determining/defining	
the	transform	to	use.	

Various	methods	can	be	employed	by	a	CMM	to	provide	the	appropriate	transform.	

One	 method	 of	 implementing	 support	 for	 ColorEncodingSpace	 profiles	 within	 a	 CMM	 is	 to	 utilize	 a	
repository	 of	 either	 fully	 specified	 ColorEncodingSpace	 profiles	 (described	 below)	 that	 provide	 the	
information	to	establish	the	needed	transforms,	or	profiles	of	other	classes	(e.g.	display,	colorspace)	that	
also	contain	a	referenceNameTag	that	associates	the	profile	with	a	named	colour	encoding	space.	

When	a	ColorEncodingSpace	profile	 is	presented	 to	 the	CMM,	 the	CMM	could	 look	 for	a	profile	 in	 its	
repository	that	has	a	matching	colour	encoding	space	name	in	the	referenceNameTag	of	the	matching	
profile	(or	colorSpaceNameTag	if	the	referenceNameTag	is	set	to	“ISO	22028‐1”).	If	the	matching	profile	
is	not	a	ColorEncodingSpace	profile	then	the	profile	can	directly	be	used	in	place	of	the	presented	profile,	
and	any	optional	parameters	in	the	presented	profile	will	be	ignored.	

If	 the	 matching	 repository	 profile	 is	 a	 fully	 specified	 ColorEncodingSpace	 profile	 then	 the	
colorSpaceNameTag	of	the	matching	repository	profile	will	have	the	same	text	as	the	profile	presented	
to	the	CMM,	and	the	colorEncodingParamsTag	of	the	matching	repository	profile	will	define	all	of	 the	
parameters	for	the	colour	encoding	space	(as	defined	by	ISO	22028‐1)[2].	These	parameters	can	then	be	
used	 (along	 with	 any	 overrides	 provided	 by	 the	 presented	 profile’s	 colorEncodingParamsTag)	 to	
dynamically	create	a	temporary	profile	to	be	used	to	perform	colour	transforms	in	place	of	the	presented	
profile.	

The	information	in	the	colorEncodingParamsTag	represents	(to	some	degree)	a	logical	replacement	of	
the	Matrix/TRC	architecture	defined	in	ISO	15061‐1	with	the	addition	of	viewing	condition	information	
that	can	be	used	along	with	a	colour	appearance	model	to	correct	for	differences	in	viewing	conditions.	

Therefore,	a	temporary	profile	can	be	created	using	a	transform	multiProcessElementsTag	containing	a	
curve	set	element	and	matrix	element	populated	with	information	from	the	colorEncodingsParamsTag	
data	with	appropriate	PCC	tags	that	utilize	a	matrix	element	and/or	colour	appearance	elements	to	adjust	
for	differences	in	viewing	conditions.	

The	temporary	profile	might	be	deleted	when	it	is	no	longer	needed	to	perform	colour	transformations.	

ICC.2:2023	

230	 ©	ICC	2023	–	All	rights	reserved	

Annex	K	
(informative)	

	
Workflow	scenarios	and	CMM	processing	control	options	

K.1 Introduction	

Multiple	workflow	scenarios	are	enabled	when	profiles	are	used	that	contain	more	than	one	tag	with	
encoded	transforms.	Additionally,	multiple	workflow	scenarios	are	possible	when	a	colour	management	
module	 (CMM)	 implements	 alternative	 processing	 operations	 with	 existing	 transforms	 in	 profiles.	
Unambiguous	operation	is	accomplished	through	CMM	processing	controls	selected	using	Application	
Programing	Interfaces	(APIs)	that	uniquely	select	and	configure	particular	workflow	scenarios.	

Specific	workflow	scenarios	are	not	defined	by	this	document.	Rather,	they	are	defined	in	ICS	documents	
(separate	 from	 this	 document)	which	 outline	 explicit	 profile	 encoding	 requirements	 as	well	 as	 CMM	
processing	controls	related	to	each	workflow	scenario	that	are	specified	by	the	ICS.	

Some	processing	control	options	(and	associated	workflow	scenarios)	are	implied	when	using	a	profile	
that	 contains	 a	 single	 transform	 or	 transform	 type.	 Other	 processing	 control	 options	 are	 implicitly	
selected	when	a	CMM	has	 limited	 implementation	support	 for	 transform	types	or	processing	options.	
Otherwise	 explicit	 CMM	 processing	 control	 options	 are	 used	 to	 select	 and	 achieve	 unambiguous	
operation.	For	some	workflow	scenarios	multiple	processing	control	options	are	combined	to	uniquely	
select	and	control	the	operation	of	the	workflow	scenario.	

Several	example	CMM	processing	control	options	are	described	in	K.2.	

K.2 Example	CMM	processing	control	options	

K.2.1 Rendering	intent	selection	and	processing	

Rendering	intent	selection	is	a	basic	CMM	processing	control	option	associated	with	both	this	document	
and	 ISO	15067.	 Rendering	 intent	 selection	 is	 associated	 with	 both	 tag	 selection	 (see	 8.14)	 and	 PCS	
processing	(see	Annex	A).	Rendering	intent	selection	is	used	in	most	cases	in	conjunction	with	transform	
PCS	selection	(see	K.2.4)	and	transform	type	selection	(see	K.2.5).	

K.2.2 Application	of	Black	Point	Compensation	(BPC)	

Black	 Point	 Compensation	 (BPC)	 involves	 an	 additional	 PCS	 processing	 step	 in	 conjunction	 with	
colorimetric	PCS	processing	(see	K.2.4).	The	operations	involved	with	BPC	processing	are	specified	by	
ISO	18619.	

K.2.3 Forward/Reverse	transform	selection	

A	forward	transform	converts	from	a	device,	MCS,	or	colour	space	encoding	to	a	PCS.	A	reverse	transform	
converts	from	a	PCS	to	a	device,	MCS	or	colour	space	encoding.	Forward/Reverse	transform	selection	is	
often	implicitly	determined	by	the	position	of	the	profile	in	the	sequence	of	profiles	being	applied	by	the	
CMM	(possibly	 in	 conjunction	with	 the	 colour	 spaces	being	used).	 In	other	 cases	 there	may	not	be	 a	
forward/reverse	transform	associated	with	the	transform	type	in	which	case	forward/reverse	transform	
selection	is	implicitly	determined.	

	

	

	

ICC.2:2023	

©	ICC	2023	–	All	rights	reserved	 231	

K.2.4 Transform	PCS	selection	

Transform	PCS	selection	involves	determining	the	set	of	tags	associated	with	a	transform	type	that	work	
with	either	a	colorimetric‐based	PCS	or	a	spectrally	based	PCS.	Transform	PCS	selection	is	generally	also	
associated	with	rendering	intent	selection	(see	K.2.1)	in	addition	to	transform	type	selection	(see	K.2.4).	

Colorimetric	PCS‐based	transforms	use	the	colorimetric	PCS	defined	by	the	PCS	field	in	the	profile	header	
along	with	other	PCC	metadata.	Spectral	PCS‐based	transforms	use	the	spectralPCS,	spectralRange,	and	
biSpectralRange	fields	in	the	profile	header	along	with	other	PCC	metadata.	

NOTE	 This	CMM	processing	control	 selection	will	be	 implicitly	determined	when	connecting	with	a	profile	
where	only	one	PCS	type	is	present.	

Annex	A	provides	information	about	PCS	transformations	that	are	performed	when	connecting	forward	
transforms	of	one	PCS	type	to	reverse	transforms	of	a	different	PCS	type.	

K.2.5 Transform	type	selection	

K.2.5.1 General	

Transform	type	selection	is	used	to	select	the	set	of	transforms	that	have	a	common	processing	purpose.	
K.2.5.2	provides	a	list	of	transform	processing	types	associated	with	tags	in	this	document.	

In	some	cases	transform	type	selection	only	provides	a	hint	as	 the	actual	 transform	to	use	 is	directly	
implied	by	the	fact	that	only	one	transform	type	is	present	in	a	profile.	

K.2.5.2 Specific	transform	processing	types	

K.2.5.2.1 Colour	transform	processing	

The	most	 common	 form	 of	 transform	used	 in	 ICC	 profiles	 is	 the	 colour	 transform.	 Colour	 transform	
processing	usually	involves	transforming	between	a	device	or	colour	space	encoding	and	a	colorimetric	
or	spectrally	based	PCS	(in	either	direction)	with	transform	PCS	selection	(see	K.2.4)	providing	the	means	
of	selecting	which	type	of	PCS	is	involved	and	forward/reverse	transform	selection	(see	K.2.3)	used	to	
select	which	direction.	

Two	 exceptions	 to	 this	 basic	 use	 of	 colour	 transform	 are	 used	 by	 Abstract	 and	 DeviceLink	 profiles.	
Abstract	profiles	use	colour	transforms	that	convert	between	a	common	PCS	type	–	either	colorimetric	
or	spectral	depending	on	the	transform	PCS	selection	(see	K.2.4).	DeviceLink	profiles	use	a	special	form	
of	 colour	 transform	 that	 substitutes	 the	 use	 of	 the	 destination	 device	 colour	 space	 signature	 for	 the	
colorimetric	PCS	(with	no	PCS	processing	being	performed).	

Relevant	tags	for	forward	colour	transform	processing	using	a	colorimetric	PCS	include:	AToB0Tag	(see	
9.2.1),	AToB1Tag	(see	9.2.2),	AToB2Tag	(see	9.2.3),	and	AToB3Tag	(see	9.2.4).	

Relevant	tags	for	reverse	colour	transform	processing	using	a	colorimetric	PCS	include:	BToA0Tag	(see	
9.2.38),	BToA1Tag	(see	9.2.39),	BToA2Tag	(see	9.2.40),	and	BToA3Tag	(see	9.2.41).	

Relevant	tags	for	forward	colour	transform	processing	using	the	spectral	PCS	include:	DToB0Tag	(see	
9.2.76),	DToB1Tag	(see	9.2.77),	DToB2Tag	(see	9.2.78),	and	DToB3Tag	(see	9.2.79).	

Relevant	 tags	 for	reverse	colour	transform	processing	using	the	spectral	PCS	 include:	BToD0Tag	(see	
9.2.42),	BToD1Tag	(see	9.2.43),	BToD2Tag	(see	9.2.44),	and	BToD3Tag	(see	9.2.45).	

K.2.5.2.2 Direct	BRDF	processing	

With	direct	BRDF	processing	the	bidirectional	reflectance	distribution	function	(BRDF)	is	implemented	
directly	in	the	profile	transform	and	the	CMM	is	used	to	determine	results	for	rendering	purposes.	The	
application	of	a	BRDF	involves	providing	the	viewing	and	lighting	angles	 in	addition	to	device/colour	
space/PCS	encoding.	Transform	PCS	selection	(see	K.2.4)	provides	the	means	of	selecting	which	type	of	

ICC.2:2023	

232	 ©	ICC	2023	–	All	rights	reserved	

PCS	is	involved,	and	forward/reverse	transform	selection	(see	K.2.3)	is	used	to	select	which	direction.	
Forward	direct	BRDF	processing	transforms	convert	the	combination	of	viewing	angles,	lighting	angles,	
and	device/colour	space	encoding	 to	PCS	values.	Reverse	direct	BRDF	processing	 transforms	convert	
from	viewing	angles,	lighting	angles	and	PCS	values	to	device/colour	space	encoding.	Further	discussion	
of	BRDF	processing	can	be	found	in	Annex	G.	

Relevant	tags	for	forward	direct	BRDF	processing	using	a	colorimetric	PCS	include:	brdfAToB0Tag	(see	
9.2.14),	brdfAToB1Tag	(see	9.2.15),	brdfAToB2Tag	(see	9.2.16),	and	brdfAToB3Tag	(see	9.2.17).	

Relevant	 tags	 for	 forward	 direct	 BRDF	 processing	 using	 a	 spectral	 PCS	 include:	 brdfDToB0Tag	 (see	
9.2.26),	brdfDToB1Tag	(see	9.2.27),	brdfDToB2Tag	(see	9.2.28),	and	brdfDToB3Tag	(see	9.2.29).	

Relevant	tags	for	reverse	direct	BRDF	processing	using	a	colorimetric	PCS	include:	brdfBToA0Tag	(see	
9.2.18),	brdfBToA1Tag	(see	9.2.19),	brdfBToA2Tag	(see	9.2.20),	and	brdfBToA3Tag	(see	9.2.21).	

Relevant	 tags	 for	 reverse	 direct	 BRDF	 processing	 using	 a	 spectral	 PCS	 include:	 brdfBToD0Tag	 (see	
9.2.22),	brdfBToD1Tag	(see	9.2.23),	brdfBToD2Tag	(see	9.2.24),	and	brdfBToD3Tag	(see	9.2.24).	

K.2.5.2.3 Parametric‐based	BRDF	processing	

With	parametric	BRDF	processing	the	BRDF	the	profile	only	provided	parameters	to	a	function	that	is	
typically	 applied	 by	 separate	 3D	 rendering	 system.	 A	 single	 set	 of	 BRDF	 parameters	 can	 be	 used	 to	
describe	appearance	for	any	viewing/illuminating	angle.	Transform	PCS	selection	(see	K.2.4)	provides	
the	means	of	selecting	which	type	of	PCS	is	involved.	Parameters	can	be	applied	to	separate	device/PCS	
values	or	parameters	can	be	defined	for	each	PCS	channel.	Parametric‐based	BRDF	processing	transforms	
convert	from	device/colour	space	encoding	to	PCS	values	(a	forward	transform).	Further	discussion	of	
BRDF	processing	can	be	found	in	Annex	G.	

Relevant	 tags	 for	 parametric	 BRDF	 processing	 using	 a	 colorimetric	 PCS	 include:	
brdfColorimetricParameter0Tag	 (see	 9.2.6),	 brdfColorimetricParameter1Tag	 (see	 9.2.7),	
brdfColorimetricParameter2Tag	(see	9.2.8)	and	brdfColorimetricParameter3Tag	(see	9.2.9).	

Relevant	tags	for	parametric	BRDF	processing	using	a	spectral	PCS	include:	brdfSpectralParameter0Tag	
(see	 9.2.10),	 brdfSpectralParameter1Tag	 (see	 9.2.11),	 brdfSpectralParameter2Tag	 (see	 9.2.12),	 and	
brdfSpectralParameter3Tag	(see	9.2.13).	

K.2.5.2.4 MCS	to	parametric	BRDF	processing	

The	operation	of	MCS	to	parametric	BRDF	processing	is	identical	to	parametric‐based	BRDF	processing	
(see	K.2.5.2.3)	with	the	exception	that	MCS	channel	data	with	associated	channel	routing	(see	Annex	I)	is	
used	as	the	input	to	the	transform	instead	of	device/colour	space	encoding.	Transform	PCS	selection	(see	
K.2.4)	provides	the	means	of	selecting	which	type	of	PCS	is	involved.	

Further	information	about	MCS	handling	can	be	found	in	Annex	I.	

Relevant	tags	for	MCS	to	parametric	BRDF	processing	using	a	colorimetric	PCS	include:	brdfMToB0Tag	
(see	9.2.30),	brdfMToB1Tag	(see	9.2.31),	brdfMToB2Tag	(see	9.2.32),	and	brdfMToB3Tag	(see	9.2.33).	

Relevant	tags	for	MCS	to	parametric	BRDF	processing	using	a	spectral	PCS	include:	brdfMToS0Tag	(see	
9.2.34),	brdfMToS1Tag	(see	9.2.35),	brdfMToS2Tag	(see	9.2.36),	and	brdfMToS3Tag	(see	9.2.37).	

K.2.5.2.5 Device	to	MCS	processing	

Device	 to	 MCS	 processing	 is	 solely	 associated	 with	 the	 AToM0Tag	 (see	 9.2.5).	 The	 device	 to	 MCS	
processing	 transform	selection	 is	 implicitly	used	with	MultiplexLink	profiles	 (see	8.12).	Explicit	CMM	
processing	control	options	to	select	MCS	to	device	are	used	for	specific	workflow	scenarios	(defined	by	
an	ICS)	when	multiple	transform	types	are	present	in	a	profile	(for	an	example	see	8.3).	

Further	information	about	MCS	handling	can	be	found	in	Annex	I.	

	

ICC.2:2023	

©	ICC	2023	–	All	rights	reserved	 233	

K.2.5.2.6 MCS	to	device	processing	

MCS	 to	 device	 processing	 is	 solely	 associated	 with	 the	 MToA0Tag	 (see	 9.2.90).	 The	 MCS	 to	 device	
processing	transform	selection	is	implicitly	used	with	MultiplexIdentification	profiles	(see	8.11).	Explicit	
CMM	 processing	 control	 options	 to	 select	 device	 to	 MCS	 processing	 are	 used	 for	 specific	 workflow	
scenarios	(defined	by	an	ICS)	when	multiple	transform	types	are	present	in	a	profile.	

Further	information	about	MCS	handling	can	be	found	in	Annex	I.	

K.2.5.2.7 MCS	to	PCS	processing	

MCS	to	PCS	processing	involves	transforming	from	MCS	channels	to	a	colorimetric	or	spectrally	based	
PCS	with	 transform	 PCS	 selection	 (see	 K.2.4)	 providing	 the	means	 of	 selecting	which	 type	 of	 PCS	 is	
involved.	Further	information	about	MCS	handling	can	be	found	in	Annex	I.	

Relevant	 tags	 for	 MCS	 to	 PCS	 processing	 using	 a	 colorimetric	 PCS	 include:	 MToB0Tag	 (see	 9.2.91),	
MToB1Tag	(see	9.2.92),	MToB2Tag	(see	9.2.93),	and	MToB3Tag	(see	9.2.94).	

Relevant	tags	for	MCS	to	PCS	processing	using	a	spectral	PCS	include:	MToS0Tag	(see	9.2.95),	MToS1Tag	
(see	9.2.96),	MToS2Tag	(see	9.2.97),	and	MToS3Tag	(see	9.2.98).	

K.2.5.2.8 Named	colour	processing	

Named	 colour	 processing	 is	 solely	 associated	 with	 the	 namedColorTag	 (see	 9.2.99).	 Named	 colour	
processing	 transform	 selection	 is	 implicitly	 used	with	 NamedColor	 profiles	 (see	 8.10).	 Explicit	 CMM	
processing	control	options	to	select	named	colour	processing	are	used	for	specific	workflow	scenarios	
(defined	by	an	ICS)	when	multiple	transform	types	are	present	in	a	profile.	

CMM	processing	control	options	are	used	in	conjunction	with	named	colour	processing	transforms	to	
select	transform	direction	(see	K.2.3)	between	tints	of	named	colours	and	device	values	or	PCS	values,	or	
transform	PCS	selection	to	determining	whether	to	use	colorimetric	or	spectral	information	(see	K.2.4).	
Addition	 CMM	 processing	 control	 options	might	 involve	 selection	 of	 tint‐based	measurement	 over	 a	
background.	

Named	colour	processing	may	involve	using	alternate	CMM	APIs	from	that	used	by	colour	transforms	
because	tints	of	named	colours	are	involved	and	names	are	provided	as	part	of	the	transformation.	

Further	information	about	named	colours	can	be	found	in	Annex	D.	

K.2.5.2.9 Directional	emissive	processing	

The	application	directional	emissive	processing	involves	providing	the	relative	position	on	the	display	
and	viewing	angles	in	addition	to	device/colour	space	encoding.	Forward	directional	emissive	processing	
transforms	 convert	 the	 combination	 of	 relative	 position,	 viewing	 angles,	 and	 device/colour	 space	
encoding	 to	 PCS	 values.	 Reverse	 directional	 emissive	 processing	 transforms	 convert	 from	 relative	
position,	viewing	angles,	and	PCS	values	to	device/colour	space	encoding.	Further	directional	emissive	
processing	can	be	found	in	Annex	H.	

Relevant	 tags	 for	 forward	 directional	 emissive	 processing	 using	 a	 colorimetric	 PCS	 include:	
directionalAToB0Tag	(see	9.2.60),	directionalAToB1Tag	(see	9.2.61),	directionalAToB2Tag	(see	9.2.62),	
and	directionalAToB3Tag	(see	9.2.63).	

Relevant	 tags	 for	 forward	 directional	 emissive	 processing	 using	 a	 spectral	 PCS	 include:	
directionalDToB0Tag	(see	9.2.72),	directionalDToB1Tag	(see	9.2.73),	directionalDToB2Tag	(see	9.2.74),	
and	directionalDToB3Tag	(see	9.2.75).	

Relevant	 tags	 for	 reverse	 directional	 emissive	 processing	 using	 a	 colorimetric	 PCS	 include:	
directionalBToA0Tag	(see	9.2.64),	directionalBToA1Tag	(see	9.2.65),	directionalBToA2Tag	(see	9.2.66),	
and	directionalBToA3Tag	(see	9.2.67).	

ICC.2:2023	

234	 ©	ICC	2023	–	All	rights	reserved	

Relevant	 tags	 for	 reverse	 directional	 emissive	 processing	 using	 a	 spectral	 PCS	 include:	
directionalBToD0Tag	(see	9.2.68),	directionalBToD1Tag	(see	9.2.69),	directionalBToD2Tag	(see	9.2.70),	
and	directionalBToD3Tag	(see	9.2.71).	

K.2.6 Alternate	PCC	

Profile	Connection	Conditions	(PCC)	information	(see	6.3.2)	 is	present	in	a	profile	when	either	a	non‐
standard	PCS	is	used	or	a	spectral	PCS	is	used.	PCC	information	is	used	as	part	of	PCS	processing	(see	
Annex	A)	 in	 cases	 where	 spectral	 viewing	 condition	 information	 is	 applied	 or	 conversions	 from/to	
custom	colorimetry	is	performed.	

Alternate	PCC	information	is	used	instead	of	the	PCC	information	in	the	profile	when	alternate	profile	
connection	condition	information	is	provided	to	a	CMM	as	part	of	the	processing	control	options	used	to	
configure	the	application	of	a	profile.	

K.2.7 CMM	environment	variable	usage	

CMM	environment	variables	are	accessed	by	 the	calculator	element	 ‘env’	operator	(see	11.2.1.4).	The	
values	 for	CMM	environment	 variables	 are	provided	using	CMM	processing	 control	options	 to	define	
values	 for	 environment	 variables	 with	 given	 signatures.	 ICSs	 define	 the	 CMM	 environment	 variable	
signatures	and	value	encoding	for	specific	workflow	scenarios.	

Calculator	element	scripts	in	profiles	check	the	status	of	applying	the	‘env’	operator	to	determine	whether	
the	environment	value	has	been	provided	and	perform	appropriate	operations	when	a	variable	is	not	
available.	

CMM	environment	variables	may	not	be	available	when	processing	a	profile	because	either	the	CMM	does	
not	provide	CMM	environment	variable	passing	support	(implicitly	defining	no	environment	variables	as	
part	 of	 CMM	 processing	 control	 options)	 or	 the	 calling	 application	 has	 not	 provided	 values	 for	 the	
variables	using	CMM	processing	control	options	for	the	CMM	environment	variables.	

K.2.8 Calculator	element	‘solv’	operator	support	

The	support	for	implementing	the	calculator	element	‘solv’	operator	is	optional	(see	11.2.1.7)	for	some	
workflow	scenarios	based	on	ICS	requirements.	In	such	cases	the	profile	calculator	script	either	does	not	
use	the	‘solv’	calculator	element	operator	or	it	checks	the	status	of	the	operator	and	performs	appropriate	
operations.	A	CMM	processing	control	option	is	used	to	control	whether	the	‘solv’	operator	processing	
should	be	enabled	when	a	CMM	provides	support	for	the	‘solv’	operator.	A	CMM	that	does	not	provide	
‘solv’	operator	support	implicitly	disables	this	CMM	processing	control	option.	

K.2.9 Application	of	HDR	to	SDR	transforms	

The	use	of	HDR	to	SDR	transform	tags	(see	9.2.X,	9.2.X+1,	9.2.X+2,	9.2.X+3)	is	indicated	when	bit	3	is	set	
in	the	profile	flags	field	(bytes	44	to	47)	of	the	profile	header	(see	7.2.13)	and	the	same	bit	is	NOT	set	in	
the	 immediately	 succeeding	 profile.	 	 A	 CMM	 processing	 control	 option	 may	 be	 used	 to	 disable	 the	
application	of	an	HDR	to	SDR	transform	tag	when	it	is	otherwise	indicated.	

ICC.2:2023	

©	ICC	2023	–	All	rights	reserved	 235	

Bibliography	

[1]	 ISO	18619,	Image	technology	colour	management	—	Black	point	compensation	

[2]	 ISO	22028‐1,	Photography	and	graphic	technology	—	Extended	colour	encodings	for	digital	image	
storage,	manipulation	and	interchange	—	Part	1:	Architecture	and	requirements	

[3]	 ANSI	CGATS	TR	001:1995,	Graphic	Technology	—	Color	Characterization	Data	for	Type	1	Printing	

[4]	 CIE	159:2004,	A	colour	appearance	model	for	colour	management	systems:	CIECAM02,	CIE	Central	
Bureau,	Vienna,	Austria	

[5]	 Li	CJ,	Luo	MR,	Testing	the	robustness	of	CIECAM02,	Color	Res	Appl	(30)	(2005)	99‐106.	

[6]	 Süsstrunk	S,	R8‐07,	CAT	in	CIECAM02	

[7]	 Süsstrunk	S,	Brill	MH,	The	nesting	instinct:	Repairing	non‐nested	gamuts	in	CIECAM02,	late	
breaking‐news	paper,	14th	SID/IS&T	Color	Imaging	Conference	Scottsdale,	AZ,	(2006)	

[8]	 Brill,	MH,	Süsstrunk	S,	Repairing	gamut	problems	in	CIECAM02:	A	progress	report,	Color	Res	
Appl	33	(2008),	424‐426;	and	Erratum,	p.	493	

[9]	 DESHPANDE	K.	“N‐colour	separation	methods	for	accurate	reproduction	of	spot	colours,”	Ph.D.	
dissertation,	University	of	the	Arts	London,	May	2015	

[10]	 Green	PJ,	A	test	target	for	defining	media	gamut	boundaries,	Proc.	SPIE	4300,	(2001)	105‐113	

[11]	 CIE	015:2018,	Colorimetry	4th	Edition,	CIE	Central	Bureau,	Vienna,	Austria	

[12]	 Rivest	RL,	RFC1321:	The	MD5	Message‐Digest	Algorithm,	1992,	
https://tools.ietf.org/html/rfc1321	

[13]	 Unicode,	Inc.,	Unicode	Core	Specification,	http://www.unicode.org/versions/latest/	

[14]	 World	Wide	Web	Consortium,	Extensible	Markup	Language	(XML)	1.0	(Fifth	Edition),	2008,	
http://www.w3.org/TR/REC‐xml	

[15]	 ITU‐R	Recommendation	BT.709‐6,	Parameter	values	for	the	HDTV	standards	for	production	and	
international	programme	exchange	

[16]	 ITU‐R	Recommendation	BT.2020‐2,	Parameter	values	for	ultra‐high	definition	television	systems	
for	production	and	international	programme	exchange	

[17]	 ITU‐R	Recommendation	BT.2100‐2,	Image	parameter	values	for	high	dynamic	range	television	
for	use	in	production	and	international	programme	exchange	

[18]	 Supplement	19	to	ITU‐T	H‐series	Recommendations	(10/2019)	‐	Usage	of	video	signal	type	code	
points	

[19]	 ISO	22028‐5:2023	Photography	and	graphic	technology	—	Extended	colour	encodings	for	digital	
image	storage,	manipulation	and	interchange	—	Part	5:	High	dynamic	range	and	wide	colour	
gamut	encoding	for	still	images	(HDR/WCG)	

ICC.2:2023	

236	 ©	ICC	2023	–	All	rights	reserved	

[20]	 ISO/IEC	29170‐2:2015/Amd	1:2020	Information	technology	—	Advanced	image	coding	and	
evaluation	—	Part	2:	Evaluation	procedure	for	nearly	lossless	coding	—	Amendment	1:	
Evaluation	procedure	parameters	for	nearly	lossless	coding	of	high	dynamic	range	media	and	
image	sequences	

